/* * ATRAC9 decoder * Copyright (c) 2018 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "internal.h" #include "get_bits.h" #include "fft.h" #include "atrac9tab.h" #include "libavutil/lfg.h" #include "libavutil/float_dsp.h" typedef struct ATRAC9ChannelData { int band_ext; int q_unit_cnt; int band_ext_data[4]; int32_t scalefactors[31]; int32_t scalefactors_prev[31]; int precision_coarse[30]; int precision_fine[30]; int precision_mask[30]; int codebookset[30]; int32_t q_coeffs_coarse[256]; int32_t q_coeffs_fine[256]; DECLARE_ALIGNED(32, float, coeffs )[256]; DECLARE_ALIGNED(32, float, prev_win)[128]; } ATRAC9ChannelData; typedef struct ATRAC9BlockData { ATRAC9ChannelData channel[2]; /* Base */ int band_count; int q_unit_cnt; int q_unit_cnt_prev; /* Stereo block only */ int stereo_q_unit; /* Band extension only */ int has_band_ext; int has_band_ext_data; int band_ext_q_unit; /* Gradient */ int grad_mode; int grad_boundary; int gradient[31]; /* Stereo */ int cpe_base_channel; int is_signs[30]; int reuseable; } ATRAC9BlockData; typedef struct ATRAC9Context { AVCodecContext *avctx; AVFloatDSPContext *fdsp; FFTContext imdct; ATRAC9BlockData block[5]; AVLFG lfg; /* Set on init */ int frame_log2; int avg_frame_size; int frame_count; int samplerate_idx; const ATRAC9BlockConfig *block_config; /* Generated on init */ VLC sf_vlc[2][8]; /* Signed/unsigned, length */ VLC coeff_vlc[2][8][4]; /* Cookbook, precision, cookbook index */ uint8_t alloc_curve[48][48]; DECLARE_ALIGNED(32, float, imdct_win)[256]; DECLARE_ALIGNED(32, float, temp)[256]; } ATRAC9Context; static inline int parse_gradient(ATRAC9Context *s, ATRAC9BlockData *b, GetBitContext *gb) { int grad_range[2]; int grad_value[2]; int values, sign, base; uint8_t *curve; float scale; b->grad_mode = get_bits(gb, 2); if (b->grad_mode) { grad_range[0] = get_bits(gb, 5); grad_range[1] = 31; grad_value[0] = get_bits(gb, 5); grad_value[1] = 31; } else { grad_range[0] = get_bits(gb, 6); grad_range[1] = get_bits(gb, 6) + 1; grad_value[0] = get_bits(gb, 5); grad_value[1] = get_bits(gb, 5); } b->grad_boundary = get_bits(gb, 4); if (grad_range[0] >= grad_range[1] || grad_range[1] > 47) return AVERROR_INVALIDDATA; if (grad_value[0] > 31 || grad_value[1] > 31) return AVERROR_INVALIDDATA; if (b->grad_boundary > b->q_unit_cnt) return AVERROR_INVALIDDATA; values = grad_value[1] - grad_value[0]; sign = 1 - 2*(values < 0); base = grad_value[0] + sign; scale = (FFABS(values) - 1) / 31.0f; curve = s->alloc_curve[grad_range[1] - grad_range[0] - 1]; for (int i = 0; i <= b->q_unit_cnt; i++) b->gradient[i] = grad_value[i >= grad_range[0]]; for (int i = grad_range[0]; i < grad_range[1]; i++) b->gradient[i] = base + sign*((int)(scale*curve[i - grad_range[0]])); return 0; } static inline void calc_precision(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c) { memset(c->precision_mask, 0, sizeof(c->precision_mask)); for (int i = 1; i < b->q_unit_cnt; i++) { const int delta = FFABS(c->scalefactors[i] - c->scalefactors[i - 1]) - 1; if (delta > 0) { const int neg = c->scalefactors[i - 1] > c->scalefactors[i]; c->precision_mask[i - neg] += FFMIN(delta, 5); } } if (b->grad_mode) { for (int i = 0; i < b->q_unit_cnt; i++) { c->precision_coarse[i] = c->scalefactors[i]; c->precision_coarse[i] += c->precision_mask[i] - b->gradient[i]; if (c->precision_coarse[i] < 0) continue; switch (b->grad_mode) { case 1: c->precision_coarse[i] >>= 1; break; case 2: c->precision_coarse[i] = (3 * c->precision_coarse[i]) >> 3; break; case 3: c->precision_coarse[i] >>= 2; break; } } } else { for (int i = 0; i < b->q_unit_cnt; i++) c->precision_coarse[i] = c->scalefactors[i] - b->gradient[i]; } for (int i = 0; i < b->q_unit_cnt; i++) c->precision_coarse[i] = FFMAX(c->precision_coarse[i], 1); for (int i = 0; i < b->grad_boundary; i++) c->precision_coarse[i]++; for (int i = 0; i < b->q_unit_cnt; i++) { c->precision_fine[i] = 0; if (c->precision_coarse[i] > 15) { c->precision_fine[i] = c->precision_coarse[i] - 15; c->precision_coarse[i] = 15; } } } static inline int parse_band_ext(ATRAC9Context *s, ATRAC9BlockData *b, GetBitContext *gb, int stereo) { int ext_band = 0; if (b->has_band_ext) { if (b->q_unit_cnt < 13) return AVERROR_INVALIDDATA; ext_band = at9_tab_band_ext_group[b->q_unit_cnt - 13][2]; if (stereo) { b->channel[1].band_ext = get_bits(gb, 2); b->channel[1].band_ext = ext_band > 2 ? b->channel[1].band_ext : 4; } else { skip_bits1(gb); } } b->has_band_ext_data = get_bits1(gb); if (!b->has_band_ext_data) return 0; if (!b->has_band_ext) { skip_bits(gb, 2); skip_bits_long(gb, get_bits(gb, 5)); return 0; } b->channel[0].band_ext = get_bits(gb, 2); b->channel[0].band_ext = ext_band > 2 ? b->channel[0].band_ext : 4; if (!get_bits(gb, 5)) return 0; for (int i = 0; i <= stereo; i++) { ATRAC9ChannelData *c = &b->channel[i]; const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band]; for (int j = 0; j < count; j++) { int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j]; c->band_ext_data[j] = get_bits(gb, len); } } return 0; } static inline int read_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c, GetBitContext *gb, int channel_idx, int first_in_pkt) { static const uint8_t mode_map[2][4] = { { 0, 1, 2, 3 }, { 0, 2, 3, 4 } }; const int mode = mode_map[channel_idx][get_bits(gb, 2)]; memset(c->scalefactors, 0, sizeof(c->scalefactors)); if (first_in_pkt && (mode == 4 || ((mode == 3) && !channel_idx))) { av_log(s->avctx, AV_LOG_ERROR, "Invalid scalefactor coding mode!\n"); return AVERROR_INVALIDDATA; } switch (mode) { case 0: { /* VLC delta offset */ const uint8_t *sf_weights = at9_tab_sf_weights[get_bits(gb, 3)]; const int base = get_bits(gb, 5); const int len = get_bits(gb, 2) + 3; const VLC *tab = &s->sf_vlc[0][len]; c->scalefactors[0] = get_bits(gb, len); for (int i = 1; i < b->band_ext_q_unit; i++) { int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2); c->scalefactors[i] = val & ((1 << len) - 1); } for (int i = 0; i < b->band_ext_q_unit; i++) c->scalefactors[i] += base - sf_weights[i]; break; } case 1: { /* CLC offset */ const int len = get_bits(gb, 2) + 2; const int base = len < 5 ? get_bits(gb, 5) : 0; for (int i = 0; i < b->band_ext_q_unit; i++) c->scalefactors[i] = base + get_bits(gb, len); break; } case 2: case 4: { /* VLC dist to baseline */ const int *baseline = mode == 4 ? c->scalefactors_prev : channel_idx ? b->channel[0].scalefactors : c->scalefactors_prev; const int baseline_len = mode == 4 ? b->q_unit_cnt_prev : channel_idx ? b->band_ext_q_unit : b->q_unit_cnt_prev; const int len = get_bits(gb, 2) + 2; const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len); const VLC *tab = &s->sf_vlc[1][len]; for (int i = 0; i < unit_cnt; i++) { int dist = get_vlc2(gb, tab->table, 9, 2); c->scalefactors[i] = baseline[i] + dist; } for (int i = unit_cnt; i < b->band_ext_q_unit; i++) c->scalefactors[i] = get_bits(gb, 5); break; } case 3: { /* VLC offset with baseline */ const int *baseline = channel_idx ? b->channel[0].scalefactors : c->scalefactors_prev; const int baseline_len = channel_idx ? b->band_ext_q_unit : b->q_unit_cnt_prev; const int base = get_bits(gb, 5) - (1 << (5 - 1)); const int len = get_bits(gb, 2) + 1; const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len); const VLC *tab = &s->sf_vlc[0][len]; c->scalefactors[0] = get_bits(gb, len); for (int i = 1; i < unit_cnt; i++) { int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2); c->scalefactors[i] = val & ((1 << len) - 1); } for (int i = 0; i < unit_cnt; i++) c->scalefactors[i] += base + baseline[i]; for (int i = unit_cnt; i < b->band_ext_q_unit; i++) c->scalefactors[i] = get_bits(gb, 5); break; } } for (int i = 0; i < b->band_ext_q_unit; i++) if (c->scalefactors[i] < 0 || c->scalefactors[i] > 31) return AVERROR_INVALIDDATA; memcpy(c->scalefactors_prev, c->scalefactors, sizeof(c->scalefactors)); return 0; } static inline void calc_codebook_idx(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c) { int avg = 0; const int last_sf = c->scalefactors[c->q_unit_cnt]; memset(c->codebookset, 0, sizeof(c->codebookset)); if (c->q_unit_cnt <= 1) return; if (s->samplerate_idx > 7) return; c->scalefactors[c->q_unit_cnt] = c->scalefactors[c->q_unit_cnt - 1]; if (c->q_unit_cnt > 12) { for (int i = 0; i < 12; i++) avg += c->scalefactors[i]; avg = (avg + 6) / 12; } for (int i = 8; i < c->q_unit_cnt; i++) { const int prev = c->scalefactors[i - 1]; const int cur = c->scalefactors[i ]; const int next = c->scalefactors[i + 1]; const int min = FFMIN(prev, next); if ((cur - min >= 3 || 2*cur - prev - next >= 3)) c->codebookset[i] = 1; } for (int i = 12; i < c->q_unit_cnt; i++) { const int cur = c->scalefactors[i]; const int cnd = at9_q_unit_to_coeff_cnt[i] == 16; const int min = FFMIN(c->scalefactors[i + 1], c->scalefactors[i - 1]); if (c->codebookset[i]) continue; c->codebookset[i] = (((cur - min) >= 2) && (cur >= (avg - cnd))); } c->scalefactors[c->q_unit_cnt] = last_sf; } static inline void read_coeffs_coarse(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c, GetBitContext *gb) { const int max_prec = s->samplerate_idx > 7 ? 1 : 7; memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse)); for (int i = 0; i < c->q_unit_cnt; i++) { int *coeffs = &c->q_coeffs_coarse[at9_q_unit_to_coeff_idx[i]]; const int bands = at9_q_unit_to_coeff_cnt[i]; const int prec = c->precision_coarse[i] + 1; if (prec <= max_prec) { const int cb = c->codebookset[i]; const int cbi = at9_q_unit_to_codebookidx[i]; const VLC *tab = &s->coeff_vlc[cb][prec][cbi]; const HuffmanCodebook *huff = &at9_huffman_coeffs[cb][prec][cbi]; const int groups = bands >> huff->value_cnt_pow; for (int j = 0; j < groups; j++) { uint16_t val = get_vlc2(gb, tab->table, 9, huff->max_bit_size); for (int k = 0; k < huff->value_cnt; k++) { coeffs[k] = sign_extend(val, huff->value_bits); val >>= huff->value_bits; } coeffs += huff->value_cnt; } } else { for (int j = 0; j < bands; j++) coeffs[j] = sign_extend(get_bits(gb, prec), prec); } } } static inline void read_coeffs_fine(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c, GetBitContext *gb) { memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine)); for (int i = 0; i < c->q_unit_cnt; i++) { const int start = at9_q_unit_to_coeff_idx[i + 0]; const int end = at9_q_unit_to_coeff_idx[i + 1]; const int len = c->precision_fine[i] + 1; if (c->precision_fine[i] <= 0) continue; for (int j = start; j < end; j++) c->q_coeffs_fine[j] = sign_extend(get_bits(gb, len), len); } } static inline void dequantize(ATRAC9Context *s, ATRAC9BlockData *b, ATRAC9ChannelData *c) { memset(c->coeffs, 0, sizeof(c->coeffs)); for (int i = 0; i < c->q_unit_cnt; i++) { const int start = at9_q_unit_to_coeff_idx[i + 0]; const int end = at9_q_unit_to_coeff_idx[i + 1]; const float coarse_c = at9_quant_step_coarse[c->precision_coarse[i]]; const float fine_c = at9_quant_step_fine[c->precision_fine[i]]; for (int j = start; j < end; j++) { const float vc = c->q_coeffs_coarse[j] * coarse_c; const float vf = c->q_coeffs_fine[j] * fine_c; c->coeffs[j] = vc + vf; } } } static inline void apply_intensity_stereo(ATRAC9Context *s, ATRAC9BlockData *b, const int stereo) { float *src = b->channel[ b->cpe_base_channel].coeffs; float *dst = b->channel[!b->cpe_base_channel].coeffs; if (!stereo) return; if (b->q_unit_cnt <= b->stereo_q_unit) return; for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) { const int sign = b->is_signs[i]; const int start = at9_q_unit_to_coeff_idx[i + 0]; const int end = at9_q_unit_to_coeff_idx[i + 1]; for (int j = start; j < end; j++) dst[j] = sign*src[j]; } } static inline void apply_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b, const int stereo) { for (int i = 0; i <= stereo; i++) { float *coeffs = b->channel[i].coeffs; for (int j = 0; j < b->q_unit_cnt; j++) { const int start = at9_q_unit_to_coeff_idx[j + 0]; const int end = at9_q_unit_to_coeff_idx[j + 1]; const int scalefactor = b->channel[i].scalefactors[j]; const float scale = at9_scalefactor_c[scalefactor]; for (int k = start; k < end; k++) coeffs[k] *= scale; } } } static inline void fill_with_noise(ATRAC9Context *s, ATRAC9ChannelData *c, int start, int count) { float maxval = 0.0f; for (int i = 0; i < count; i += 2) { double tmp[2]; av_bmg_get(&s->lfg, tmp); c->coeffs[start + i + 0] = tmp[0]; c->coeffs[start + i + 1] = tmp[1]; maxval = FFMAX(FFMAX(FFABS(tmp[0]), FFABS(tmp[1])), maxval); } /* Normalize */ for (int i = 0; i < count; i++) c->coeffs[start + i] /= maxval; } static inline void scale_band_ext_coeffs(ATRAC9ChannelData *c, float sf[6], const int s_unit, const int e_unit) { for (int i = s_unit; i < e_unit; i++) { const int start = at9_q_unit_to_coeff_idx[i + 0]; const int end = at9_q_unit_to_coeff_idx[i + 1]; for (int j = start; j < end; j++) c->coeffs[j] *= sf[i - s_unit]; } } static inline void apply_band_extension(ATRAC9Context *s, ATRAC9BlockData *b, const int stereo) { const int g_units[4] = { /* A, B, C, total units */ b->q_unit_cnt, at9_tab_band_ext_group[b->q_unit_cnt - 13][0], at9_tab_band_ext_group[b->q_unit_cnt - 13][1], FFMAX(g_units[2], 22), }; const int g_bins[4] = { /* A, B, C, total bins */ at9_q_unit_to_coeff_idx[g_units[0]], at9_q_unit_to_coeff_idx[g_units[1]], at9_q_unit_to_coeff_idx[g_units[2]], at9_q_unit_to_coeff_idx[g_units[3]], }; for (int ch = 0; ch <= stereo; ch++) { ATRAC9ChannelData *c = &b->channel[ch]; /* Mirror the spectrum */ for (int i = 0; i < 3; i++) for (int j = 0; j < (g_bins[i + 1] - g_bins[i + 0]); j++) c->coeffs[g_bins[i] + j] = c->coeffs[g_bins[i] - j - 1]; switch (c->band_ext) { case 0: { float sf[6] = { 0.0f }; const int l = g_units[3] - g_units[0] - 1; const int n_start = at9_q_unit_to_coeff_idx[g_units[3] - 1]; const int n_cnt = at9_q_unit_to_coeff_cnt[g_units[3] - 1]; switch (at9_tab_band_ext_group[b->q_unit_cnt - 13][2]) { case 3: sf[0] = at9_band_ext_scales_m0[0][0][c->band_ext_data[0]]; sf[1] = at9_band_ext_scales_m0[0][1][c->band_ext_data[0]]; sf[2] = at9_band_ext_scales_m0[0][2][c->band_ext_data[1]]; sf[3] = at9_band_ext_scales_m0[0][3][c->band_ext_data[2]]; sf[4] = at9_band_ext_scales_m0[0][4][c->band_ext_data[3]]; break; case 4: sf[0] = at9_band_ext_scales_m0[1][0][c->band_ext_data[0]]; sf[1] = at9_band_ext_scales_m0[1][1][c->band_ext_data[0]]; sf[2] = at9_band_ext_scales_m0[1][2][c->band_ext_data[1]]; sf[3] = at9_band_ext_scales_m0[1][3][c->band_ext_data[2]]; sf[4] = at9_band_ext_scales_m0[1][4][c->band_ext_data[3]]; break; case 5: sf[0] = at9_band_ext_scales_m0[2][0][c->band_ext_data[0]]; sf[1] = at9_band_ext_scales_m0[2][1][c->band_ext_data[1]]; sf[2] = at9_band_ext_scales_m0[2][2][c->band_ext_data[1]]; break; } sf[l] = at9_scalefactor_c[c->scalefactors[g_units[0]]]; fill_with_noise(s, c, n_start, n_cnt); scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]); break; } case 1: { float sf[6]; for (int i = g_units[0]; i < g_units[3]; i++) sf[i - g_units[0]] = at9_scalefactor_c[c->scalefactors[i]]; fill_with_noise(s, c, g_bins[0], g_bins[3] - g_bins[0]); scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]); break; } case 2: { const float g_sf[2] = { at9_band_ext_scales_m2[c->band_ext_data[0]], at9_band_ext_scales_m2[c->band_ext_data[1]], }; for (int i = 0; i < 2; i++) for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++) c->coeffs[j] *= g_sf[i]; break; } case 3: { float scale = at9_band_ext_scales_m3[c->band_ext_data[0]][0]; float rate = at9_band_ext_scales_m3[c->band_ext_data[1]][1]; rate = pow(2, rate); for (int i = g_bins[0]; i < g_bins[3]; i++) { scale *= rate; c->coeffs[i] *= scale; } break; } case 4: { const float m = at9_band_ext_scales_m4[c->band_ext_data[0]]; const float g_sf[3] = { 0.7079468f*m, 0.5011902f*m, 0.3548279f*m }; for (int i = 0; i < 3; i++) for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++) c->coeffs[j] *= g_sf[i]; break; } } } } static int atrac9_decode_block(ATRAC9Context *s, GetBitContext *gb, ATRAC9BlockData *b, AVFrame *frame, int frame_idx, int block_idx) { const int first_in_pkt = !get_bits1(gb); const int reuse_params = get_bits1(gb); const int stereo = s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_CPE; if (s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_LFE) { ATRAC9ChannelData *c = &b->channel[0]; const int precision = reuse_params ? 8 : 4; c->q_unit_cnt = b->q_unit_cnt = 2; memset(c->scalefactors, 0, sizeof(c->scalefactors)); memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine)); memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse)); for (int i = 0; i < b->q_unit_cnt; i++) { c->scalefactors[i] = get_bits(gb, 5); c->precision_coarse[i] = precision; c->precision_fine[i] = 0; } for (int i = 0; i < c->q_unit_cnt; i++) { const int start = at9_q_unit_to_coeff_idx[i + 0]; const int end = at9_q_unit_to_coeff_idx[i + 1]; for (int j = start; j < end; j++) c->q_coeffs_coarse[j] = get_bits(gb, c->precision_coarse[i] + 1); } dequantize (s, b, c); apply_scalefactors(s, b, 0); goto imdct; } if (first_in_pkt && reuse_params) { av_log(s->avctx, AV_LOG_ERROR, "Invalid block flags!\n"); return AVERROR_INVALIDDATA; } /* Band parameters */ if (!reuse_params) { int stereo_band, ext_band; const int min_band_count = s->samplerate_idx > 7 ? 1 : 3; b->reuseable = 0; b->band_count = get_bits(gb, 4) + min_band_count; b->q_unit_cnt = at9_tab_band_q_unit_map[b->band_count]; b->band_ext_q_unit = b->stereo_q_unit = b->q_unit_cnt; if (b->band_count > at9_tab_sri_max_bands[s->samplerate_idx]) { av_log(s->avctx, AV_LOG_ERROR, "Invalid band count %i!\n", b->band_count); return AVERROR_INVALIDDATA; } if (stereo) { stereo_band = get_bits(gb, 4) + min_band_count; if (stereo_band > b->band_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid stereo band %i!\n", stereo_band); return AVERROR_INVALIDDATA; } b->stereo_q_unit = at9_tab_band_q_unit_map[stereo_band]; } b->has_band_ext = get_bits1(gb); if (b->has_band_ext) { ext_band = get_bits(gb, 4) + min_band_count; if (ext_band < b->band_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid extension band %i!\n", ext_band); return AVERROR_INVALIDDATA; } b->band_ext_q_unit = at9_tab_band_q_unit_map[ext_band]; } b->reuseable = 1; } if (!b->reuseable) { av_log(s->avctx, AV_LOG_ERROR, "invalid block reused!\n"); return AVERROR_INVALIDDATA; } /* Calculate bit alloc gradient */ if (parse_gradient(s, b, gb)) return AVERROR_INVALIDDATA; /* IS data */ b->cpe_base_channel = 0; if (stereo) { b->cpe_base_channel = get_bits1(gb); if (get_bits1(gb)) { for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) b->is_signs[i] = 1 - 2*get_bits1(gb); } else { for (int i = 0; i < FF_ARRAY_ELEMS(b->is_signs); i++) b->is_signs[i] = 1; } } /* Band extension */ if (parse_band_ext(s, b, gb, stereo)) return AVERROR_INVALIDDATA; /* Scalefactors */ for (int i = 0; i <= stereo; i++) { ATRAC9ChannelData *c = &b->channel[i]; c->q_unit_cnt = i == b->cpe_base_channel ? b->q_unit_cnt : b->stereo_q_unit; if (read_scalefactors(s, b, c, gb, i, first_in_pkt)) return AVERROR_INVALIDDATA; calc_precision (s, b, c); calc_codebook_idx (s, b, c); read_coeffs_coarse(s, b, c, gb); read_coeffs_fine (s, b, c, gb); dequantize (s, b, c); } b->q_unit_cnt_prev = b->has_band_ext ? b->band_ext_q_unit : b->q_unit_cnt; apply_intensity_stereo(s, b, stereo); apply_scalefactors (s, b, stereo); if (b->has_band_ext && b->has_band_ext_data) apply_band_extension (s, b, stereo); imdct: for (int i = 0; i <= stereo; i++) { ATRAC9ChannelData *c = &b->channel[i]; const int dst_idx = s->block_config->plane_map[block_idx][i]; const int wsize = 1 << s->frame_log2; const ptrdiff_t offset = wsize*frame_idx*sizeof(float); float *dst = (float *)(frame->extended_data[dst_idx] + offset); s->imdct.imdct_half(&s->imdct, s->temp, c->coeffs); s->fdsp->vector_fmul_window(dst, c->prev_win, s->temp, s->imdct_win, wsize >> 1); memcpy(c->prev_win, s->temp + (wsize >> 1), sizeof(float)*wsize >> 1); } return 0; } static int atrac9_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { int ret; GetBitContext gb; AVFrame *frame = data; ATRAC9Context *s = avctx->priv_data; const int frames = FFMIN(avpkt->size / s->avg_frame_size, s->frame_count); frame->nb_samples = (1 << s->frame_log2) * frames; ret = ff_get_buffer(avctx, frame, 0); if (ret < 0) return ret; init_get_bits8(&gb, avpkt->data, avpkt->size); for (int i = 0; i < frames; i++) { for (int j = 0; j < s->block_config->count; j++) { ret = atrac9_decode_block(s, &gb, &s->block[j], frame, i, j); if (ret) return ret; align_get_bits(&gb); } } *got_frame_ptr = 1; return avctx->block_align; } static void atrac9_decode_flush(AVCodecContext *avctx) { ATRAC9Context *s = avctx->priv_data; for (int j = 0; j < s->block_config->count; j++) { ATRAC9BlockData *b = &s->block[j]; const int stereo = s->block_config->type[j] == ATRAC9_BLOCK_TYPE_CPE; for (int i = 0; i <= stereo; i++) { ATRAC9ChannelData *c = &b->channel[i]; memset(c->prev_win, 0, sizeof(c->prev_win)); } } } static av_cold int atrac9_decode_close(AVCodecContext *avctx) { ATRAC9Context *s = avctx->priv_data; for (int i = 1; i < 7; i++) ff_free_vlc(&s->sf_vlc[0][i]); for (int i = 2; i < 6; i++) ff_free_vlc(&s->sf_vlc[1][i]); for (int i = 0; i < 2; i++) for (int j = 0; j < 8; j++) for (int k = 0; k < 4; k++) ff_free_vlc(&s->coeff_vlc[i][j][k]); ff_mdct_end(&s->imdct); av_free(s->fdsp); return 0; } static av_cold int atrac9_decode_init(AVCodecContext *avctx) { GetBitContext gb; ATRAC9Context *s = avctx->priv_data; int version, block_config_idx, superframe_idx, alloc_c_len; s->avctx = avctx; av_lfg_init(&s->lfg, 0xFBADF00D); if (avctx->extradata_size != 12) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata length!\n"); return AVERROR_INVALIDDATA; } version = AV_RL32(avctx->extradata); if (version > 2) { av_log(avctx, AV_LOG_ERROR, "Unsupported version (%i)!\n", version); return AVERROR_INVALIDDATA; } init_get_bits8(&gb, avctx->extradata + 4, avctx->extradata_size); if (get_bits(&gb, 8) != 0xFE) { av_log(avctx, AV_LOG_ERROR, "Incorrect magic byte!\n"); return AVERROR_INVALIDDATA; } s->samplerate_idx = get_bits(&gb, 4); avctx->sample_rate = at9_tab_samplerates[s->samplerate_idx]; block_config_idx = get_bits(&gb, 3); if (block_config_idx > 5) { av_log(avctx, AV_LOG_ERROR, "Incorrect block config!\n"); return AVERROR_INVALIDDATA; } s->block_config = &at9_block_layout[block_config_idx]; avctx->channel_layout = s->block_config->channel_layout; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; if (get_bits1(&gb)) { av_log(avctx, AV_LOG_ERROR, "Incorrect verification bit!\n"); return AVERROR_INVALIDDATA; } /* Average frame size in bytes */ s->avg_frame_size = get_bits(&gb, 11) + 1; superframe_idx = get_bits(&gb, 2); if (superframe_idx & 1) { av_log(avctx, AV_LOG_ERROR, "Invalid superframe index!\n"); return AVERROR_INVALIDDATA; } s->frame_count = 1 << superframe_idx; s->frame_log2 = at9_tab_sri_frame_log2[s->samplerate_idx]; if (ff_mdct_init(&s->imdct, s->frame_log2 + 1, 1, 1.0f / 32768.0f)) return AVERROR(ENOMEM); s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!s->fdsp) return AVERROR(ENOMEM); /* iMDCT window */ for (int i = 0; i < (1 << s->frame_log2); i++) { const int len = 1 << s->frame_log2; const float sidx = ( i + 0.5f) / len; const float eidx = (len - i - 0.5f) / len; const float s_c = sinf(sidx*M_PI - M_PI_2)*0.5f + 0.5f; const float e_c = sinf(eidx*M_PI - M_PI_2)*0.5f + 0.5f; s->imdct_win[i] = s_c / ((s_c * s_c) + (e_c * e_c)); } /* Allocation curve */ alloc_c_len = FF_ARRAY_ELEMS(at9_tab_b_dist); for (int i = 1; i <= alloc_c_len; i++) for (int j = 0; j < i; j++) s->alloc_curve[i - 1][j] = at9_tab_b_dist[(j * alloc_c_len) / i]; /* Unsigned scalefactor VLCs */ for (int i = 1; i < 7; i++) { const HuffmanCodebook *hf = &at9_huffman_sf_unsigned[i]; init_vlc(&s->sf_vlc[0][i], 9, hf->size, hf->bits, 1, 1, hf->codes, 2, 2, 0); } /* Signed scalefactor VLCs */ for (int i = 2; i < 6; i++) { const HuffmanCodebook *hf = &at9_huffman_sf_signed[i]; int nums = hf->size; int16_t sym[32]; for (int j = 0; j < nums; j++) sym[j] = sign_extend(j, hf->value_bits); ff_init_vlc_sparse(&s->sf_vlc[1][i], 9, hf->size, hf->bits, 1, 1, hf->codes, 2, 2, sym, sizeof(*sym), sizeof(*sym), 0); } /* Coefficient VLCs */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 8; j++) { for (int k = 0; k < 4; k++) { const HuffmanCodebook *hf = &at9_huffman_coeffs[i][j][k]; init_vlc(&s->coeff_vlc[i][j][k], 9, hf->size, hf->bits, 1, 1, hf->codes, 2, 2, 0); } } } return 0; } AVCodec ff_atrac9_decoder = { .name = "atrac9", .long_name = NULL_IF_CONFIG_SMALL("ATRAC9 (Adaptive TRansform Acoustic Coding 9)"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_ATRAC9, .priv_data_size = sizeof(ATRAC9Context), .init = atrac9_decode_init, .close = atrac9_decode_close, .decode = atrac9_decode_frame, .flush = atrac9_decode_flush, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, };