/* * MPEG-4 encoder * Copyright (c) 2000,2001 Fabrice Bellard * Copyright (c) 2002-2010 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/attributes.h" #include "libavutil/log.h" #include "libavutil/opt.h" #include "mpegutils.h" #include "mpegvideo.h" #include "h263.h" #include "mpeg4video.h" #include "profiles.h" /* The uni_DCtab_* tables below contain unified bits+length tables to encode DC * differences in MPEG-4. Unified in the sense that the specification specifies * this encoding in several steps. */ static uint8_t uni_DCtab_lum_len[512]; static uint8_t uni_DCtab_chrom_len[512]; static uint16_t uni_DCtab_lum_bits[512]; static uint16_t uni_DCtab_chrom_bits[512]; /* Unified encoding tables for run length encoding of coefficients. * Unified in the sense that the specification specifies the encoding in several steps. */ static uint32_t uni_mpeg4_intra_rl_bits[64 * 64 * 2 * 2]; static uint8_t uni_mpeg4_intra_rl_len[64 * 64 * 2 * 2]; static uint32_t uni_mpeg4_inter_rl_bits[64 * 64 * 2 * 2]; static uint8_t uni_mpeg4_inter_rl_len[64 * 64 * 2 * 2]; //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 + (run) * 256 + (level)) //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) + (level) * 64) #define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) * 128 + (level)) /* MPEG-4 * inter * max level: 24/6 * max run: 53/63 * * intra * max level: 53/16 * max run: 29/41 */ /** * Return the number of bits that encoding the 8x8 block in block would need. * @param[in] block_last_index last index in scantable order that refers to a non zero element in block. */ static inline int get_block_rate(MpegEncContext *s, int16_t block[64], int block_last_index, uint8_t scantable[64]) { int last = 0; int j; int rate = 0; for (j = 1; j <= block_last_index; j++) { const int index = scantable[j]; int level = block[index]; if (level) { level += 64; if ((level & (~127)) == 0) { if (j < block_last_index) rate += s->intra_ac_vlc_length[UNI_AC_ENC_INDEX(j - last - 1, level)]; else rate += s->intra_ac_vlc_last_length[UNI_AC_ENC_INDEX(j - last - 1, level)]; } else rate += s->ac_esc_length; last = j; } } return rate; } /** * Restore the ac coefficients in block that have been changed by decide_ac_pred(). * This function also restores s->block_last_index. * @param[in,out] block MB coefficients, these will be restored * @param[in] dir ac prediction direction for each 8x8 block * @param[out] st scantable for each 8x8 block * @param[in] zigzag_last_index index referring to the last non zero coefficient in zigzag order */ static inline void restore_ac_coeffs(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], const int zigzag_last_index[6]) { int i, n; memcpy(s->block_last_index, zigzag_last_index, sizeof(int) * 6); for (n = 0; n < 6; n++) { int16_t *ac_val = &s->ac_val[0][0][0] + s->block_index[n] * 16; st[n] = s->intra_scantable.permutated; if (dir[n]) { /* top prediction */ for (i = 1; i < 8; i++) block[n][s->idsp.idct_permutation[i]] = ac_val[i + 8]; } else { /* left prediction */ for (i = 1; i < 8; i++) block[n][s->idsp.idct_permutation[i << 3]] = ac_val[i]; } } } /** * Return the optimal value (0 or 1) for the ac_pred element for the given MB in MPEG-4. * This function will also update s->block_last_index and s->ac_val. * @param[in,out] block MB coefficients, these will be updated if 1 is returned * @param[in] dir ac prediction direction for each 8x8 block * @param[out] st scantable for each 8x8 block * @param[out] zigzag_last_index index referring to the last non zero coefficient in zigzag order */ static inline int decide_ac_pred(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], int zigzag_last_index[6]) { int score = 0; int i, n; int8_t *const qscale_table = s->current_picture.qscale_table; memcpy(zigzag_last_index, s->block_last_index, sizeof(int) * 6); for (n = 0; n < 6; n++) { int16_t *ac_val, *ac_val1; score -= get_block_rate(s, block[n], s->block_last_index[n], s->intra_scantable.permutated); ac_val = &s->ac_val[0][0][0] + s->block_index[n] * 16; ac_val1 = ac_val; if (dir[n]) { const int xy = s->mb_x + s->mb_y * s->mb_stride - s->mb_stride; /* top prediction */ ac_val -= s->block_wrap[n] * 16; if (s->mb_y == 0 || s->qscale == qscale_table[xy] || n == 2 || n == 3) { /* same qscale */ for (i = 1; i < 8; i++) { const int level = block[n][s->idsp.idct_permutation[i]]; block[n][s->idsp.idct_permutation[i]] = level - ac_val[i + 8]; ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]]; ac_val1[i + 8] = level; } } else { /* different qscale, we must rescale */ for (i = 1; i < 8; i++) { const int level = block[n][s->idsp.idct_permutation[i]]; block[n][s->idsp.idct_permutation[i]] = level - ROUNDED_DIV(ac_val[i + 8] * qscale_table[xy], s->qscale); ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]]; ac_val1[i + 8] = level; } } st[n] = s->intra_h_scantable.permutated; } else { const int xy = s->mb_x - 1 + s->mb_y * s->mb_stride; /* left prediction */ ac_val -= 16; if (s->mb_x == 0 || s->qscale == qscale_table[xy] || n == 1 || n == 3) { /* same qscale */ for (i = 1; i < 8; i++) { const int level = block[n][s->idsp.idct_permutation[i << 3]]; block[n][s->idsp.idct_permutation[i << 3]] = level - ac_val[i]; ac_val1[i] = level; ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]]; } } else { /* different qscale, we must rescale */ for (i = 1; i < 8; i++) { const int level = block[n][s->idsp.idct_permutation[i << 3]]; block[n][s->idsp.idct_permutation[i << 3]] = level - ROUNDED_DIV(ac_val[i] * qscale_table[xy], s->qscale); ac_val1[i] = level; ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]]; } } st[n] = s->intra_v_scantable.permutated; } for (i = 63; i > 0; i--) // FIXME optimize if (block[n][st[n][i]]) break; s->block_last_index[n] = i; score += get_block_rate(s, block[n], s->block_last_index[n], st[n]); } if (score < 0) { return 1; } else { restore_ac_coeffs(s, block, dir, st, zigzag_last_index); return 0; } } /** * modify mb_type & qscale so that encoding is actually possible in MPEG-4 */ void ff_clean_mpeg4_qscales(MpegEncContext *s) { int i; int8_t *const qscale_table = s->current_picture.qscale_table; ff_clean_h263_qscales(s); if (s->pict_type == AV_PICTURE_TYPE_B) { int odd = 0; /* ok, come on, this isn't funny anymore, there's more code for * handling this MPEG-4 mess than for the actual adaptive quantization */ for (i = 0; i < s->mb_num; i++) { int mb_xy = s->mb_index2xy[i]; odd += qscale_table[mb_xy] & 1; } if (2 * odd > s->mb_num) odd = 1; else odd = 0; for (i = 0; i < s->mb_num; i++) { int mb_xy = s->mb_index2xy[i]; if ((qscale_table[mb_xy] & 1) != odd) qscale_table[mb_xy]++; if (qscale_table[mb_xy] > 31) qscale_table[mb_xy] = 31; } for (i = 1; i < s->mb_num; i++) { int mb_xy = s->mb_index2xy[i]; if (qscale_table[mb_xy] != qscale_table[s->mb_index2xy[i - 1]] && (s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_DIRECT)) { s->mb_type[mb_xy] |= CANDIDATE_MB_TYPE_BIDIR; } } } } /** * Encode the dc value. * @param n block index (0-3 are luma, 4-5 are chroma) */ static inline void mpeg4_encode_dc(PutBitContext *s, int level, int n) { /* DC will overflow if level is outside the [-255,255] range. */ level += 256; if (n < 4) { /* luminance */ put_bits(s, uni_DCtab_lum_len[level], uni_DCtab_lum_bits[level]); } else { /* chrominance */ put_bits(s, uni_DCtab_chrom_len[level], uni_DCtab_chrom_bits[level]); } } static inline int mpeg4_get_dc_length(int level, int n) { if (n < 4) return uni_DCtab_lum_len[level + 256]; else return uni_DCtab_chrom_len[level + 256]; } /** * Encode an 8x8 block. * @param n block index (0-3 are luma, 4-5 are chroma) */ static inline void mpeg4_encode_block(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb) { int i, last_non_zero; uint32_t *bits_tab; uint8_t *len_tab; const int last_index = s->block_last_index[n]; if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away /* MPEG-4 based DC predictor */ mpeg4_encode_dc(dc_pb, intra_dc, n); if (last_index < 1) return; i = 1; bits_tab = uni_mpeg4_intra_rl_bits; len_tab = uni_mpeg4_intra_rl_len; } else { if (last_index < 0) return; i = 0; bits_tab = uni_mpeg4_inter_rl_bits; len_tab = uni_mpeg4_inter_rl_len; } /* AC coefs */ last_non_zero = i - 1; for (; i < last_index; i++) { int level = block[scan_table[i]]; if (level) { int run = i - last_non_zero - 1; level += 64; if ((level & (~127)) == 0) { const int index = UNI_MPEG4_ENC_INDEX(0, run, level); put_bits(ac_pb, len_tab[index], bits_tab[index]); } else { // ESC3 put_bits(ac_pb, 7 + 2 + 1 + 6 + 1 + 12 + 1, (3 << 23) + (3 << 21) + (0 << 20) + (run << 14) + (1 << 13) + (((level - 64) & 0xfff) << 1) + 1); } last_non_zero = i; } } /* if (i <= last_index) */ { int level = block[scan_table[i]]; int run = i - last_non_zero - 1; level += 64; if ((level & (~127)) == 0) { const int index = UNI_MPEG4_ENC_INDEX(1, run, level); put_bits(ac_pb, len_tab[index], bits_tab[index]); } else { // ESC3 put_bits(ac_pb, 7 + 2 + 1 + 6 + 1 + 12 + 1, (3 << 23) + (3 << 21) + (1 << 20) + (run << 14) + (1 << 13) + (((level - 64) & 0xfff) << 1) + 1); } } } static int mpeg4_get_block_length(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table) { int i, last_non_zero; uint8_t *len_tab; const int last_index = s->block_last_index[n]; int len = 0; if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away /* MPEG-4 based DC predictor */ len += mpeg4_get_dc_length(intra_dc, n); if (last_index < 1) return len; i = 1; len_tab = uni_mpeg4_intra_rl_len; } else { if (last_index < 0) return 0; i = 0; len_tab = uni_mpeg4_inter_rl_len; } /* AC coefs */ last_non_zero = i - 1; for (; i < last_index; i++) { int level = block[scan_table[i]]; if (level) { int run = i - last_non_zero - 1; level += 64; if ((level & (~127)) == 0) { const int index = UNI_MPEG4_ENC_INDEX(0, run, level); len += len_tab[index]; } else { // ESC3 len += 7 + 2 + 1 + 6 + 1 + 12 + 1; } last_non_zero = i; } } /* if (i <= last_index) */ { int level = block[scan_table[i]]; int run = i - last_non_zero - 1; level += 64; if ((level & (~127)) == 0) { const int index = UNI_MPEG4_ENC_INDEX(1, run, level); len += len_tab[index]; } else { // ESC3 len += 7 + 2 + 1 + 6 + 1 + 12 + 1; } } return len; } static inline void mpeg4_encode_blocks(MpegEncContext *s, int16_t block[6][64], int intra_dc[6], uint8_t **scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb) { int i; if (scan_table) { if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) { for (i = 0; i < 6; i++) skip_put_bits(&s->pb, mpeg4_get_block_length(s, block[i], i, intra_dc[i], scan_table[i])); } else { /* encode each block */ for (i = 0; i < 6; i++) mpeg4_encode_block(s, block[i], i, intra_dc[i], scan_table[i], dc_pb, ac_pb); } } else { if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) { for (i = 0; i < 6; i++) skip_put_bits(&s->pb, mpeg4_get_block_length(s, block[i], i, 0, s->intra_scantable.permutated)); } else { /* encode each block */ for (i = 0; i < 6; i++) mpeg4_encode_block(s, block[i], i, 0, s->intra_scantable.permutated, dc_pb, ac_pb); } } } static inline int get_b_cbp(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y, int mb_type) { int cbp = 0, i; if (s->mpv_flags & FF_MPV_FLAG_CBP_RD) { int score = 0; const int lambda = s->lambda2 >> (FF_LAMBDA_SHIFT - 6); for (i = 0; i < 6; i++) { if (s->coded_score[i] < 0) { score += s->coded_score[i]; cbp |= 1 << (5 - i); } } if (cbp) { int zero_score = -6; if ((motion_x | motion_y | s->dquant | mb_type) == 0) zero_score -= 4; // 2 * MV + mb_type + cbp bit zero_score *= lambda; if (zero_score <= score) cbp = 0; } for (i = 0; i < 6; i++) { if (s->block_last_index[i] >= 0 && ((cbp >> (5 - i)) & 1) == 0) { s->block_last_index[i] = -1; s->bdsp.clear_block(s->block[i]); } } } else { for (i = 0; i < 6; i++) { if (s->block_last_index[i] >= 0) cbp |= 1 << (5 - i); } } return cbp; } // FIXME this is duplicated to h263.c static const int dquant_code[5] = { 1, 0, 9, 2, 3 }; void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y) { int cbpc, cbpy, pred_x, pred_y; PutBitContext *const pb2 = s->data_partitioning ? &s->pb2 : &s->pb; PutBitContext *const tex_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B ? &s->tex_pb : &s->pb; PutBitContext *const dc_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_I ? &s->pb2 : &s->pb; const int interleaved_stats = (s->avctx->flags & AV_CODEC_FLAG_PASS1) && !s->data_partitioning ? 1 : 0; if (!s->mb_intra) { int i, cbp; if (s->pict_type == AV_PICTURE_TYPE_B) { /* convert from mv_dir to type */ static const int mb_type_table[8] = { -1, 3, 2, 1, -1, -1, -1, 0 }; int mb_type = mb_type_table[s->mv_dir]; if (s->mb_x == 0) { for (i = 0; i < 2; i++) s->last_mv[i][0][0] = s->last_mv[i][0][1] = s->last_mv[i][1][0] = s->last_mv[i][1][1] = 0; } av_assert2(s->dquant >= -2 && s->dquant <= 2); av_assert2((s->dquant & 1) == 0); av_assert2(mb_type >= 0); /* nothing to do if this MB was skipped in the next P-frame */ if (s->next_picture.mbskip_table[s->mb_y * s->mb_stride + s->mb_x]) { // FIXME avoid DCT & ... s->skip_count++; s->mv[0][0][0] = s->mv[0][0][1] = s->mv[1][0][0] = s->mv[1][0][1] = 0; s->mv_dir = MV_DIR_FORWARD; // doesn't matter s->qscale -= s->dquant; // s->mb_skipped = 1; return; } cbp = get_b_cbp(s, block, motion_x, motion_y, mb_type); if ((cbp | motion_x | motion_y | mb_type) == 0) { /* direct MB with MV={0,0} */ av_assert2(s->dquant == 0); put_bits(&s->pb, 1, 1); /* mb not coded modb1=1 */ if (interleaved_stats) { s->misc_bits++; s->last_bits++; } s->skip_count++; return; } put_bits(&s->pb, 1, 0); /* mb coded modb1=0 */ put_bits(&s->pb, 1, cbp ? 0 : 1); /* modb2 */ // FIXME merge put_bits(&s->pb, mb_type + 1, 1); // this table is so simple that we don't need it :) if (cbp) put_bits(&s->pb, 6, cbp); if (cbp && mb_type) { if (s->dquant) put_bits(&s->pb, 2, (s->dquant >> 2) + 3); else put_bits(&s->pb, 1, 0); } else s->qscale -= s->dquant; if (!s->progressive_sequence) { if (cbp) put_bits(&s->pb, 1, s->interlaced_dct); if (mb_type) // not direct mode put_bits(&s->pb, 1, s->mv_type == MV_TYPE_FIELD); } if (interleaved_stats) s->misc_bits += get_bits_diff(s); if (!mb_type) { av_assert2(s->mv_dir & MV_DIRECT); ff_h263_encode_motion_vector(s, motion_x, motion_y, 1); s->b_count++; s->f_count++; } else { av_assert2(mb_type > 0 && mb_type < 4); if (s->mv_type != MV_TYPE_FIELD) { if (s->mv_dir & MV_DIR_FORWARD) { ff_h263_encode_motion_vector(s, s->mv[0][0][0] - s->last_mv[0][0][0], s->mv[0][0][1] - s->last_mv[0][0][1], s->f_code); s->last_mv[0][0][0] = s->last_mv[0][1][0] = s->mv[0][0][0]; s->last_mv[0][0][1] = s->last_mv[0][1][1] = s->mv[0][0][1]; s->f_count++; } if (s->mv_dir & MV_DIR_BACKWARD) { ff_h263_encode_motion_vector(s, s->mv[1][0][0] - s->last_mv[1][0][0], s->mv[1][0][1] - s->last_mv[1][0][1], s->b_code); s->last_mv[1][0][0] = s->last_mv[1][1][0] = s->mv[1][0][0]; s->last_mv[1][0][1] = s->last_mv[1][1][1] = s->mv[1][0][1]; s->b_count++; } } else { if (s->mv_dir & MV_DIR_FORWARD) { put_bits(&s->pb, 1, s->field_select[0][0]); put_bits(&s->pb, 1, s->field_select[0][1]); } if (s->mv_dir & MV_DIR_BACKWARD) { put_bits(&s->pb, 1, s->field_select[1][0]); put_bits(&s->pb, 1, s->field_select[1][1]); } if (s->mv_dir & MV_DIR_FORWARD) { for (i = 0; i < 2; i++) { ff_h263_encode_motion_vector(s, s->mv[0][i][0] - s->last_mv[0][i][0], s->mv[0][i][1] - s->last_mv[0][i][1] / 2, s->f_code); s->last_mv[0][i][0] = s->mv[0][i][0]; s->last_mv[0][i][1] = s->mv[0][i][1] * 2; } s->f_count++; } if (s->mv_dir & MV_DIR_BACKWARD) { for (i = 0; i < 2; i++) { ff_h263_encode_motion_vector(s, s->mv[1][i][0] - s->last_mv[1][i][0], s->mv[1][i][1] - s->last_mv[1][i][1] / 2, s->b_code); s->last_mv[1][i][0] = s->mv[1][i][0]; s->last_mv[1][i][1] = s->mv[1][i][1] * 2; } s->b_count++; } } } if (interleaved_stats) s->mv_bits += get_bits_diff(s); mpeg4_encode_blocks(s, block, NULL, NULL, NULL, &s->pb); if (interleaved_stats) s->p_tex_bits += get_bits_diff(s); } else { /* s->pict_type==AV_PICTURE_TYPE_B */ cbp = get_p_cbp(s, block, motion_x, motion_y); if ((cbp | motion_x | motion_y | s->dquant) == 0 && s->mv_type == MV_TYPE_16X16) { /* Check if the B-frames can skip it too, as we must skip it * if we skip here why didn't they just compress * the skip-mb bits instead of reusing them ?! */ if (s->max_b_frames > 0) { int i; int x, y, offset; uint8_t *p_pic; x = s->mb_x * 16; y = s->mb_y * 16; offset = x + y * s->linesize; p_pic = s->new_picture.f->data[0] + offset; s->mb_skipped = 1; for (i = 0; i < s->max_b_frames; i++) { uint8_t *b_pic; int diff; Picture *pic = s->reordered_input_picture[i + 1]; if (!pic || pic->f->pict_type != AV_PICTURE_TYPE_B) break; b_pic = pic->f->data[0] + offset; if (!pic->shared) b_pic += INPLACE_OFFSET; if (x + 16 > s->width || y + 16 > s->height) { int x1, y1; int xe = FFMIN(16, s->width - x); int ye = FFMIN(16, s->height - y); diff = 0; for (y1 = 0; y1 < ye; y1++) { for (x1 = 0; x1 < xe; x1++) { diff += FFABS(p_pic[x1 + y1 * s->linesize] - b_pic[x1 + y1 * s->linesize]); } } diff = diff * 256 / (xe * ye); } else { diff = s->mecc.sad[0](NULL, p_pic, b_pic, s->linesize, 16); } if (diff > s->qscale * 70) { // FIXME check that 70 is optimal s->mb_skipped = 0; break; } } } else s->mb_skipped = 1; if (s->mb_skipped == 1) { /* skip macroblock */ put_bits(&s->pb, 1, 1); if (interleaved_stats) { s->misc_bits++; s->last_bits++; } s->skip_count++; return; } } put_bits(&s->pb, 1, 0); /* mb coded */ cbpc = cbp & 3; cbpy = cbp >> 2; cbpy ^= 0xf; if (s->mv_type == MV_TYPE_16X16) { if (s->dquant) cbpc += 8; put_bits(&s->pb, ff_h263_inter_MCBPC_bits[cbpc], ff_h263_inter_MCBPC_code[cbpc]); put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]); if (s->dquant) put_bits(pb2, 2, dquant_code[s->dquant + 2]); if (!s->progressive_sequence) { if (cbp) put_bits(pb2, 1, s->interlaced_dct); put_bits(pb2, 1, 0); } if (interleaved_stats) s->misc_bits += get_bits_diff(s); /* motion vectors: 16x16 mode */ ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y); ff_h263_encode_motion_vector(s, motion_x - pred_x, motion_y - pred_y, s->f_code); } else if (s->mv_type == MV_TYPE_FIELD) { if (s->dquant) cbpc += 8; put_bits(&s->pb, ff_h263_inter_MCBPC_bits[cbpc], ff_h263_inter_MCBPC_code[cbpc]); put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]); if (s->dquant) put_bits(pb2, 2, dquant_code[s->dquant + 2]); av_assert2(!s->progressive_sequence); if (cbp) put_bits(pb2, 1, s->interlaced_dct); put_bits(pb2, 1, 1); if (interleaved_stats) s->misc_bits += get_bits_diff(s); /* motion vectors: 16x8 interlaced mode */ ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y); pred_y /= 2; put_bits(&s->pb, 1, s->field_select[0][0]); put_bits(&s->pb, 1, s->field_select[0][1]); ff_h263_encode_motion_vector(s, s->mv[0][0][0] - pred_x, s->mv[0][0][1] - pred_y, s->f_code); ff_h263_encode_motion_vector(s, s->mv[0][1][0] - pred_x, s->mv[0][1][1] - pred_y, s->f_code); } else { av_assert2(s->mv_type == MV_TYPE_8X8); put_bits(&s->pb, ff_h263_inter_MCBPC_bits[cbpc + 16], ff_h263_inter_MCBPC_code[cbpc + 16]); put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]); if (!s->progressive_sequence && cbp) put_bits(pb2, 1, s->interlaced_dct); if (interleaved_stats) s->misc_bits += get_bits_diff(s); for (i = 0; i < 4; i++) { /* motion vectors: 8x8 mode*/ ff_h263_pred_motion(s, i, 0, &pred_x, &pred_y); ff_h263_encode_motion_vector(s, s->current_picture.motion_val[0][s->block_index[i]][0] - pred_x, s->current_picture.motion_val[0][s->block_index[i]][1] - pred_y, s->f_code); } } if (interleaved_stats) s->mv_bits += get_bits_diff(s); mpeg4_encode_blocks(s, block, NULL, NULL, NULL, tex_pb); if (interleaved_stats) s->p_tex_bits += get_bits_diff(s); s->f_count++; } } else { int cbp; int dc_diff[6]; // dc values with the dc prediction subtracted int dir[6]; // prediction direction int zigzag_last_index[6]; uint8_t *scan_table[6]; int i; for (i = 0; i < 6; i++) dc_diff[i] = ff_mpeg4_pred_dc(s, i, block[i][0], &dir[i], 1); if (s->avctx->flags & AV_CODEC_FLAG_AC_PRED) { s->ac_pred = decide_ac_pred(s, block, dir, scan_table, zigzag_last_index); } else { for (i = 0; i < 6; i++) scan_table[i] = s->intra_scantable.permutated; } /* compute cbp */ cbp = 0; for (i = 0; i < 6; i++) if (s->block_last_index[i] >= 1) cbp |= 1 << (5 - i); cbpc = cbp & 3; if (s->pict_type == AV_PICTURE_TYPE_I) { if (s->dquant) cbpc += 4; put_bits(&s->pb, ff_h263_intra_MCBPC_bits[cbpc], ff_h263_intra_MCBPC_code[cbpc]); } else { if (s->dquant) cbpc += 8; put_bits(&s->pb, 1, 0); /* mb coded */ put_bits(&s->pb, ff_h263_inter_MCBPC_bits[cbpc + 4], ff_h263_inter_MCBPC_code[cbpc + 4]); } put_bits(pb2, 1, s->ac_pred); cbpy = cbp >> 2; put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]); if (s->dquant) put_bits(dc_pb, 2, dquant_code[s->dquant + 2]); if (!s->progressive_sequence) put_bits(dc_pb, 1, s->interlaced_dct); if (interleaved_stats) s->misc_bits += get_bits_diff(s); mpeg4_encode_blocks(s, block, dc_diff, scan_table, dc_pb, tex_pb); if (interleaved_stats) s->i_tex_bits += get_bits_diff(s); s->i_count++; /* restore ac coeffs & last_index stuff * if we messed them up with the prediction */ if (s->ac_pred) restore_ac_coeffs(s, block, dir, scan_table, zigzag_last_index); } } /** * add MPEG-4 stuffing bits (01...1) */ void ff_mpeg4_stuffing(PutBitContext *pbc) { int length; put_bits(pbc, 1, 0); length = (-put_bits_count(pbc)) & 7; if (length) put_bits(pbc, length, (1 << length) - 1); } /* must be called before writing the header */ void ff_set_mpeg4_time(MpegEncContext *s) { if (s->pict_type == AV_PICTURE_TYPE_B) { ff_mpeg4_init_direct_mv(s); } else { s->last_time_base = s->time_base; s->time_base = FFUDIV(s->time, s->avctx->time_base.den); } } static void mpeg4_encode_gop_header(MpegEncContext *s) { int64_t hours, minutes, seconds; int64_t time; put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, GOP_STARTCODE); time = s->current_picture_ptr->f->pts; if (s->reordered_input_picture[1]) time = FFMIN(time, s->reordered_input_picture[1]->f->pts); time = time * s->avctx->time_base.num; s->last_time_base = FFUDIV(time, s->avctx->time_base.den); seconds = FFUDIV(time, s->avctx->time_base.den); minutes = FFUDIV(seconds, 60); seconds = FFUMOD(seconds, 60); hours = FFUDIV(minutes, 60); minutes = FFUMOD(minutes, 60); hours = FFUMOD(hours , 24); put_bits(&s->pb, 5, hours); put_bits(&s->pb, 6, minutes); put_bits(&s->pb, 1, 1); put_bits(&s->pb, 6, seconds); put_bits(&s->pb, 1, !!(s->avctx->flags & AV_CODEC_FLAG_CLOSED_GOP)); put_bits(&s->pb, 1, 0); // broken link == NO ff_mpeg4_stuffing(&s->pb); } static void mpeg4_encode_visual_object_header(MpegEncContext *s) { int profile_and_level_indication; int vo_ver_id; if (s->avctx->profile != FF_PROFILE_UNKNOWN) { profile_and_level_indication = s->avctx->profile << 4; } else if (s->max_b_frames || s->quarter_sample) { profile_and_level_indication = 0xF0; // adv simple } else { profile_and_level_indication = 0x00; // simple } if (s->avctx->level != FF_LEVEL_UNKNOWN) profile_and_level_indication |= s->avctx->level; else profile_and_level_indication |= 1; // level 1 if (profile_and_level_indication >> 4 == 0xF) vo_ver_id = 5; else vo_ver_id = 1; // FIXME levels put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, VOS_STARTCODE); put_bits(&s->pb, 8, profile_and_level_indication); put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, VISUAL_OBJ_STARTCODE); put_bits(&s->pb, 1, 1); put_bits(&s->pb, 4, vo_ver_id); put_bits(&s->pb, 3, 1); // priority put_bits(&s->pb, 4, 1); // visual obj type== video obj put_bits(&s->pb, 1, 0); // video signal type == no clue // FIXME ff_mpeg4_stuffing(&s->pb); } static void mpeg4_encode_vol_header(MpegEncContext *s, int vo_number, int vol_number) { int vo_ver_id; if (s->max_b_frames || s->quarter_sample) { vo_ver_id = 5; s->vo_type = ADV_SIMPLE_VO_TYPE; } else { vo_ver_id = 1; s->vo_type = SIMPLE_VO_TYPE; } put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, 0x100 + vo_number); /* video obj */ put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, 0x120 + vol_number); /* video obj layer */ put_bits(&s->pb, 1, 0); /* random access vol */ put_bits(&s->pb, 8, s->vo_type); /* video obj type indication */ if (s->workaround_bugs & FF_BUG_MS) { put_bits(&s->pb, 1, 0); /* is obj layer id= no */ } else { put_bits(&s->pb, 1, 1); /* is obj layer id= yes */ put_bits(&s->pb, 4, vo_ver_id); /* is obj layer ver id */ put_bits(&s->pb, 3, 1); /* is obj layer priority */ } s->aspect_ratio_info = ff_h263_aspect_to_info(s->avctx->sample_aspect_ratio); put_bits(&s->pb, 4, s->aspect_ratio_info); /* aspect ratio info */ if (s->aspect_ratio_info == FF_ASPECT_EXTENDED) { av_reduce(&s->avctx->sample_aspect_ratio.num, &s->avctx->sample_aspect_ratio.den, s->avctx->sample_aspect_ratio.num, s->avctx->sample_aspect_ratio.den, 255); put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.num); put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.den); } if (s->workaround_bugs & FF_BUG_MS) { put_bits(&s->pb, 1, 0); /* vol control parameters= no @@@ */ } else { put_bits(&s->pb, 1, 1); /* vol control parameters= yes */ put_bits(&s->pb, 2, 1); /* chroma format YUV 420/YV12 */ put_bits(&s->pb, 1, s->low_delay); put_bits(&s->pb, 1, 0); /* vbv parameters= no */ } put_bits(&s->pb, 2, RECT_SHAPE); /* vol shape= rectangle */ put_bits(&s->pb, 1, 1); /* marker bit */ put_bits(&s->pb, 16, s->avctx->time_base.den); if (s->time_increment_bits < 1) s->time_increment_bits = 1; put_bits(&s->pb, 1, 1); /* marker bit */ put_bits(&s->pb, 1, 0); /* fixed vop rate=no */ put_bits(&s->pb, 1, 1); /* marker bit */ put_bits(&s->pb, 13, s->width); /* vol width */ put_bits(&s->pb, 1, 1); /* marker bit */ put_bits(&s->pb, 13, s->height); /* vol height */ put_bits(&s->pb, 1, 1); /* marker bit */ put_bits(&s->pb, 1, s->progressive_sequence ? 0 : 1); put_bits(&s->pb, 1, 1); /* obmc disable */ if (vo_ver_id == 1) put_bits(&s->pb, 1, 0); /* sprite enable */ else put_bits(&s->pb, 2, 0); /* sprite enable */ put_bits(&s->pb, 1, 0); /* not 8 bit == false */ put_bits(&s->pb, 1, s->mpeg_quant); /* quant type = (0 = H.263 style) */ if (s->mpeg_quant) { ff_write_quant_matrix(&s->pb, s->avctx->intra_matrix); ff_write_quant_matrix(&s->pb, s->avctx->inter_matrix); } if (vo_ver_id != 1) put_bits(&s->pb, 1, s->quarter_sample); put_bits(&s->pb, 1, 1); /* complexity estimation disable */ put_bits(&s->pb, 1, s->rtp_mode ? 0 : 1); /* resync marker disable */ put_bits(&s->pb, 1, s->data_partitioning ? 1 : 0); if (s->data_partitioning) put_bits(&s->pb, 1, 0); /* no rvlc */ if (vo_ver_id != 1) { put_bits(&s->pb, 1, 0); /* newpred */ put_bits(&s->pb, 1, 0); /* reduced res vop */ } put_bits(&s->pb, 1, 0); /* scalability */ ff_mpeg4_stuffing(&s->pb); /* user data */ if (!(s->avctx->flags & AV_CODEC_FLAG_BITEXACT)) { put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, 0x1B2); /* user_data */ ff_put_string(&s->pb, LIBAVCODEC_IDENT, 0); } } /* write MPEG-4 VOP header */ int ff_mpeg4_encode_picture_header(MpegEncContext *s, int picture_number) { uint64_t time_incr; int64_t time_div, time_mod; if (s->pict_type == AV_PICTURE_TYPE_I) { if (!(s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER)) { if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT) // HACK, the reference sw is buggy mpeg4_encode_visual_object_header(s); if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT || picture_number == 0) // HACK, the reference sw is buggy mpeg4_encode_vol_header(s, 0, 0); } if (!(s->workaround_bugs & FF_BUG_MS)) mpeg4_encode_gop_header(s); } s->partitioned_frame = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B; put_bits(&s->pb, 16, 0); /* vop header */ put_bits(&s->pb, 16, VOP_STARTCODE); /* vop header */ put_bits(&s->pb, 2, s->pict_type - 1); /* pict type: I = 0 , P = 1 */ time_div = FFUDIV(s->time, s->avctx->time_base.den); time_mod = FFUMOD(s->time, s->avctx->time_base.den); time_incr = time_div - s->last_time_base; // This limits the frame duration to max 1 hour if (time_incr > 3600) { av_log(s->avctx, AV_LOG_ERROR, "time_incr %"PRIu64" too large\n", time_incr); return AVERROR(EINVAL); } while (time_incr--) put_bits(&s->pb, 1, 1); put_bits(&s->pb, 1, 0); put_bits(&s->pb, 1, 1); /* marker */ put_bits(&s->pb, s->time_increment_bits, time_mod); /* time increment */ put_bits(&s->pb, 1, 1); /* marker */ put_bits(&s->pb, 1, 1); /* vop coded */ if (s->pict_type == AV_PICTURE_TYPE_P) { put_bits(&s->pb, 1, s->no_rounding); /* rounding type */ } put_bits(&s->pb, 3, 0); /* intra dc VLC threshold */ if (!s->progressive_sequence) { put_bits(&s->pb, 1, s->current_picture_ptr->f->top_field_first); put_bits(&s->pb, 1, s->alternate_scan); } // FIXME sprite stuff put_bits(&s->pb, 5, s->qscale); if (s->pict_type != AV_PICTURE_TYPE_I) put_bits(&s->pb, 3, s->f_code); /* fcode_for */ if (s->pict_type == AV_PICTURE_TYPE_B) put_bits(&s->pb, 3, s->b_code); /* fcode_back */ return 0; } static av_cold void init_uni_dc_tab(void) { int level, uni_code, uni_len; for (level = -256; level < 256; level++) { int size, v, l; /* find number of bits */ size = 0; v = abs(level); while (v) { v >>= 1; size++; } if (level < 0) l = (-level) ^ ((1 << size) - 1); else l = level; /* luminance */ uni_code = ff_mpeg4_DCtab_lum[size][0]; uni_len = ff_mpeg4_DCtab_lum[size][1]; if (size > 0) { uni_code <<= size; uni_code |= l; uni_len += size; if (size > 8) { uni_code <<= 1; uni_code |= 1; uni_len++; } } uni_DCtab_lum_bits[level + 256] = uni_code; uni_DCtab_lum_len[level + 256] = uni_len; /* chrominance */ uni_code = ff_mpeg4_DCtab_chrom[size][0]; uni_len = ff_mpeg4_DCtab_chrom[size][1]; if (size > 0) { uni_code <<= size; uni_code |= l; uni_len += size; if (size > 8) { uni_code <<= 1; uni_code |= 1; uni_len++; } } uni_DCtab_chrom_bits[level + 256] = uni_code; uni_DCtab_chrom_len[level + 256] = uni_len; } } static av_cold void init_uni_mpeg4_rl_tab(RLTable *rl, uint32_t *bits_tab, uint8_t *len_tab) { int slevel, run, last; av_assert0(MAX_LEVEL >= 64); av_assert0(MAX_RUN >= 63); for (slevel = -64; slevel < 64; slevel++) { if (slevel == 0) continue; for (run = 0; run < 64; run++) { for (last = 0; last <= 1; last++) { const int index = UNI_MPEG4_ENC_INDEX(last, run, slevel + 64); int level = slevel < 0 ? -slevel : slevel; int sign = slevel < 0 ? 1 : 0; int bits, len, code; int level1, run1; len_tab[index] = 100; /* ESC0 */ code = get_rl_index(rl, last, run, level); bits = rl->table_vlc[code][0]; len = rl->table_vlc[code][1]; bits = bits * 2 + sign; len++; if (code != rl->n && len < len_tab[index]) { bits_tab[index] = bits; len_tab[index] = len; } /* ESC1 */ bits = rl->table_vlc[rl->n][0]; len = rl->table_vlc[rl->n][1]; bits = bits * 2; len++; // esc1 level1 = level - rl->max_level[last][run]; if (level1 > 0) { code = get_rl_index(rl, last, run, level1); bits <<= rl->table_vlc[code][1]; len += rl->table_vlc[code][1]; bits += rl->table_vlc[code][0]; bits = bits * 2 + sign; len++; if (code != rl->n && len < len_tab[index]) { bits_tab[index] = bits; len_tab[index] = len; } } /* ESC2 */ bits = rl->table_vlc[rl->n][0]; len = rl->table_vlc[rl->n][1]; bits = bits * 4 + 2; len += 2; // esc2 run1 = run - rl->max_run[last][level] - 1; if (run1 >= 0) { code = get_rl_index(rl, last, run1, level); bits <<= rl->table_vlc[code][1]; len += rl->table_vlc[code][1]; bits += rl->table_vlc[code][0]; bits = bits * 2 + sign; len++; if (code != rl->n && len < len_tab[index]) { bits_tab[index] = bits; len_tab[index] = len; } } /* ESC3 */ bits = rl->table_vlc[rl->n][0]; len = rl->table_vlc[rl->n][1]; bits = bits * 4 + 3; len += 2; // esc3 bits = bits * 2 + last; len++; bits = bits * 64 + run; len += 6; bits = bits * 2 + 1; len++; // marker bits = bits * 4096 + (slevel & 0xfff); len += 12; bits = bits * 2 + 1; len++; // marker if (len < len_tab[index]) { bits_tab[index] = bits; len_tab[index] = len; } } } } } static av_cold int encode_init(AVCodecContext *avctx) { MpegEncContext *s = avctx->priv_data; int ret; static int done = 0; if (avctx->width >= (1<<13) || avctx->height >= (1<<13)) { av_log(avctx, AV_LOG_ERROR, "dimensions too large for MPEG-4\n"); return AVERROR(EINVAL); } if ((ret = ff_mpv_encode_init(avctx)) < 0) return ret; if (!done) { done = 1; init_uni_dc_tab(); ff_rl_init(&ff_mpeg4_rl_intra, ff_mpeg4_static_rl_table_store[0]); init_uni_mpeg4_rl_tab(&ff_mpeg4_rl_intra, uni_mpeg4_intra_rl_bits, uni_mpeg4_intra_rl_len); init_uni_mpeg4_rl_tab(&ff_h263_rl_inter, uni_mpeg4_inter_rl_bits, uni_mpeg4_inter_rl_len); } s->min_qcoeff = -2048; s->max_qcoeff = 2047; s->intra_ac_vlc_length = uni_mpeg4_intra_rl_len; s->intra_ac_vlc_last_length = uni_mpeg4_intra_rl_len + 128 * 64; s->inter_ac_vlc_length = uni_mpeg4_inter_rl_len; s->inter_ac_vlc_last_length = uni_mpeg4_inter_rl_len + 128 * 64; s->luma_dc_vlc_length = uni_DCtab_lum_len; s->ac_esc_length = 7 + 2 + 1 + 6 + 1 + 12 + 1; s->y_dc_scale_table = ff_mpeg4_y_dc_scale_table; s->c_dc_scale_table = ff_mpeg4_c_dc_scale_table; if (s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { s->avctx->extradata = av_malloc(1024); if (!s->avctx->extradata) return AVERROR(ENOMEM); init_put_bits(&s->pb, s->avctx->extradata, 1024); if (!(s->workaround_bugs & FF_BUG_MS)) mpeg4_encode_visual_object_header(s); mpeg4_encode_vol_header(s, 0, 0); // ff_mpeg4_stuffing(&s->pb); ? flush_put_bits(&s->pb); s->avctx->extradata_size = put_bytes_output(&s->pb); } return 0; } void ff_mpeg4_init_partitions(MpegEncContext *s) { uint8_t *start = put_bits_ptr(&s->pb); uint8_t *end = s->pb.buf_end; int size = end - start; int pb_size = (((intptr_t)start + size / 3) & (~3)) - (intptr_t)start; int tex_size = (size - 2 * pb_size) & (~3); set_put_bits_buffer_size(&s->pb, pb_size); init_put_bits(&s->tex_pb, start + pb_size, tex_size); init_put_bits(&s->pb2, start + pb_size + tex_size, pb_size); } void ff_mpeg4_merge_partitions(MpegEncContext *s) { const int pb2_len = put_bits_count(&s->pb2); const int tex_pb_len = put_bits_count(&s->tex_pb); const int bits = put_bits_count(&s->pb); if (s->pict_type == AV_PICTURE_TYPE_I) { put_bits(&s->pb, 19, DC_MARKER); s->misc_bits += 19 + pb2_len + bits - s->last_bits; s->i_tex_bits += tex_pb_len; } else { put_bits(&s->pb, 17, MOTION_MARKER); s->misc_bits += 17 + pb2_len; s->mv_bits += bits - s->last_bits; s->p_tex_bits += tex_pb_len; } flush_put_bits(&s->pb2); flush_put_bits(&s->tex_pb); set_put_bits_buffer_size(&s->pb, s->pb2.buf_end - s->pb.buf); ff_copy_bits(&s->pb, s->pb2.buf, pb2_len); ff_copy_bits(&s->pb, s->tex_pb.buf, tex_pb_len); s->last_bits = put_bits_count(&s->pb); } void ff_mpeg4_encode_video_packet_header(MpegEncContext *s) { int mb_num_bits = av_log2(s->mb_num - 1) + 1; put_bits(&s->pb, ff_mpeg4_get_video_packet_prefix_length(s), 0); put_bits(&s->pb, 1, 1); put_bits(&s->pb, mb_num_bits, s->mb_x + s->mb_y * s->mb_width); put_bits(&s->pb, s->quant_precision, s->qscale); put_bits(&s->pb, 1, 0); /* no HEC */ } #define OFFSET(x) offsetof(MpegEncContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "data_partitioning", "Use data partitioning.", OFFSET(data_partitioning), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, { "alternate_scan", "Enable alternate scantable.", OFFSET(alternate_scan), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, FF_MPV_COMMON_OPTS FF_MPEG4_PROFILE_OPTS { NULL }, }; static const AVClass mpeg4enc_class = { .class_name = "MPEG4 encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_mpeg4_encoder = { .name = "mpeg4", .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 part 2"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_MPEG4, .priv_data_size = sizeof(MpegEncContext), .init = encode_init, .encode2 = ff_mpv_encode_picture, .close = ff_mpv_encode_end, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE }, .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, .priv_class = &mpeg4enc_class, };