/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG-4 part10 codec. * @author Michael Niedermayer */ #include "libavutil/avassert.h" #include "libavutil/display.h" #include "libavutil/imgutils.h" #include "libavutil/stereo3d.h" #include "internal.h" #include "cabac.h" #include "cabac_functions.h" #include "error_resilience.h" #include "avcodec.h" #include "h264.h" #include "h264dec.h" #include "h264data.h" #include "h264chroma.h" #include "h264_mvpred.h" #include "h264_ps.h" #include "golomb.h" #include "mathops.h" #include "mpegutils.h" #include "mpegvideo.h" #include "rectangle.h" #include "thread.h" static const uint8_t field_scan[16+1] = { 0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4, 0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4, 2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, }; static const uint8_t field_scan8x8[64+1] = { 0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8, 1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8, 2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8, 0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8, 2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8, 2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8, 2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8, 3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8, 3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8, 4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8, 4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8, 5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8, 5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8, 7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8, 6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8, 7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8, }; static const uint8_t field_scan8x8_cavlc[64+1] = { 0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8, 2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8, 3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8, 5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8, 0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8, 1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8, 3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8, 5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8, 0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8, 1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8, 3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8, 5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8, 1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8, 1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8, 3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8, 6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8, }; // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)] static const uint8_t zigzag_scan8x8_cavlc[64+1] = { 0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8, 4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8, 3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8, 2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8, 1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8, 3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8, 2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8, 3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8, 0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8, 2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8, 1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8, 4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8, 0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8, 1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8, 0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8, 5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8, }; static void release_unused_pictures(H264Context *h, int remove_current) { int i; /* release non reference frames */ for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { if (h->DPB[i].f->buf[0] && !h->DPB[i].reference && (remove_current || &h->DPB[i] != h->cur_pic_ptr)) { ff_h264_unref_picture(h, &h->DPB[i]); } } } static int alloc_scratch_buffers(H264SliceContext *sl, int linesize) { const H264Context *h = sl->h264; int alloc_size = FFALIGN(FFABS(linesize) + 32, 32); av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size); // edge emu needs blocksize + filter length - 1 // (= 21x21 for H.264) av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21); av_fast_mallocz(&sl->top_borders[0], &sl->top_borders_allocated[0], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2); av_fast_mallocz(&sl->top_borders[1], &sl->top_borders_allocated[1], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2); if (!sl->bipred_scratchpad || !sl->edge_emu_buffer || !sl->top_borders[0] || !sl->top_borders[1]) { av_freep(&sl->bipred_scratchpad); av_freep(&sl->edge_emu_buffer); av_freep(&sl->top_borders[0]); av_freep(&sl->top_borders[1]); sl->bipred_scratchpad_allocated = 0; sl->edge_emu_buffer_allocated = 0; sl->top_borders_allocated[0] = 0; sl->top_borders_allocated[1] = 0; return AVERROR(ENOMEM); } return 0; } static int init_table_pools(H264Context *h) { const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1; const int mb_array_size = h->mb_stride * h->mb_height; const int b4_stride = h->mb_width * 4 + 1; const int b4_array_size = b4_stride * h->mb_height * 4; h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride, av_buffer_allocz); h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) * sizeof(uint32_t), av_buffer_allocz); h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) * sizeof(int16_t), av_buffer_allocz); h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz); if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool || !h->ref_index_pool) { av_buffer_pool_uninit(&h->qscale_table_pool); av_buffer_pool_uninit(&h->mb_type_pool); av_buffer_pool_uninit(&h->motion_val_pool); av_buffer_pool_uninit(&h->ref_index_pool); return AVERROR(ENOMEM); } return 0; } static int alloc_picture(H264Context *h, H264Picture *pic) { int i, ret = 0; av_assert0(!pic->f->data[0]); pic->tf.f = pic->f; ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ? AV_GET_BUFFER_FLAG_REF : 0); if (ret < 0) goto fail; if (h->avctx->hwaccel) { const AVHWAccel *hwaccel = h->avctx->hwaccel; av_assert0(!pic->hwaccel_picture_private); if (hwaccel->frame_priv_data_size) { pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size); if (!pic->hwaccel_priv_buf) return AVERROR(ENOMEM); pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data; } } if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) { int h_chroma_shift, v_chroma_shift; av_pix_fmt_get_chroma_sub_sample(pic->f->format, &h_chroma_shift, &v_chroma_shift); for(i=0; if->height, v_chroma_shift); i++) { memset(pic->f->data[1] + pic->f->linesize[1]*i, 0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift)); memset(pic->f->data[2] + pic->f->linesize[2]*i, 0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift)); } } if (!h->qscale_table_pool) { ret = init_table_pools(h); if (ret < 0) goto fail; } pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool); pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool); if (!pic->qscale_table_buf || !pic->mb_type_buf) goto fail; pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1; pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1; for (i = 0; i < 2; i++) { pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool); pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool); if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) goto fail; pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4; pic->ref_index[i] = pic->ref_index_buf[i]->data; } pic->pps_buf = av_buffer_ref(h->ps.pps_ref); if (!pic->pps_buf) goto fail; pic->pps = (const PPS*)pic->pps_buf->data; pic->mb_width = h->mb_width; pic->mb_height = h->mb_height; pic->mb_stride = h->mb_stride; return 0; fail: ff_h264_unref_picture(h, pic); return (ret < 0) ? ret : AVERROR(ENOMEM); } static int find_unused_picture(H264Context *h) { int i; for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { if (!h->DPB[i].f->buf[0]) return i; } return AVERROR_INVALIDDATA; } #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size)))) #define REBASE_PICTURE(pic, new_ctx, old_ctx) \ (((pic) && (pic) >= (old_ctx)->DPB && \ (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \ &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL) static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base) { int i; for (i = 0; i < count; i++) { av_assert1(!from[i] || IN_RANGE(from[i], old_base, 1) || IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT)); to[i] = REBASE_PICTURE(from[i], new_base, old_base); } } static int h264_slice_header_init(H264Context *h); int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { H264Context *h = dst->priv_data, *h1 = src->priv_data; int inited = h->context_initialized, err = 0; int need_reinit = 0; int i, ret; if (dst == src) return 0; if (inited && !h1->ps.sps) return AVERROR_INVALIDDATA; if (inited && (h->width != h1->width || h->height != h1->height || h->mb_width != h1->mb_width || h->mb_height != h1->mb_height || !h->ps.sps || h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma || h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc || h->ps.sps->colorspace != h1->ps.sps->colorspace)) { need_reinit = 1; } /* copy block_offset since frame_start may not be called */ memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset)); // SPS/PPS for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) { ret = av_buffer_replace(&h->ps.sps_list[i], h1->ps.sps_list[i]); if (ret < 0) return ret; } for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) { ret = av_buffer_replace(&h->ps.pps_list[i], h1->ps.pps_list[i]); if (ret < 0) return ret; } ret = av_buffer_replace(&h->ps.pps_ref, h1->ps.pps_ref); if (ret < 0) return ret; h->ps.pps = NULL; h->ps.sps = NULL; if (h1->ps.pps_ref) { h->ps.pps = (const PPS*)h->ps.pps_ref->data; h->ps.sps = h->ps.pps->sps; } if (need_reinit || !inited) { h->width = h1->width; h->height = h1->height; h->mb_height = h1->mb_height; h->mb_width = h1->mb_width; h->mb_num = h1->mb_num; h->mb_stride = h1->mb_stride; h->b_stride = h1->b_stride; h->x264_build = h1->x264_build; if (h->context_initialized || h1->context_initialized) { if ((err = h264_slice_header_init(h)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed"); return err; } } /* copy block_offset since frame_start may not be called */ memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset)); } h->avctx->coded_height = h1->avctx->coded_height; h->avctx->coded_width = h1->avctx->coded_width; h->avctx->width = h1->avctx->width; h->avctx->height = h1->avctx->height; h->width_from_caller = h1->width_from_caller; h->height_from_caller = h1->height_from_caller; h->coded_picture_number = h1->coded_picture_number; h->first_field = h1->first_field; h->picture_structure = h1->picture_structure; h->mb_aff_frame = h1->mb_aff_frame; h->droppable = h1->droppable; for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { ff_h264_unref_picture(h, &h->DPB[i]); if (h1->DPB[i].f->buf[0] && (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0) return ret; } h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1); ff_h264_unref_picture(h, &h->cur_pic); if (h1->cur_pic.f->buf[0]) { ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic); if (ret < 0) return ret; } h->enable_er = h1->enable_er; h->workaround_bugs = h1->workaround_bugs; h->droppable = h1->droppable; // extradata/NAL handling h->is_avc = h1->is_avc; h->nal_length_size = h1->nal_length_size; memcpy(&h->poc, &h1->poc, sizeof(h->poc)); memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref)); memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref)); memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic)); memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs)); h->next_output_pic = h1->next_output_pic; h->next_outputed_poc = h1->next_outputed_poc; memcpy(h->mmco, h1->mmco, sizeof(h->mmco)); h->nb_mmco = h1->nb_mmco; h->mmco_reset = h1->mmco_reset; h->explicit_ref_marking = h1->explicit_ref_marking; h->long_ref_count = h1->long_ref_count; h->short_ref_count = h1->short_ref_count; copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1); copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1); copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT + 2, h, h1); h->frame_recovered = h1->frame_recovered; ret = av_buffer_replace(&h->sei.a53_caption.buf_ref, h1->sei.a53_caption.buf_ref); if (ret < 0) return ret; for (i = 0; i < h->sei.unregistered.nb_buf_ref; i++) av_buffer_unref(&h->sei.unregistered.buf_ref[i]); h->sei.unregistered.nb_buf_ref = 0; if (h1->sei.unregistered.nb_buf_ref) { ret = av_reallocp_array(&h->sei.unregistered.buf_ref, h1->sei.unregistered.nb_buf_ref, sizeof(*h->sei.unregistered.buf_ref)); if (ret < 0) return ret; for (i = 0; i < h1->sei.unregistered.nb_buf_ref; i++) { h->sei.unregistered.buf_ref[i] = av_buffer_ref(h1->sei.unregistered.buf_ref[i]); if (!h->sei.unregistered.buf_ref[i]) return AVERROR(ENOMEM); h->sei.unregistered.nb_buf_ref++; } } h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build; if (!h->cur_pic_ptr) return 0; if (!h->droppable) { err = ff_h264_execute_ref_pic_marking(h); h->poc.prev_poc_msb = h->poc.poc_msb; h->poc.prev_poc_lsb = h->poc.poc_lsb; } h->poc.prev_frame_num_offset = h->poc.frame_num_offset; h->poc.prev_frame_num = h->poc.frame_num; h->recovery_frame = h1->recovery_frame; return err; } static int h264_frame_start(H264Context *h) { H264Picture *pic; int i, ret; const int pixel_shift = h->pixel_shift; if (!ff_thread_can_start_frame(h->avctx)) { av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n"); return -1; } release_unused_pictures(h, 1); h->cur_pic_ptr = NULL; i = find_unused_picture(h); if (i < 0) { av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n"); return i; } pic = &h->DPB[i]; pic->reference = h->droppable ? 0 : h->picture_structure; pic->f->coded_picture_number = h->coded_picture_number++; pic->field_picture = h->picture_structure != PICT_FRAME; pic->frame_num = h->poc.frame_num; /* * Zero key_frame here; IDR markings per slice in frame or fields are ORed * in later. * See decode_nal_units(). */ pic->f->key_frame = 0; pic->mmco_reset = 0; pic->recovered = 0; pic->invalid_gap = 0; pic->sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt; pic->f->pict_type = h->slice_ctx[0].slice_type; pic->f->crop_left = h->crop_left; pic->f->crop_right = h->crop_right; pic->f->crop_top = h->crop_top; pic->f->crop_bottom = h->crop_bottom; if ((ret = alloc_picture(h, pic)) < 0) return ret; h->cur_pic_ptr = pic; ff_h264_unref_picture(h, &h->cur_pic); if (CONFIG_ERROR_RESILIENCE) { ff_h264_set_erpic(&h->slice_ctx[0].er.cur_pic, NULL); } if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0) return ret; for (i = 0; i < h->nb_slice_ctx; i++) { h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0]; h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1]; } if (CONFIG_ERROR_RESILIENCE && h->enable_er) { ff_er_frame_start(&h->slice_ctx[0].er); ff_h264_set_erpic(&h->slice_ctx[0].er.last_pic, NULL); ff_h264_set_erpic(&h->slice_ctx[0].er.next_pic, NULL); } for (i = 0; i < 16; i++) { h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3); } for (i = 0; i < 16; i++) { h->block_offset[16 + i] = h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + 16 + i] = h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3); } /* We mark the current picture as non-reference after allocating it, so * that if we break out due to an error it can be released automatically * in the next ff_mpv_frame_start(). */ h->cur_pic_ptr->reference = 0; h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX; h->next_output_pic = NULL; h->postpone_filter = 0; h->mb_aff_frame = h->ps.sps->mb_aff && (h->picture_structure == PICT_FRAME); if (h->sei.unregistered.x264_build >= 0) h->x264_build = h->sei.unregistered.x264_build; assert(h->cur_pic_ptr->long_ref == 0); return 0; } static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple) { uint8_t *top_border; int top_idx = 1; const int pixel_shift = h->pixel_shift; int chroma444 = CHROMA444(h); int chroma422 = CHROMA422(h); src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; if (!simple && FRAME_MBAFF(h)) { if (sl->mb_y & 1) { if (!MB_MBAFF(sl)) { top_border = sl->top_borders[0][sl->mb_x]; AV_COPY128(top_border, src_y + 15 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 15 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16); AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize); AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); } } } } } else if (MB_MBAFF(sl)) { top_idx = 0; } else return; } top_border = sl->top_borders[top_idx][sl->mb_x]; /* There are two lines saved, the line above the top macroblock * of a pair, and the line above the bottom macroblock. */ AV_COPY128(top_border, src_y + 16 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 16 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * linesize); AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16); AV_COPY128(top_border + 64, src_cr + 16 * linesize); AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 16 * linesize); AV_COPY128(top_border + 32, src_cr + 16 * linesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize); } } } } /** * Initialize implicit_weight table. * @param field 0/1 initialize the weight for interlaced MBAFF * -1 initializes the rest */ static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field) { int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; for (i = 0; i < 2; i++) { sl->pwt.luma_weight_flag[i] = 0; sl->pwt.chroma_weight_flag[i] = 0; } if (field < 0) { if (h->picture_structure == PICT_FRAME) { cur_poc = h->cur_pic_ptr->poc; } else { cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1]; } if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) && sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) { sl->pwt.use_weight = 0; sl->pwt.use_weight_chroma = 0; return; } ref_start = 0; ref_count0 = sl->ref_count[0]; ref_count1 = sl->ref_count[1]; } else { cur_poc = h->cur_pic_ptr->field_poc[field]; ref_start = 16; ref_count0 = 16 + 2 * sl->ref_count[0]; ref_count1 = 16 + 2 * sl->ref_count[1]; } sl->pwt.use_weight = 2; sl->pwt.use_weight_chroma = 2; sl->pwt.luma_log2_weight_denom = 5; sl->pwt.chroma_log2_weight_denom = 5; for (ref0 = ref_start; ref0 < ref_count0; ref0++) { int64_t poc0 = sl->ref_list[0][ref0].poc; for (ref1 = ref_start; ref1 < ref_count1; ref1++) { int w = 32; if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) { int poc1 = sl->ref_list[1][ref1].poc; int td = av_clip_int8(poc1 - poc0); if (td) { int tb = av_clip_int8(cur_poc - poc0); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = (tb * tx + 32) >> 8; if (dist_scale_factor >= -64 && dist_scale_factor <= 128) w = 64 - dist_scale_factor; } } if (field < 0) { sl->pwt.implicit_weight[ref0][ref1][0] = sl->pwt.implicit_weight[ref0][ref1][1] = w; } else { sl->pwt.implicit_weight[ref0][ref1][field] = w; } } } } /** * initialize scan tables */ static void init_scan_tables(H264Context *h) { int i; for (i = 0; i < 16; i++) { #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF) h->zigzag_scan[i] = TRANSPOSE(ff_zigzag_scan[i]); h->field_scan[i] = TRANSPOSE(field_scan[i]); #undef TRANSPOSE } for (i = 0; i < 64; i++) { #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3) h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]); h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]); #undef TRANSPOSE } if (h->ps.sps->transform_bypass) { // FIXME same ugly memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } else { memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } } static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback) { #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \ (CONFIG_H264_D3D11VA_HWACCEL * 2) + \ CONFIG_H264_NVDEC_HWACCEL + \ CONFIG_H264_VAAPI_HWACCEL + \ CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \ CONFIG_H264_VDPAU_HWACCEL) enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts; const enum AVPixelFormat *choices = pix_fmts; int i; switch (h->ps.sps->bit_depth_luma) { case 9: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP9; } else *fmt++ = AV_PIX_FMT_YUV444P9; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P9; else *fmt++ = AV_PIX_FMT_YUV420P9; break; case 10: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP10; } else *fmt++ = AV_PIX_FMT_YUV444P10; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P10; else *fmt++ = AV_PIX_FMT_YUV420P10; break; case 12: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP12; } else *fmt++ = AV_PIX_FMT_YUV444P12; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P12; else *fmt++ = AV_PIX_FMT_YUV420P12; break; case 14: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP14; } else *fmt++ = AV_PIX_FMT_YUV444P14; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P14; else *fmt++ = AV_PIX_FMT_YUV420P14; break; case 8: #if CONFIG_H264_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU; #endif #if CONFIG_H264_NVDEC_HWACCEL *fmt++ = AV_PIX_FMT_CUDA; #endif if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) *fmt++ = AV_PIX_FMT_GBRP; else if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ444P; else *fmt++ = AV_PIX_FMT_YUV444P; } else if (CHROMA422(h)) { if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ422P; else *fmt++ = AV_PIX_FMT_YUV422P; } else { #if CONFIG_H264_DXVA2_HWACCEL *fmt++ = AV_PIX_FMT_DXVA2_VLD; #endif #if CONFIG_H264_D3D11VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D11VA_VLD; *fmt++ = AV_PIX_FMT_D3D11; #endif #if CONFIG_H264_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif if (h->avctx->codec->pix_fmts) choices = h->avctx->codec->pix_fmts; else if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ420P; else *fmt++ = AV_PIX_FMT_YUV420P; } break; default: av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma); return AVERROR_INVALIDDATA; } *fmt = AV_PIX_FMT_NONE; for (i=0; choices[i] != AV_PIX_FMT_NONE; i++) if (choices[i] == h->avctx->pix_fmt && !force_callback) return choices[i]; return ff_thread_get_format(h->avctx, choices); } /* export coded and cropped frame dimensions to AVCodecContext */ static void init_dimensions(H264Context *h) { const SPS *sps = (const SPS*)h->ps.sps; int cr = sps->crop_right; int cl = sps->crop_left; int ct = sps->crop_top; int cb = sps->crop_bottom; int width = h->width - (cr + cl); int height = h->height - (ct + cb); av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width); av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height); /* handle container cropping */ if (h->width_from_caller > 0 && h->height_from_caller > 0 && !sps->crop_top && !sps->crop_left && FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) && FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) && h->width_from_caller <= width && h->height_from_caller <= height) { width = h->width_from_caller; height = h->height_from_caller; cl = 0; ct = 0; cr = h->width - width; cb = h->height - height; } else { h->width_from_caller = 0; h->height_from_caller = 0; } h->avctx->coded_width = h->width; h->avctx->coded_height = h->height; h->avctx->width = width; h->avctx->height = height; h->crop_right = cr; h->crop_left = cl; h->crop_top = ct; h->crop_bottom = cb; } static int h264_slice_header_init(H264Context *h) { const SPS *sps = h->ps.sps; int i, ret; if (!sps) { ret = AVERROR_INVALIDDATA; goto fail; } ff_set_sar(h->avctx, sps->sar); av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt, &h->chroma_x_shift, &h->chroma_y_shift); if (sps->timing_info_present_flag) { int64_t den = sps->time_scale; if (h->x264_build < 44U) den *= 2; av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num, sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30); } ff_h264_free_tables(h); h->first_field = 0; h->prev_interlaced_frame = 1; init_scan_tables(h); ret = ff_h264_alloc_tables(h); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n"); goto fail; } if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 || sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13 ) { av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n", sps->bit_depth_luma); ret = AVERROR_INVALIDDATA; goto fail; } h->cur_bit_depth_luma = h->avctx->bits_per_raw_sample = sps->bit_depth_luma; h->cur_chroma_format_idc = sps->chroma_format_idc; h->pixel_shift = sps->bit_depth_luma > 8; h->chroma_format_idc = sps->chroma_format_idc; h->bit_depth_luma = sps->bit_depth_luma; ff_h264dsp_init(&h->h264dsp, sps->bit_depth_luma, sps->chroma_format_idc); ff_h264chroma_init(&h->h264chroma, sps->bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, sps->bit_depth_luma); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, sps->bit_depth_luma, sps->chroma_format_idc); ff_videodsp_init(&h->vdsp, sps->bit_depth_luma); if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) { ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); goto fail; } } else { for (i = 0; i < h->nb_slice_ctx; i++) { H264SliceContext *sl = &h->slice_ctx[i]; sl->h264 = h; sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride; sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride; sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride; if ((ret = ff_h264_slice_context_init(h, sl)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); goto fail; } } } h->context_initialized = 1; return 0; fail: ff_h264_free_tables(h); h->context_initialized = 0; return ret; } static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a) { switch (a) { case AV_PIX_FMT_YUVJ420P: return AV_PIX_FMT_YUV420P; case AV_PIX_FMT_YUVJ422P: return AV_PIX_FMT_YUV422P; case AV_PIX_FMT_YUVJ444P: return AV_PIX_FMT_YUV444P; default: return a; } } static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice) { const SPS *sps; int needs_reinit = 0, must_reinit, ret; if (first_slice) { av_buffer_unref(&h->ps.pps_ref); h->ps.pps = NULL; h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]); if (!h->ps.pps_ref) return AVERROR(ENOMEM); h->ps.pps = (const PPS*)h->ps.pps_ref->data; } if (h->ps.sps != h->ps.pps->sps) { h->ps.sps = (const SPS*)h->ps.pps->sps; if (h->mb_width != h->ps.sps->mb_width || h->mb_height != h->ps.sps->mb_height || h->cur_bit_depth_luma != h->ps.sps->bit_depth_luma || h->cur_chroma_format_idc != h->ps.sps->chroma_format_idc ) needs_reinit = 1; if (h->bit_depth_luma != h->ps.sps->bit_depth_luma || h->chroma_format_idc != h->ps.sps->chroma_format_idc) needs_reinit = 1; } sps = h->ps.sps; must_reinit = (h->context_initialized && ( 16*sps->mb_width != h->avctx->coded_width || 16*sps->mb_height != h->avctx->coded_height || h->cur_bit_depth_luma != sps->bit_depth_luma || h->cur_chroma_format_idc != sps->chroma_format_idc || h->mb_width != sps->mb_width || h->mb_height != sps->mb_height )); if (h->avctx->pix_fmt == AV_PIX_FMT_NONE || (non_j_pixfmt(h->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h, 0)))) must_reinit = 1; if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio)) must_reinit = 1; if (!h->setup_finished) { h->avctx->profile = ff_h264_get_profile(sps); h->avctx->level = sps->level_idc; h->avctx->refs = sps->ref_frame_count; h->mb_width = sps->mb_width; h->mb_height = sps->mb_height; h->mb_num = h->mb_width * h->mb_height; h->mb_stride = h->mb_width + 1; h->b_stride = h->mb_width * 4; h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p h->width = 16 * h->mb_width; h->height = 16 * h->mb_height; init_dimensions(h); if (sps->video_signal_type_present_flag) { h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (sps->colour_description_present_flag) { if (h->avctx->colorspace != sps->colorspace) needs_reinit = 1; h->avctx->color_primaries = sps->color_primaries; h->avctx->color_trc = sps->color_trc; h->avctx->colorspace = sps->colorspace; } } if (h->sei.alternative_transfer.present && av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) && h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) { h->avctx->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics; } } h->avctx->chroma_sample_location = sps->chroma_location; if (!h->context_initialized || must_reinit || needs_reinit) { int flush_changes = h->context_initialized; h->context_initialized = 0; if (sl != h->slice_ctx) { av_log(h->avctx, AV_LOG_ERROR, "changing width %d -> %d / height %d -> %d on " "slice %d\n", h->width, h->avctx->coded_width, h->height, h->avctx->coded_height, h->current_slice + 1); return AVERROR_INVALIDDATA; } av_assert1(first_slice); if (flush_changes) ff_h264_flush_change(h); if ((ret = get_pixel_format(h, 1)) < 0) return ret; h->avctx->pix_fmt = ret; av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, " "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt)); if ((ret = h264_slice_header_init(h)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } return 0; } static int h264_export_frame_props(H264Context *h) { const SPS *sps = h->ps.sps; H264Picture *cur = h->cur_pic_ptr; AVFrame *out = cur->f; out->interlaced_frame = 0; out->repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used * decoding process if it exists. */ if (h->sei.picture_timing.present) { int ret = ff_h264_sei_process_picture_timing(&h->sei.picture_timing, sps, h->avctx); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n"); if (h->avctx->err_recognition & AV_EF_EXPLODE) return ret; h->sei.picture_timing.present = 0; } } if (sps->pic_struct_present_flag && h->sei.picture_timing.present) { H264SEIPictureTiming *pt = &h->sei.picture_timing; switch (pt->pic_struct) { case H264_SEI_PIC_STRUCT_FRAME: break; case H264_SEI_PIC_STRUCT_TOP_FIELD: case H264_SEI_PIC_STRUCT_BOTTOM_FIELD: out->interlaced_frame = 1; break; case H264_SEI_PIC_STRUCT_TOP_BOTTOM: case H264_SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE(h)) out->interlaced_frame = 1; else // try to flag soft telecine progressive out->interlaced_frame = h->prev_interlaced_frame; break; case H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: /* Signal the possibility of telecined film externally * (pic_struct 5,6). From these hints, let the applications * decide if they apply deinterlacing. */ out->repeat_pict = 1; break; case H264_SEI_PIC_STRUCT_FRAME_DOUBLING: out->repeat_pict = 2; break; case H264_SEI_PIC_STRUCT_FRAME_TRIPLING: out->repeat_pict = 4; break; } if ((pt->ct_type & 3) && pt->pic_struct <= H264_SEI_PIC_STRUCT_BOTTOM_TOP) out->interlaced_frame = (pt->ct_type & (1 << 1)) != 0; } else { /* Derive interlacing flag from used decoding process. */ out->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h); } h->prev_interlaced_frame = out->interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]) { /* Derive top_field_first from field pocs. */ out->top_field_first = cur->field_poc[0] < cur->field_poc[1]; } else { if (sps->pic_struct_present_flag && h->sei.picture_timing.present) { /* Use picture timing SEI information. Even if it is a * information of a past frame, better than nothing. */ if (h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM || h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP) out->top_field_first = 1; else out->top_field_first = 0; } else if (out->interlaced_frame) { /* Default to top field first when pic_struct_present_flag * is not set but interlaced frame detected */ out->top_field_first = 1; } else { /* Most likely progressive */ out->top_field_first = 0; } } if (h->sei.frame_packing.present && h->sei.frame_packing.arrangement_type <= 6 && h->sei.frame_packing.content_interpretation_type > 0 && h->sei.frame_packing.content_interpretation_type < 3) { H264SEIFramePacking *fp = &h->sei.frame_packing; AVStereo3D *stereo = av_stereo3d_create_side_data(out); if (stereo) { switch (fp->arrangement_type) { case H264_SEI_FPA_TYPE_CHECKERBOARD: stereo->type = AV_STEREO3D_CHECKERBOARD; break; case H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN: stereo->type = AV_STEREO3D_COLUMNS; break; case H264_SEI_FPA_TYPE_INTERLEAVE_ROW: stereo->type = AV_STEREO3D_LINES; break; case H264_SEI_FPA_TYPE_SIDE_BY_SIDE: if (fp->quincunx_sampling_flag) stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; else stereo->type = AV_STEREO3D_SIDEBYSIDE; break; case H264_SEI_FPA_TYPE_TOP_BOTTOM: stereo->type = AV_STEREO3D_TOPBOTTOM; break; case H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL: stereo->type = AV_STEREO3D_FRAMESEQUENCE; break; case H264_SEI_FPA_TYPE_2D: stereo->type = AV_STEREO3D_2D; break; } if (fp->content_interpretation_type == 2) stereo->flags = AV_STEREO3D_FLAG_INVERT; if (fp->arrangement_type == H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL) { if (fp->current_frame_is_frame0_flag) stereo->view = AV_STEREO3D_VIEW_LEFT; else stereo->view = AV_STEREO3D_VIEW_RIGHT; } } } if (h->sei.display_orientation.present && (h->sei.display_orientation.anticlockwise_rotation || h->sei.display_orientation.hflip || h->sei.display_orientation.vflip)) { H264SEIDisplayOrientation *o = &h->sei.display_orientation; double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16); AVFrameSideData *rotation = av_frame_new_side_data(out, AV_FRAME_DATA_DISPLAYMATRIX, sizeof(int32_t) * 9); if (rotation) { av_display_rotation_set((int32_t *)rotation->data, angle); av_display_matrix_flip((int32_t *)rotation->data, o->hflip, o->vflip); } } if (h->sei.afd.present) { AVFrameSideData *sd = av_frame_new_side_data(out, AV_FRAME_DATA_AFD, sizeof(uint8_t)); if (sd) { *sd->data = h->sei.afd.active_format_description; h->sei.afd.present = 0; } } if (h->sei.a53_caption.buf_ref) { H264SEIA53Caption *a53 = &h->sei.a53_caption; AVFrameSideData *sd = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_A53_CC, a53->buf_ref); if (!sd) av_buffer_unref(&a53->buf_ref); a53->buf_ref = NULL; h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS; } for (int i = 0; i < h->sei.unregistered.nb_buf_ref; i++) { H264SEIUnregistered *unreg = &h->sei.unregistered; if (unreg->buf_ref[i]) { AVFrameSideData *sd = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_SEI_UNREGISTERED, unreg->buf_ref[i]); if (!sd) av_buffer_unref(&unreg->buf_ref[i]); unreg->buf_ref[i] = NULL; } } h->sei.unregistered.nb_buf_ref = 0; if (h->sei.picture_timing.timecode_cnt > 0) { uint32_t *tc_sd; char tcbuf[AV_TIMECODE_STR_SIZE]; AVFrameSideData *tcside = av_frame_new_side_data(out, AV_FRAME_DATA_S12M_TIMECODE, sizeof(uint32_t)*4); if (!tcside) return AVERROR(ENOMEM); tc_sd = (uint32_t*)tcside->data; tc_sd[0] = h->sei.picture_timing.timecode_cnt; for (int i = 0; i < tc_sd[0]; i++) { int drop = h->sei.picture_timing.timecode[i].dropframe; int hh = h->sei.picture_timing.timecode[i].hours; int mm = h->sei.picture_timing.timecode[i].minutes; int ss = h->sei.picture_timing.timecode[i].seconds; int ff = h->sei.picture_timing.timecode[i].frame; tc_sd[i + 1] = av_timecode_get_smpte(h->avctx->framerate, drop, hh, mm, ss, ff); av_timecode_make_smpte_tc_string2(tcbuf, h->avctx->framerate, tc_sd[i + 1], 0, 0); av_dict_set(&out->metadata, "timecode", tcbuf, 0); } h->sei.picture_timing.timecode_cnt = 0; } return 0; } static int h264_select_output_frame(H264Context *h) { const SPS *sps = h->ps.sps; H264Picture *out = h->cur_pic_ptr; H264Picture *cur = h->cur_pic_ptr; int i, pics, out_of_order, out_idx; cur->mmco_reset = h->mmco_reset; h->mmco_reset = 0; if (sps->bitstream_restriction_flag || h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) { h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames); } for (i = 0; 1; i++) { if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){ if(i) h->last_pocs[i-1] = cur->poc; break; } else if(i) { h->last_pocs[i-1]= h->last_pocs[i]; } } out_of_order = MAX_DELAYED_PIC_COUNT - i; if( cur->f->pict_type == AV_PICTURE_TYPE_B || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2)) out_of_order = FFMAX(out_of_order, 1); if (out_of_order == MAX_DELAYED_PIC_COUNT) { av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]); for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->last_pocs[0] = cur->poc; cur->mmco_reset = 1; } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){ int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE; av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order); h->avctx->has_b_frames = out_of_order; } pics = 0; while (h->delayed_pic[pics]) pics++; av_assert0(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if (cur->reference == 0) cur->reference = DELAYED_PIC_REF; out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } if (h->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) h->next_outputed_poc = INT_MIN; out_of_order = out->poc < h->next_outputed_poc; if (out_of_order || pics > h->avctx->has_b_frames) { out->reference &= ~DELAYED_PIC_REF; for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; } if (!out_of_order && pics > h->avctx->has_b_frames) { h->next_output_pic = out; if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) { h->next_outputed_poc = INT_MIN; } else h->next_outputed_poc = out->poc; if (out->recovered) { // We have reached an recovery point and all frames after it in // display order are "recovered". h->frame_recovered |= FRAME_RECOVERED_SEI; } out->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); if (!out->recovered) { if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) && !(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)) { h->next_output_pic = NULL; } else { out->f->flags |= AV_FRAME_FLAG_CORRUPT; } } } else { av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : ""); } return 0; } /* This function is called right after decoding the slice header for a first * slice in a field (or a frame). It decides whether we are decoding a new frame * or a second field in a pair and does the necessary setup. */ static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice) { int i; const SPS *sps; int last_pic_structure, last_pic_droppable, ret; ret = h264_init_ps(h, sl, first_slice); if (ret < 0) return ret; sps = h->ps.sps; if (sps->bitstream_restriction_flag && h->avctx->has_b_frames < sps->num_reorder_frames) { h->avctx->has_b_frames = sps->num_reorder_frames; } last_pic_droppable = h->droppable; last_pic_structure = h->picture_structure; h->droppable = (nal->ref_idc == 0); h->picture_structure = sl->picture_structure; h->poc.frame_num = sl->frame_num; h->poc.poc_lsb = sl->poc_lsb; h->poc.delta_poc_bottom = sl->delta_poc_bottom; h->poc.delta_poc[0] = sl->delta_poc[0]; h->poc.delta_poc[1] = sl->delta_poc[1]; /* Shorten frame num gaps so we don't have to allocate reference * frames just to throw them away */ if (h->poc.frame_num != h->poc.prev_frame_num) { int unwrap_prev_frame_num = h->poc.prev_frame_num; int max_frame_num = 1 << sps->log2_max_frame_num; if (unwrap_prev_frame_num > h->poc.frame_num) unwrap_prev_frame_num -= max_frame_num; if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) { unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1; if (unwrap_prev_frame_num < 0) unwrap_prev_frame_num += max_frame_num; h->poc.prev_frame_num = unwrap_prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * Here, we're using that to see if we should mark previously * decode frames as "finished". * We have to do that before the "dummy" in-between frame allocation, * since that can modify h->cur_pic_ptr. */ if (h->first_field) { int last_field = last_pic_structure == PICT_BOTTOM_FIELD; av_assert0(h->cur_pic_ptr); av_assert0(h->cur_pic_ptr->f->buf[0]); assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF); /* Mark old field/frame as completed */ if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field); } /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { if (h->cur_pic_ptr->frame_num != h->poc.frame_num) { /* This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { /* Second field in complementary pair */ if (!((last_pic_structure == PICT_TOP_FIELD && h->picture_structure == PICT_BOTTOM_FIELD) || (last_pic_structure == PICT_BOTTOM_FIELD && h->picture_structure == PICT_TOP_FIELD))) { av_log(h->avctx, AV_LOG_ERROR, "Invalid field mode combination %d/%d\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (last_pic_droppable != h->droppable) { avpriv_request_sample(h->avctx, "Found reference and non-reference fields in the same frame, which"); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_PATCHWELCOME; } } } } while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field && h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) { H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->poc.frame_num, h->poc.prev_frame_num); if (!sps->gaps_in_frame_num_allowed_flag) for(i=0; ilast_pocs); i++) h->last_pocs[i] = INT_MIN; ret = h264_frame_start(h); if (ret < 0) { h->first_field = 0; return ret; } h->poc.prev_frame_num++; h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num; h->cur_pic_ptr->frame_num = h->poc.prev_frame_num; h->cur_pic_ptr->invalid_gap = !sps->gaps_in_frame_num_allowed_flag; ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0); ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1); h->explicit_ref_marking = 0; ret = ff_h264_execute_ref_pic_marking(h); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; /* Error concealment: If a ref is missing, copy the previous ref * in its place. * FIXME: Avoiding a memcpy would be nice, but ref handling makes * many assumptions about there being no actual duplicates. * FIXME: This does not copy padding for out-of-frame motion * vectors. Given we are concealing a lost frame, this probably * is not noticeable by comparison, but it should be fixed. */ if (h->short_ref_count) { int c[4] = { 1<<(h->ps.sps->bit_depth_luma-1), 1<<(h->ps.sps->bit_depth_chroma-1), 1<<(h->ps.sps->bit_depth_chroma-1), -1 }; if (prev && h->short_ref[0]->f->width == prev->f->width && h->short_ref[0]->f->height == prev->f->height && h->short_ref[0]->f->format == prev->f->format) { ff_thread_await_progress(&prev->tf, INT_MAX, 0); if (prev->field_picture) ff_thread_await_progress(&prev->tf, INT_MAX, 1); ff_thread_release_buffer(h->avctx, &h->short_ref[0]->tf); h->short_ref[0]->tf.f = h->short_ref[0]->f; ret = ff_thread_ref_frame(&h->short_ref[0]->tf, &prev->tf); if (ret < 0) return ret; h->short_ref[0]->poc = prev->poc + 2U; ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 0); if (h->short_ref[0]->field_picture) ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 1); } else if (!h->frame_recovered && !h->avctx->hwaccel) ff_color_frame(h->short_ref[0]->f, c); h->short_ref[0]->frame_num = h->poc.prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * We're using that to see whether to continue decoding in that * frame, or to allocate a new one. */ if (h->first_field) { av_assert0(h->cur_pic_ptr); av_assert0(h->cur_pic_ptr->f->buf[0]); assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ h->missing_fields ++; h->cur_pic_ptr = NULL; h->first_field = FIELD_PICTURE(h); } else { h->missing_fields = 0; if (h->cur_pic_ptr->frame_num != h->poc.frame_num) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure==PICT_BOTTOM_FIELD); /* This and the previous field had different frame_nums. * Consider this field first in pair. Throw away previous * one except for reference purposes. */ h->first_field = 1; h->cur_pic_ptr = NULL; } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) { /* This frame was already output, we cannot draw into it * anymore. */ h->first_field = 1; h->cur_pic_ptr = NULL; } else { /* Second field in complementary pair */ h->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ h->first_field = FIELD_PICTURE(h); } if (!FIELD_PICTURE(h) || h->first_field) { if (h264_frame_start(h) < 0) { h->first_field = 0; return AVERROR_INVALIDDATA; } } else { int field = h->picture_structure == PICT_BOTTOM_FIELD; release_unused_pictures(h, 0); h->cur_pic_ptr->tf.owner[field] = h->avctx; } /* Some macroblocks can be accessed before they're available in case * of lost slices, MBAFF or threading. */ if (FIELD_PICTURE(h)) { for(i = (h->picture_structure == PICT_BOTTOM_FIELD); imb_height; i++) memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table)); } else { memset(h->slice_table, -1, (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table)); } ret = ff_h264_init_poc(h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc, h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc); if (ret < 0) return ret; memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco)); h->nb_mmco = sl->nb_mmco; h->explicit_ref_marking = sl->explicit_ref_marking; h->picture_idr = nal->type == H264_NAL_IDR_SLICE; if (h->sei.recovery_point.recovery_frame_cnt >= 0) { const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt; if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I) h->valid_recovery_point = 1; if ( h->recovery_frame < 0 || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) { h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num); if (!h->valid_recovery_point) h->recovery_frame = h->poc.frame_num; } } h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE); if (nal->type == H264_NAL_IDR_SLICE || (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) { h->recovery_frame = -1; h->cur_pic_ptr->recovered = 1; } // If we have an IDR, all frames after it in decoded order are // "recovered". if (nal->type == H264_NAL_IDR_SLICE) h->frame_recovered |= FRAME_RECOVERED_IDR; #if 1 h->cur_pic_ptr->recovered |= h->frame_recovered; #else h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); #endif /* Set the frame properties/side data. Only done for the second field in * field coded frames, since some SEI information is present for each field * and is merged by the SEI parsing code. */ if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) { ret = h264_export_frame_props(h); if (ret < 0) return ret; ret = h264_select_output_frame(h); if (ret < 0) return ret; } return 0; } static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal) { const SPS *sps; const PPS *pps; int ret; unsigned int slice_type, tmp, i; int field_pic_flag, bottom_field_flag; int first_slice = sl == h->slice_ctx && !h->current_slice; int picture_structure; if (first_slice) av_assert0(!h->setup_finished); sl->first_mb_addr = get_ue_golomb_long(&sl->gb); slice_type = get_ue_golomb_31(&sl->gb); if (slice_type > 9) { av_log(h->avctx, AV_LOG_ERROR, "slice type %d too large at %d\n", slice_type, sl->first_mb_addr); return AVERROR_INVALIDDATA; } if (slice_type > 4) { slice_type -= 5; sl->slice_type_fixed = 1; } else sl->slice_type_fixed = 0; slice_type = ff_h264_golomb_to_pict_type[slice_type]; sl->slice_type = slice_type; sl->slice_type_nos = slice_type & 3; if (nal->type == H264_NAL_IDR_SLICE && sl->slice_type_nos != AV_PICTURE_TYPE_I) { av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n"); return AVERROR_INVALIDDATA; } sl->pps_id = get_ue_golomb(&sl->gb); if (sl->pps_id >= MAX_PPS_COUNT) { av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id); return AVERROR_INVALIDDATA; } if (!h->ps.pps_list[sl->pps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", sl->pps_id); return AVERROR_INVALIDDATA; } pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data; sps = pps->sps; sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num); if (!first_slice) { if (h->poc.frame_num != sl->frame_num) { av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n", h->poc.frame_num, sl->frame_num); return AVERROR_INVALIDDATA; } } sl->mb_mbaff = 0; if (sps->frame_mbs_only_flag) { picture_structure = PICT_FRAME; } else { if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); return -1; } field_pic_flag = get_bits1(&sl->gb); if (field_pic_flag) { bottom_field_flag = get_bits1(&sl->gb); picture_structure = PICT_TOP_FIELD + bottom_field_flag; } else { picture_structure = PICT_FRAME; } } sl->picture_structure = picture_structure; sl->mb_field_decoding_flag = picture_structure != PICT_FRAME; if (picture_structure == PICT_FRAME) { sl->curr_pic_num = sl->frame_num; sl->max_pic_num = 1 << sps->log2_max_frame_num; } else { sl->curr_pic_num = 2 * sl->frame_num + 1; sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1); } if (nal->type == H264_NAL_IDR_SLICE) get_ue_golomb_long(&sl->gb); /* idr_pic_id */ sl->poc_lsb = 0; sl->delta_poc_bottom = 0; if (sps->poc_type == 0) { sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb); if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME) sl->delta_poc_bottom = get_se_golomb(&sl->gb); } sl->delta_poc[0] = sl->delta_poc[1] = 0; if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) { sl->delta_poc[0] = get_se_golomb(&sl->gb); if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME) sl->delta_poc[1] = get_se_golomb(&sl->gb); } sl->redundant_pic_count = 0; if (pps->redundant_pic_cnt_present) sl->redundant_pic_count = get_ue_golomb(&sl->gb); if (sl->slice_type_nos == AV_PICTURE_TYPE_B) sl->direct_spatial_mv_pred = get_bits1(&sl->gb); ret = ff_h264_parse_ref_count(&sl->list_count, sl->ref_count, &sl->gb, pps, sl->slice_type_nos, picture_structure, h->avctx); if (ret < 0) return ret; if (sl->slice_type_nos != AV_PICTURE_TYPE_I) { ret = ff_h264_decode_ref_pic_list_reordering(sl, h->avctx); if (ret < 0) { sl->ref_count[1] = sl->ref_count[0] = 0; return ret; } } sl->pwt.use_weight = 0; for (i = 0; i < 2; i++) { sl->pwt.luma_weight_flag[i] = 0; sl->pwt.chroma_weight_flag[i] = 0; } if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) || (pps->weighted_bipred_idc == 1 && sl->slice_type_nos == AV_PICTURE_TYPE_B)) { ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count, sl->slice_type_nos, &sl->pwt, picture_structure, h->avctx); if (ret < 0) return ret; } sl->explicit_ref_marking = 0; if (nal->ref_idc) { ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; } if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) { tmp = get_ue_golomb_31(&sl->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp); return AVERROR_INVALIDDATA; } sl->cabac_init_idc = tmp; } sl->last_qscale_diff = 0; tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb); if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) { av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return AVERROR_INVALIDDATA; } sl->qscale = tmp; sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale); sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale); // FIXME qscale / qp ... stuff if (sl->slice_type == AV_PICTURE_TYPE_SP) get_bits1(&sl->gb); /* sp_for_switch_flag */ if (sl->slice_type == AV_PICTURE_TYPE_SP || sl->slice_type == AV_PICTURE_TYPE_SI) get_se_golomb(&sl->gb); /* slice_qs_delta */ sl->deblocking_filter = 1; sl->slice_alpha_c0_offset = 0; sl->slice_beta_offset = 0; if (pps->deblocking_filter_parameters_present) { tmp = get_ue_golomb_31(&sl->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return AVERROR_INVALIDDATA; } sl->deblocking_filter = tmp; if (sl->deblocking_filter < 2) sl->deblocking_filter ^= 1; // 1<->0 if (sl->deblocking_filter) { int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb); int slice_beta_offset_div2 = get_se_golomb(&sl->gb); if (slice_alpha_c0_offset_div2 > 6 || slice_alpha_c0_offset_div2 < -6 || slice_beta_offset_div2 > 6 || slice_beta_offset_div2 < -6) { av_log(h->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", slice_alpha_c0_offset_div2, slice_beta_offset_div2); return AVERROR_INVALIDDATA; } sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2; sl->slice_beta_offset = slice_beta_offset_div2 * 2; } } return 0; } /* do all the per-slice initialization needed before we can start decoding the * actual MBs */ static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal) { int i, j, ret = 0; if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) { av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n"); return AVERROR_INVALIDDATA; } av_assert1(h->mb_num == h->mb_width * h->mb_height); if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num || sl->first_mb_addr >= h->mb_num) { av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return AVERROR_INVALIDDATA; } sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width; sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) << FIELD_OR_MBAFF_PICTURE(h); if (h->picture_structure == PICT_BOTTOM_FIELD) sl->resync_mb_y = sl->mb_y = sl->mb_y + 1; av_assert1(sl->mb_y < h->mb_height); ret = ff_h264_build_ref_list(h, sl); if (ret < 0) return ret; if (h->ps.pps->weighted_bipred_idc == 2 && sl->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, sl, -1); if (FRAME_MBAFF(h)) { implicit_weight_table(h, sl, 0); implicit_weight_table(h, sl, 1); } } if (sl->slice_type_nos == AV_PICTURE_TYPE_B && !sl->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h, sl); if (!h->setup_finished) ff_h264_direct_ref_list_init(h, sl); if (h->avctx->skip_loop_filter >= AVDISCARD_ALL || (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE) || (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_loop_filter >= AVDISCARD_NONREF && nal->ref_idc == 0)) sl->deblocking_filter = 0; if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) { if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) { /* Cheat slightly for speed: * Do not bother to deblock across slices. */ sl->deblocking_filter = 2; } else { h->postpone_filter = 1; } } sl->qp_thresh = 15 - FFMIN(sl->slice_alpha_c0_offset, sl->slice_beta_offset) - FFMAX3(0, h->ps.pps->chroma_qp_index_offset[0], h->ps.pps->chroma_qp_index_offset[1]) + 6 * (h->ps.sps->bit_depth_luma - 8); sl->slice_num = ++h->current_slice; if (sl->slice_num) h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y; if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y && sl->slice_num >= MAX_SLICES) { //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES); } for (j = 0; j < 2; j++) { int id_list[16]; int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j]; for (i = 0; i < 16; i++) { id_list[i] = 60; if (j < sl->list_count && i < sl->ref_count[j] && sl->ref_list[j][i].parent->f->buf[0]) { int k; AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer; for (k = 0; k < h->short_ref_count; k++) if (h->short_ref[k]->f->buf[0]->buffer == buf) { id_list[i] = k; break; } for (k = 0; k < h->long_ref_count; k++) if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) { id_list[i] = h->short_ref_count + k; break; } } } ref2frm[0] = ref2frm[1] = -1; for (i = 0; i < 16; i++) ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3); ref2frm[18 + 0] = ref2frm[18 + 1] = -1; for (i = 16; i < 48; i++) ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + (sl->ref_list[j][i].reference & 3); } if (h->avctx->debug & FF_DEBUG_PICT_INFO) { av_log(h->avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", sl->slice_num, (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"), sl->mb_y * h->mb_width + sl->mb_x, av_get_picture_type_char(sl->slice_type), sl->slice_type_fixed ? " fix" : "", nal->type == H264_NAL_IDR_SLICE ? " IDR" : "", h->poc.frame_num, h->cur_pic_ptr->field_poc[0], h->cur_pic_ptr->field_poc[1], sl->ref_count[0], sl->ref_count[1], sl->qscale, sl->deblocking_filter, sl->slice_alpha_c0_offset, sl->slice_beta_offset, sl->pwt.use_weight, sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "", sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); } return 0; } int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal) { H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued; int first_slice = sl == h->slice_ctx && !h->current_slice; int ret; sl->gb = nal->gb; ret = h264_slice_header_parse(h, sl, nal); if (ret < 0) return ret; // discard redundant pictures if (sl->redundant_pic_count > 0) { sl->ref_count[0] = sl->ref_count[1] = 0; return 0; } if (sl->first_mb_addr == 0 || !h->current_slice) { if (h->setup_finished) { av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n"); return AVERROR_INVALIDDATA; } } if (sl->first_mb_addr == 0) { // FIXME better field boundary detection if (h->current_slice) { // this slice starts a new field // first decode any pending queued slices if (h->nb_slice_ctx_queued) { H264SliceContext tmp_ctx; ret = ff_h264_execute_decode_slices(h); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx)); memcpy(h->slice_ctx, sl, sizeof(tmp_ctx)); memcpy(sl, &tmp_ctx, sizeof(tmp_ctx)); sl = h->slice_ctx; } if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) { ret = ff_h264_field_end(h, h->slice_ctx, 1); if (ret < 0) return ret; } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) { av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n"); ret = ff_h264_field_end(h, h->slice_ctx, 1); ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0); ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1); h->cur_pic_ptr = NULL; if (ret < 0) return ret; } else return AVERROR_INVALIDDATA; } if (!h->first_field) { if (h->cur_pic_ptr && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } h->cur_pic_ptr = NULL; } } if (!h->current_slice) av_assert0(sl == h->slice_ctx); if (h->current_slice == 0 && !h->first_field) { if ( (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) || (h->avctx->skip_frame >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_frame >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE && h->sei.recovery_point.recovery_frame_cnt < 0) || h->avctx->skip_frame >= AVDISCARD_ALL) { return 0; } } if (!first_slice) { const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data; if (h->ps.pps->sps_id != pps->sps_id || h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*|| (h->setup_finished && h->ps.pps != pps)*/) { av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n"); return AVERROR_INVALIDDATA; } if (h->ps.sps != pps->sps) { av_log(h->avctx, AV_LOG_ERROR, "SPS changed in the middle of the frame\n"); return AVERROR_INVALIDDATA; } } if (h->current_slice == 0) { ret = h264_field_start(h, sl, nal, first_slice); if (ret < 0) return ret; } else { if (h->picture_structure != sl->picture_structure || h->droppable != (nal->ref_idc == 0)) { av_log(h->avctx, AV_LOG_ERROR, "Changing field mode (%d -> %d) between slices is not allowed\n", h->picture_structure, sl->picture_structure); return AVERROR_INVALIDDATA; } else if (!h->cur_pic_ptr) { av_log(h->avctx, AV_LOG_ERROR, "unset cur_pic_ptr on slice %d\n", h->current_slice + 1); return AVERROR_INVALIDDATA; } } ret = h264_slice_init(h, sl, nal); if (ret < 0) return ret; h->nb_slice_ctx_queued++; return 0; } int ff_h264_get_slice_type(const H264SliceContext *sl) { switch (sl->slice_type) { case AV_PICTURE_TYPE_P: return 0; case AV_PICTURE_TYPE_B: return 1; case AV_PICTURE_TYPE_I: return 2; case AV_PICTURE_TYPE_SP: return 3; case AV_PICTURE_TYPE_SI: return 4; default: return AVERROR_INVALIDDATA; } } static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list) { int b_stride = h->b_stride; int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]]; int8_t *ref_cache = &sl->ref_cache[list][scan8[0]]; if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) { if (USES_LIST(top_type, list)) { const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; const int b8_xy = 4 * top_xy + 2; const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)]; AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]); ref_cache[0 - 1 * 8] = ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]]; ref_cache[2 - 1 * 8] = ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]]; } else { AV_ZERO128(mv_dst - 1 * 8); AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); } if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) { if (USES_LIST(left_type[LTOP], list)) { const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy = 4 * left_xy[LTOP] + 1; const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)]; AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]); AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]); AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]); AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]]; ref_cache[-1 + 16] = ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]]; } else { AV_ZERO32(mv_dst - 1 + 0); AV_ZERO32(mv_dst - 1 + 8); AV_ZERO32(mv_dst - 1 + 16); AV_ZERO32(mv_dst - 1 + 24); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref_cache[-1 + 16] = ref_cache[-1 + 24] = LIST_NOT_USED; } } } if (!USES_LIST(mb_type, list)) { fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4); AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); return; } { int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy]; const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)]; uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101; uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101; AV_WN32A(&ref_cache[0 * 8], ref01); AV_WN32A(&ref_cache[1 * 8], ref01); AV_WN32A(&ref_cache[2 * 8], ref23); AV_WN32A(&ref_cache[3 * 8], ref23); } { int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride]; AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride); AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride); AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride); AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride); } } /** * @return non zero if the loop filter can be skipped */ static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type) { const int mb_xy = sl->mb_xy; int top_xy, left_xy[LEFT_MBS]; int top_type, left_type[LEFT_MBS]; uint8_t *nnz; uint8_t *nnz_cache; top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl)); left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; if (FRAME_MBAFF(h)) { const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if (sl->mb_y & 1) { if (left_mb_field_flag != curr_mb_field_flag) left_xy[LTOP] -= h->mb_stride; } else { if (curr_mb_field_flag) top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1); if (left_mb_field_flag != curr_mb_field_flag) left_xy[LBOT] += h->mb_stride; } } sl->top_mb_xy = top_xy; sl->left_mb_xy[LTOP] = left_xy[LTOP]; sl->left_mb_xy[LBOT] = left_xy[LBOT]; { /* For sufficiently low qp, filtering wouldn't do anything. * This is a conservative estimate: could also check beta_offset * and more accurate chroma_qp. */ int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice int qp = h->cur_pic.qscale_table[mb_xy]; if (qp <= qp_thresh && (left_xy[LTOP] < 0 || ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) && (top_xy < 0 || ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) { if (!FRAME_MBAFF(h)) return 1; if ((left_xy[LTOP] < 0 || ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) && (top_xy < h->mb_stride || ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh)) return 1; } } top_type = h->cur_pic.mb_type[top_xy]; left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]]; left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]]; if (sl->deblocking_filter == 2) { if (h->slice_table[top_xy] != sl->slice_num) top_type = 0; if (h->slice_table[left_xy[LBOT]] != sl->slice_num) left_type[LTOP] = left_type[LBOT] = 0; } else { if (h->slice_table[top_xy] == 0xFFFF) top_type = 0; if (h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP] = left_type[LBOT] = 0; } sl->top_type = top_type; sl->left_type[LTOP] = left_type[LTOP]; sl->left_type[LBOT] = left_type[LBOT]; if (IS_INTRA(mb_type)) return 0; fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0); if (sl->list_count == 2) fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1); nnz = h->non_zero_count[mb_xy]; nnz_cache = sl->non_zero_count_cache; AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]); AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]); AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]); AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]); sl->cbp = h->cbp_table[mb_xy]; if (top_type) { nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]); } if (left_type[LTOP]) { nnz = h->non_zero_count[left_xy[LTOP]]; nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4]; nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4]; nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4]; nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4]; } /* CAVLC 8x8dct requires NNZ values for residual decoding that differ * from what the loop filter needs */ if (!CABAC(h) && h->ps.pps->transform_8x8_mode) { if (IS_8x8DCT(top_type)) { nnz_cache[4 + 8 * 0] = nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12; nnz_cache[6 + 8 * 0] = nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12; } if (IS_8x8DCT(left_type[LTOP])) { nnz_cache[3 + 8 * 1] = nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(left_type[LBOT])) { nnz_cache[3 + 8 * 3] = nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(mb_type)) { nnz_cache[scan8[0]] = nnz_cache[scan8[1]] = nnz_cache[scan8[2]] = nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12; nnz_cache[scan8[0 + 4]] = nnz_cache[scan8[1 + 4]] = nnz_cache[scan8[2 + 4]] = nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12; nnz_cache[scan8[0 + 8]] = nnz_cache[scan8[1 + 8]] = nnz_cache[scan8[2 + 8]] = nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12; nnz_cache[scan8[0 + 12]] = nnz_cache[scan8[1 + 12]] = nnz_cache[scan8[2 + 12]] = nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12; } } return 0; } static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x) { uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize, mb_x, mb_y; const int end_mb_y = sl->mb_y + FRAME_MBAFF(h); const int old_slice_type = sl->slice_type; const int pixel_shift = h->pixel_shift; const int block_h = 16 >> h->chroma_y_shift; if (h->postpone_filter) return; if (sl->deblocking_filter) { for (mb_x = start_x; mb_x < end_x; mb_x++) for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) { int mb_xy, mb_type; mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride; mb_type = h->cur_pic.mb_type[mb_xy]; if (FRAME_MBAFF(h)) sl->mb_mbaff = sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); sl->mb_x = mb_x; sl->mb_y = mb_y; dest_y = h->cur_pic.f->data[0] + ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16; dest_cb = h->cur_pic.f->data[1] + (mb_x << pixel_shift) * (8 << CHROMA444(h)) + mb_y * sl->uvlinesize * block_h; dest_cr = h->cur_pic.f->data[2] + (mb_x << pixel_shift) * (8 << CHROMA444(h)) + mb_y * sl->uvlinesize * block_h; // FIXME simplify above if (MB_FIELD(sl)) { linesize = sl->mb_linesize = sl->linesize * 2; uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2; if (mb_y & 1) { // FIXME move out of this function? dest_y -= sl->linesize * 15; dest_cb -= sl->uvlinesize * (block_h - 1); dest_cr -= sl->uvlinesize * (block_h - 1); } } else { linesize = sl->mb_linesize = sl->linesize; uvlinesize = sl->mb_uvlinesize = sl->uvlinesize; } backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); if (fill_filter_caches(h, sl, mb_type)) continue; sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]); sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]); if (FRAME_MBAFF(h)) { ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } sl->slice_type = old_slice_type; sl->mb_x = end_x; sl->mb_y = end_mb_y - FRAME_MBAFF(h); sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale); sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale); } static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl) { const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride; int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ? h->cur_pic.mb_type[mb_xy - 1] : (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ? h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0; sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * Draw edges and report progress for the last MB row. */ static void decode_finish_row(const H264Context *h, H264SliceContext *sl) { int top = 16 * (sl->mb_y >> FIELD_PICTURE(h)); int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h); int height = 16 << FRAME_MBAFF(h); int deblock_border = (16 + 4) << FRAME_MBAFF(h); if (sl->deblocking_filter) { if ((top + height) >= pic_height) height += deblock_border; top -= deblock_border; } if (top >= pic_height || (top + height) < 0) return; height = FFMIN(height, pic_height - top); if (top < 0) { height = top + height; top = 0; } ff_h264_draw_horiz_band(h, sl, top, height); if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred) return; ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1, h->picture_structure == PICT_BOTTOM_FIELD); } static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status) { if (!sl->h264->enable_er) return; if (CONFIG_ERROR_RESILIENCE) { ERContext *er = &sl->h264->slice_ctx[0].er; ff_er_add_slice(er, startx, starty, endx, endy, status); } } static int decode_slice(struct AVCodecContext *avctx, void *arg) { H264SliceContext *sl = arg; const H264Context *h = sl->h264; int lf_x_start = sl->mb_x; int orig_deblock = sl->deblocking_filter; int ret; sl->linesize = h->cur_pic_ptr->f->linesize[0]; sl->uvlinesize = h->cur_pic_ptr->f->linesize[1]; ret = alloc_scratch_buffers(sl, sl->linesize); if (ret < 0) return ret; sl->mb_skip_run = -1; av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3)); if (h->postpone_filter) sl->deblocking_filter = 0; sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME || (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY)); if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->slice_ctx[0].er.error_status_table) { const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1); if (start_i) { int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]]; prev_status &= ~ VP_START; if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) h->slice_ctx[0].er.error_occurred = 1; } } if (h->ps.pps->cabac) { /* realign */ align_get_bits(&sl->gb); /* init cabac */ ret = ff_init_cabac_decoder(&sl->cabac, sl->gb.buffer + get_bits_count(&sl->gb) / 8, (get_bits_left(&sl->gb) + 7) / 8); if (ret < 0) return ret; ff_h264_init_cabac_states(h, sl); for (;;) { int ret, eos; if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) { av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n", sl->next_slice_idx); er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } ret = ff_h264_decode_mb_cabac(h, sl); if (ret >= 0) ff_h264_hl_decode_mb(h, sl); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF(h)) { sl->mb_y++; ret = ff_h264_decode_mb_cabac(h, sl); if (ret >= 0) ff_h264_hl_decode_mb(h, sl); sl->mb_y--; } eos = get_cabac_terminate(&sl->cabac); if ((h->workaround_bugs & FF_BUG_TRUNCATED) && sl->cabac.bytestream > sl->cabac.bytestream_end + 2) { er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1, sl->mb_y, ER_MB_END); if (sl->mb_x >= lf_x_start) loop_filter(h, sl, lf_x_start, sl->mb_x + 1); goto finish; } if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 ) av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream); if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n", sl->mb_x, sl->mb_y, sl->cabac.bytestream_end - sl->cabac.bytestream); er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } if (++sl->mb_x >= h->mb_width) { loop_filter(h, sl, lf_x_start, sl->mb_x); sl->mb_x = lf_x_start = 0; decode_finish_row(h, sl); ++sl->mb_y; if (FIELD_OR_MBAFF_PICTURE(h)) { ++sl->mb_y; if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height) predict_field_decoding_flag(h, sl); } } if (eos || sl->mb_y >= h->mb_height) { ff_tlog(h->avctx, "slice end %d %d\n", get_bits_count(&sl->gb), sl->gb.size_in_bits); er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1, sl->mb_y, ER_MB_END); if (sl->mb_x > lf_x_start) loop_filter(h, sl, lf_x_start, sl->mb_x); goto finish; } } } else { for (;;) { int ret; if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) { av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n", sl->next_slice_idx); er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } ret = ff_h264_decode_mb_cavlc(h, sl); if (ret >= 0) ff_h264_hl_decode_mb(h, sl); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF(h)) { sl->mb_y++; ret = ff_h264_decode_mb_cavlc(h, sl); if (ret >= 0) ff_h264_hl_decode_mb(h, sl); sl->mb_y--; } if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y); er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_ERROR); return ret; } if (++sl->mb_x >= h->mb_width) { loop_filter(h, sl, lf_x_start, sl->mb_x); sl->mb_x = lf_x_start = 0; decode_finish_row(h, sl); ++sl->mb_y; if (FIELD_OR_MBAFF_PICTURE(h)) { ++sl->mb_y; if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height) predict_field_decoding_flag(h, sl); } if (sl->mb_y >= h->mb_height) { ff_tlog(h->avctx, "slice end %d %d\n", get_bits_count(&sl->gb), sl->gb.size_in_bits); if ( get_bits_left(&sl->gb) == 0 || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) { er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1, sl->mb_y, ER_MB_END); goto finish; } else { er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_END); return AVERROR_INVALIDDATA; } } } if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) { ff_tlog(h->avctx, "slice end %d %d\n", get_bits_count(&sl->gb), sl->gb.size_in_bits); if (get_bits_left(&sl->gb) == 0) { er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1, sl->mb_y, ER_MB_END); if (sl->mb_x > lf_x_start) loop_filter(h, sl, lf_x_start, sl->mb_x); goto finish; } else { er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x, sl->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } } } } finish: sl->deblocking_filter = orig_deblock; return 0; } /** * Call decode_slice() for each context. * * @param h h264 master context */ int ff_h264_execute_decode_slices(H264Context *h) { AVCodecContext *const avctx = h->avctx; H264SliceContext *sl; int context_count = h->nb_slice_ctx_queued; int ret = 0; int i, j; h->slice_ctx[0].next_slice_idx = INT_MAX; if (h->avctx->hwaccel || context_count < 1) return 0; av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height); if (context_count == 1) { h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height; h->postpone_filter = 0; ret = decode_slice(avctx, &h->slice_ctx[0]); h->mb_y = h->slice_ctx[0].mb_y; if (ret < 0) goto finish; } else { av_assert0(context_count > 0); for (i = 0; i < context_count; i++) { int next_slice_idx = h->mb_width * h->mb_height; int slice_idx; sl = &h->slice_ctx[i]; if (CONFIG_ERROR_RESILIENCE) { sl->er.error_count = 0; } /* make sure none of those slices overlap */ slice_idx = sl->mb_y * h->mb_width + sl->mb_x; for (j = 0; j < context_count; j++) { H264SliceContext *sl2 = &h->slice_ctx[j]; int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x; if (i == j || slice_idx2 < slice_idx) continue; next_slice_idx = FFMIN(next_slice_idx, slice_idx2); } sl->next_slice_idx = next_slice_idx; } avctx->execute(avctx, decode_slice, h->slice_ctx, NULL, context_count, sizeof(h->slice_ctx[0])); /* pull back stuff from slices to master context */ sl = &h->slice_ctx[context_count - 1]; h->mb_y = sl->mb_y; if (CONFIG_ERROR_RESILIENCE) { for (i = 1; i < context_count; i++) h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count; } if (h->postpone_filter) { h->postpone_filter = 0; for (i = 0; i < context_count; i++) { int y_end, x_end; sl = &h->slice_ctx[i]; y_end = FFMIN(sl->mb_y + 1, h->mb_height); x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x; for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) { sl->mb_y = j; loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x, j == y_end - 1 ? x_end : h->mb_width); } } } } finish: h->nb_slice_ctx_queued = 0; return ret; }