/* * HEVC video Decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2012 - 2013 Mickael Raulet * Copyright (C) 2012 - 2013 Gildas Cocherel * Copyright (C) 2012 - 2013 Wassim Hamidouche * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/atomic.h" #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/display.h" #include "libavutil/internal.h" #include "libavutil/md5.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/stereo3d.h" #include "bswapdsp.h" #include "bytestream.h" #include "cabac_functions.h" #include "golomb.h" #include "hevc.h" const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 }; /** * NOTE: Each function hls_foo correspond to the function foo in the * specification (HLS stands for High Level Syntax). */ /** * Section 5.7 */ /* free everything allocated by pic_arrays_init() */ static void pic_arrays_free(HEVCContext *s) { av_freep(&s->sao); av_freep(&s->deblock); av_freep(&s->skip_flag); av_freep(&s->tab_ct_depth); av_freep(&s->tab_ipm); av_freep(&s->cbf_luma); av_freep(&s->is_pcm); av_freep(&s->qp_y_tab); av_freep(&s->tab_slice_address); av_freep(&s->filter_slice_edges); av_freep(&s->horizontal_bs); av_freep(&s->vertical_bs); av_freep(&s->sh.entry_point_offset); av_freep(&s->sh.size); av_freep(&s->sh.offset); av_buffer_pool_uninit(&s->tab_mvf_pool); av_buffer_pool_uninit(&s->rpl_tab_pool); } /* allocate arrays that depend on frame dimensions */ static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps) { int log2_min_cb_size = sps->log2_min_cb_size; int width = sps->width; int height = sps->height; int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * ((height >> log2_min_cb_size) + 1); int ctb_count = sps->ctb_width * sps->ctb_height; int min_pu_size = sps->min_pu_width * sps->min_pu_height; s->bs_width = width >> 3; s->bs_height = height >> 3; s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao)); s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock)); if (!s->sao || !s->deblock) goto fail; s->skip_flag = av_malloc(pic_size_in_ctb); s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width); if (!s->skip_flag || !s->tab_ct_depth) goto fail; s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height); s->tab_ipm = av_mallocz(min_pu_size); s->is_pcm = av_malloc(min_pu_size); if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm) goto fail; s->filter_slice_edges = av_malloc(ctb_count); s->tab_slice_address = av_malloc_array(pic_size_in_ctb, sizeof(*s->tab_slice_address)); s->qp_y_tab = av_malloc_array(pic_size_in_ctb, sizeof(*s->qp_y_tab)); if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address) goto fail; s->horizontal_bs = av_mallocz_array(2 * s->bs_width, (s->bs_height + 1)); s->vertical_bs = av_mallocz_array(2 * s->bs_width, (s->bs_height + 1)); if (!s->horizontal_bs || !s->vertical_bs) goto fail; s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField), av_buffer_allocz); s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab), av_buffer_allocz); if (!s->tab_mvf_pool || !s->rpl_tab_pool) goto fail; return 0; fail: pic_arrays_free(s); return AVERROR(ENOMEM); } static void pred_weight_table(HEVCContext *s, GetBitContext *gb) { int i = 0; int j = 0; uint8_t luma_weight_l0_flag[16]; uint8_t chroma_weight_l0_flag[16]; uint8_t luma_weight_l1_flag[16]; uint8_t chroma_weight_l1_flag[16]; s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb); if (s->sps->chroma_format_idc != 0) { int delta = get_se_golomb(gb); s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7); } for (i = 0; i < s->sh.nb_refs[L0]; i++) { luma_weight_l0_flag[i] = get_bits1(gb); if (!luma_weight_l0_flag[i]) { s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom; s->sh.luma_offset_l0[i] = 0; } } if (s->sps->chroma_format_idc != 0) { for (i = 0; i < s->sh.nb_refs[L0]; i++) chroma_weight_l0_flag[i] = get_bits1(gb); } else { for (i = 0; i < s->sh.nb_refs[L0]; i++) chroma_weight_l0_flag[i] = 0; } for (i = 0; i < s->sh.nb_refs[L0]; i++) { if (luma_weight_l0_flag[i]) { int delta_luma_weight_l0 = get_se_golomb(gb); s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0; s->sh.luma_offset_l0[i] = get_se_golomb(gb); } if (chroma_weight_l0_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l0 = get_se_golomb(gb); int delta_chroma_offset_l0 = get_se_golomb(gb); s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0; s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j]) >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); } } else { s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l0[i][0] = 0; s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l0[i][1] = 0; } } if (s->sh.slice_type == B_SLICE) { for (i = 0; i < s->sh.nb_refs[L1]; i++) { luma_weight_l1_flag[i] = get_bits1(gb); if (!luma_weight_l1_flag[i]) { s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom; s->sh.luma_offset_l1[i] = 0; } } if (s->sps->chroma_format_idc != 0) { for (i = 0; i < s->sh.nb_refs[L1]; i++) chroma_weight_l1_flag[i] = get_bits1(gb); } else { for (i = 0; i < s->sh.nb_refs[L1]; i++) chroma_weight_l1_flag[i] = 0; } for (i = 0; i < s->sh.nb_refs[L1]; i++) { if (luma_weight_l1_flag[i]) { int delta_luma_weight_l1 = get_se_golomb(gb); s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1; s->sh.luma_offset_l1[i] = get_se_golomb(gb); } if (chroma_weight_l1_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l1 = get_se_golomb(gb); int delta_chroma_offset_l1 = get_se_golomb(gb); s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1; s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j]) >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); } } else { s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l1[i][0] = 0; s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l1[i][1] = 0; } } } } static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb) { const HEVCSPS *sps = s->sps; int max_poc_lsb = 1 << sps->log2_max_poc_lsb; int prev_delta_msb = 0; unsigned int nb_sps = 0, nb_sh; int i; rps->nb_refs = 0; if (!sps->long_term_ref_pics_present_flag) return 0; if (sps->num_long_term_ref_pics_sps > 0) nb_sps = get_ue_golomb_long(gb); nb_sh = get_ue_golomb_long(gb); if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc)) return AVERROR_INVALIDDATA; rps->nb_refs = nb_sh + nb_sps; for (i = 0; i < rps->nb_refs; i++) { uint8_t delta_poc_msb_present; if (i < nb_sps) { uint8_t lt_idx_sps = 0; if (sps->num_long_term_ref_pics_sps > 1) lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps]; } else { rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); rps->used[i] = get_bits1(gb); } delta_poc_msb_present = get_bits1(gb); if (delta_poc_msb_present) { int delta = get_ue_golomb_long(gb); if (i && i != nb_sps) delta += prev_delta_msb; rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb; prev_delta_msb = delta; } } return 0; } static int get_buffer_sao(HEVCContext *s, AVFrame *frame, HEVCSPS *sps) { int ret, i; frame->width = s->avctx->width + 2; frame->height = s->avctx->height + 2; if ((ret = ff_get_buffer(s->avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; for (i = 0; frame->data[i]; i++) { int offset = frame->linesize[i] + (1 << sps->pixel_shift); frame->data[i] += offset; } frame->width = s->avctx->width; frame->height = s->avctx->height; return 0; } static int set_sps(HEVCContext *s, const HEVCSPS *sps) { int ret; unsigned int num = 0, den = 0; pic_arrays_free(s); ret = pic_arrays_init(s, sps); if (ret < 0) goto fail; s->avctx->coded_width = sps->width; s->avctx->coded_height = sps->height; s->avctx->width = sps->output_width; s->avctx->height = sps->output_height; s->avctx->pix_fmt = sps->pix_fmt; s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; ff_set_sar(s->avctx, sps->vui.sar); if (sps->vui.video_signal_type_present_flag) s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; else s->avctx->color_range = AVCOL_RANGE_MPEG; if (sps->vui.colour_description_present_flag) { s->avctx->color_primaries = sps->vui.colour_primaries; s->avctx->color_trc = sps->vui.transfer_characteristic; s->avctx->colorspace = sps->vui.matrix_coeffs; } else { s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED; s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED; } ff_hevc_pred_init(&s->hpc, sps->bit_depth); ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); ff_videodsp_init (&s->vdsp, sps->bit_depth); if (sps->sao_enabled) { av_frame_unref(s->tmp_frame); ret = get_buffer_sao(s, s->tmp_frame, sps); s->sao_frame = s->tmp_frame; } s->sps = sps; s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data; if (s->vps->vps_timing_info_present_flag) { num = s->vps->vps_num_units_in_tick; den = s->vps->vps_time_scale; } else if (sps->vui.vui_timing_info_present_flag) { num = sps->vui.vui_num_units_in_tick; den = sps->vui.vui_time_scale; } if (num != 0 && den != 0) av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, num, den, 1 << 30); return 0; fail: pic_arrays_free(s); s->sps = NULL; return ret; } static int is_sps_exist(HEVCContext *s, const HEVCSPS* last_sps) { int i; for( i = 0; i < MAX_SPS_COUNT; i++) if(s->sps_list[i]) if (last_sps == (HEVCSPS*)s->sps_list[i]->data) return 1; return 0; } static int hls_slice_header(HEVCContext *s) { GetBitContext *gb = &s->HEVClc->gb; SliceHeader *sh = &s->sh; int i, j, ret; // Coded parameters sh->first_slice_in_pic_flag = get_bits1(gb); if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) { s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; if (IS_IDR(s)) ff_hevc_clear_refs(s); } sh->no_output_of_prior_pics_flag = 0; if (IS_IRAP(s)) sh->no_output_of_prior_pics_flag = get_bits1(gb); if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1) sh->no_output_of_prior_pics_flag = 1; sh->pps_id = get_ue_golomb_long(gb); if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) { av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); return AVERROR_INVALIDDATA; } if (!sh->first_slice_in_pic_flag && s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) { av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); return AVERROR_INVALIDDATA; } s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data; if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) { const HEVCSPS* last_sps = s->sps; s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data; if (last_sps) { if (is_sps_exist(s, last_sps)) { if (s->sps->width != last_sps->width || s->sps->height != last_sps->height || s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering != last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering) sh->no_output_of_prior_pics_flag = 0; } else sh->no_output_of_prior_pics_flag = 0; } ff_hevc_clear_refs(s); ret = set_sps(s, s->sps); if (ret < 0) return ret; s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; } s->avctx->profile = s->sps->ptl.general_ptl.profile_idc; s->avctx->level = s->sps->ptl.general_ptl.level_idc; sh->dependent_slice_segment_flag = 0; if (!sh->first_slice_in_pic_flag) { int slice_address_length; if (s->pps->dependent_slice_segments_enabled_flag) sh->dependent_slice_segment_flag = get_bits1(gb); slice_address_length = av_ceil_log2(s->sps->ctb_width * s->sps->ctb_height); sh->slice_segment_addr = get_bits(gb, slice_address_length); if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) { av_log(s->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n", sh->slice_segment_addr); return AVERROR_INVALIDDATA; } if (!sh->dependent_slice_segment_flag) { sh->slice_addr = sh->slice_segment_addr; s->slice_idx++; } } else { sh->slice_segment_addr = sh->slice_addr = 0; s->slice_idx = 0; s->slice_initialized = 0; } if (!sh->dependent_slice_segment_flag) { s->slice_initialized = 0; for (i = 0; i < s->pps->num_extra_slice_header_bits; i++) skip_bits(gb, 1); // slice_reserved_undetermined_flag[] sh->slice_type = get_ue_golomb_long(gb); if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE || sh->slice_type == B_SLICE)) { av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", sh->slice_type); return AVERROR_INVALIDDATA; } if (IS_IRAP(s) && sh->slice_type != I_SLICE) { av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); return AVERROR_INVALIDDATA; } // when flag is not present, picture is inferred to be output sh->pic_output_flag = 1; if (s->pps->output_flag_present_flag) sh->pic_output_flag = get_bits1(gb); if (s->sps->separate_colour_plane_flag) sh->colour_plane_id = get_bits(gb, 2); if (!IS_IDR(s)) { int short_term_ref_pic_set_sps_flag, poc; sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb); poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb); if (!sh->first_slice_in_pic_flag && poc != s->poc) { av_log(s->avctx, AV_LOG_WARNING, "Ignoring POC change between slices: %d -> %d\n", s->poc, poc); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; poc = s->poc; } s->poc = poc; short_term_ref_pic_set_sps_flag = get_bits1(gb); if (!short_term_ref_pic_set_sps_flag) { ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1); if (ret < 0) return ret; sh->short_term_rps = &sh->slice_rps; } else { int numbits, rps_idx; if (!s->sps->nb_st_rps) { av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); return AVERROR_INVALIDDATA; } numbits = av_ceil_log2(s->sps->nb_st_rps); rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; sh->short_term_rps = &s->sps->st_rps[rps_idx]; } ret = decode_lt_rps(s, &sh->long_term_rps, gb); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; } if (s->sps->sps_temporal_mvp_enabled_flag) sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); else sh->slice_temporal_mvp_enabled_flag = 0; } else { s->sh.short_term_rps = NULL; s->poc = 0; } /* 8.3.1 */ if (s->temporal_id == 0 && s->nal_unit_type != NAL_TRAIL_N && s->nal_unit_type != NAL_TSA_N && s->nal_unit_type != NAL_STSA_N && s->nal_unit_type != NAL_RADL_N && s->nal_unit_type != NAL_RADL_R && s->nal_unit_type != NAL_RASL_N && s->nal_unit_type != NAL_RASL_R) s->pocTid0 = s->poc; if (s->sps->sao_enabled) { sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); sh->slice_sample_adaptive_offset_flag[1] = sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); } else { sh->slice_sample_adaptive_offset_flag[0] = 0; sh->slice_sample_adaptive_offset_flag[1] = 0; sh->slice_sample_adaptive_offset_flag[2] = 0; } sh->nb_refs[L0] = sh->nb_refs[L1] = 0; if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) { int nb_refs; sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active; if (sh->slice_type == B_SLICE) sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active; if (get_bits1(gb)) { // num_ref_idx_active_override_flag sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1; if (sh->slice_type == B_SLICE) sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1; } if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) { av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", sh->nb_refs[L0], sh->nb_refs[L1]); return AVERROR_INVALIDDATA; } sh->rpl_modification_flag[0] = 0; sh->rpl_modification_flag[1] = 0; nb_refs = ff_hevc_frame_nb_refs(s); if (!nb_refs) { av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); return AVERROR_INVALIDDATA; } if (s->pps->lists_modification_present_flag && nb_refs > 1) { sh->rpl_modification_flag[0] = get_bits1(gb); if (sh->rpl_modification_flag[0]) { for (i = 0; i < sh->nb_refs[L0]; i++) sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); } if (sh->slice_type == B_SLICE) { sh->rpl_modification_flag[1] = get_bits1(gb); if (sh->rpl_modification_flag[1] == 1) for (i = 0; i < sh->nb_refs[L1]; i++) sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); } } if (sh->slice_type == B_SLICE) sh->mvd_l1_zero_flag = get_bits1(gb); if (s->pps->cabac_init_present_flag) sh->cabac_init_flag = get_bits1(gb); else sh->cabac_init_flag = 0; sh->collocated_ref_idx = 0; if (sh->slice_temporal_mvp_enabled_flag) { sh->collocated_list = L0; if (sh->slice_type == B_SLICE) sh->collocated_list = !get_bits1(gb); if (sh->nb_refs[sh->collocated_list] > 1) { sh->collocated_ref_idx = get_ue_golomb_long(gb); if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { av_log(s->avctx, AV_LOG_ERROR, "Invalid collocated_ref_idx: %d.\n", sh->collocated_ref_idx); return AVERROR_INVALIDDATA; } } } if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) || (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) { pred_weight_table(s, gb); } sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { av_log(s->avctx, AV_LOG_ERROR, "Invalid number of merging MVP candidates: %d.\n", sh->max_num_merge_cand); return AVERROR_INVALIDDATA; } } sh->slice_qp_delta = get_se_golomb(gb); if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) { sh->slice_cb_qp_offset = get_se_golomb(gb); sh->slice_cr_qp_offset = get_se_golomb(gb); } else { sh->slice_cb_qp_offset = 0; sh->slice_cr_qp_offset = 0; } if (s->pps->chroma_qp_offset_list_enabled_flag) sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb); else sh->cu_chroma_qp_offset_enabled_flag = 0; if (s->pps->deblocking_filter_control_present_flag) { int deblocking_filter_override_flag = 0; if (s->pps->deblocking_filter_override_enabled_flag) deblocking_filter_override_flag = get_bits1(gb); if (deblocking_filter_override_flag) { sh->disable_deblocking_filter_flag = get_bits1(gb); if (!sh->disable_deblocking_filter_flag) { sh->beta_offset = get_se_golomb(gb) * 2; sh->tc_offset = get_se_golomb(gb) * 2; } } else { sh->disable_deblocking_filter_flag = s->pps->disable_dbf; sh->beta_offset = s->pps->beta_offset; sh->tc_offset = s->pps->tc_offset; } } else { sh->disable_deblocking_filter_flag = 0; sh->beta_offset = 0; sh->tc_offset = 0; } if (s->pps->seq_loop_filter_across_slices_enabled_flag && (sh->slice_sample_adaptive_offset_flag[0] || sh->slice_sample_adaptive_offset_flag[1] || !sh->disable_deblocking_filter_flag)) { sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); } else { sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag; } } else if (!s->slice_initialized) { av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); return AVERROR_INVALIDDATA; } sh->num_entry_point_offsets = 0; if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) { sh->num_entry_point_offsets = get_ue_golomb_long(gb); if (sh->num_entry_point_offsets > 0) { int offset_len = get_ue_golomb_long(gb) + 1; int segments = offset_len >> 4; int rest = (offset_len & 15); av_freep(&sh->entry_point_offset); av_freep(&sh->offset); av_freep(&sh->size); sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int)); sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int)); sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int)); if (!sh->entry_point_offset || !sh->offset || !sh->size) { sh->num_entry_point_offsets = 0; av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n"); return AVERROR(ENOMEM); } for (i = 0; i < sh->num_entry_point_offsets; i++) { int val = 0; for (j = 0; j < segments; j++) { val <<= 16; val += get_bits(gb, 16); } if (rest) { val <<= rest; val += get_bits(gb, rest); } sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size } if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) { s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here s->threads_number = 1; } else s->enable_parallel_tiles = 0; } else s->enable_parallel_tiles = 0; } if (s->pps->slice_header_extension_present_flag) { unsigned int length = get_ue_golomb_long(gb); if (length*8LL > get_bits_left(gb)) { av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < length; i++) skip_bits(gb, 8); // slice_header_extension_data_byte } // Inferred parameters sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta; if (sh->slice_qp > 51 || sh->slice_qp < -s->sps->qp_bd_offset) { av_log(s->avctx, AV_LOG_ERROR, "The slice_qp %d is outside the valid range " "[%d, 51].\n", sh->slice_qp, -s->sps->qp_bd_offset); return AVERROR_INVALIDDATA; } sh->slice_ctb_addr_rs = sh->slice_segment_addr; if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) { av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); return AVERROR_INVALIDDATA; } s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag; if (!s->pps->cu_qp_delta_enabled_flag) s->HEVClc->qp_y = s->sh.slice_qp; s->slice_initialized = 1; s->HEVClc->tu.cu_qp_offset_cb = 0; s->HEVClc->tu.cu_qp_offset_cr = 0; return 0; } #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)]) #define SET_SAO(elem, value) \ do { \ if (!sao_merge_up_flag && !sao_merge_left_flag) \ sao->elem = value; \ else if (sao_merge_left_flag) \ sao->elem = CTB(s->sao, rx-1, ry).elem; \ else if (sao_merge_up_flag) \ sao->elem = CTB(s->sao, rx, ry-1).elem; \ else \ sao->elem = 0; \ } while (0) static void hls_sao_param(HEVCContext *s, int rx, int ry) { HEVCLocalContext *lc = s->HEVClc; int sao_merge_left_flag = 0; int sao_merge_up_flag = 0; SAOParams *sao = &CTB(s->sao, rx, ry); int c_idx, i; if (s->sh.slice_sample_adaptive_offset_flag[0] || s->sh.slice_sample_adaptive_offset_flag[1]) { if (rx > 0) { if (lc->ctb_left_flag) sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s); } if (ry > 0 && !sao_merge_left_flag) { if (lc->ctb_up_flag) sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s); } } for (c_idx = 0; c_idx < 3; c_idx++) { int log2_sao_offset_scale = c_idx == 0 ? s->pps->log2_sao_offset_scale_luma : s->pps->log2_sao_offset_scale_chroma; if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { sao->type_idx[c_idx] = SAO_NOT_APPLIED; continue; } if (c_idx == 2) { sao->type_idx[2] = sao->type_idx[1]; sao->eo_class[2] = sao->eo_class[1]; } else { SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s)); } if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) continue; for (i = 0; i < 4; i++) SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s)); if (sao->type_idx[c_idx] == SAO_BAND) { for (i = 0; i < 4; i++) { if (sao->offset_abs[c_idx][i]) { SET_SAO(offset_sign[c_idx][i], ff_hevc_sao_offset_sign_decode(s)); } else { sao->offset_sign[c_idx][i] = 0; } } SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s)); } else if (c_idx != 2) { SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s)); } // Inferred parameters sao->offset_val[c_idx][0] = 0; for (i = 0; i < 4; i++) { sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i]; if (sao->type_idx[c_idx] == SAO_EDGE) { if (i > 1) sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } else if (sao->offset_sign[c_idx][i]) { sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } sao->offset_val[c_idx][i + 1] <<= log2_sao_offset_scale; } } } #undef SET_SAO #undef CTB static int hls_cross_component_pred(HEVCContext *s, int idx) { HEVCLocalContext *lc = s->HEVClc; int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx); if (log2_res_scale_abs_plus1 != 0) { int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx); lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) * (1 - 2 * res_scale_sign_flag); } else { lc->tu.res_scale_val = 0; } return 0; } static int hls_transform_unit(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx) { HEVCLocalContext *lc = s->HEVClc; const int log2_trafo_size_c = log2_trafo_size - s->sps->hshift[1]; int i; if (lc->cu.pred_mode == MODE_INTRA) { int trafo_size = 1 << log2_trafo_size; ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0); } if (lc->tt.cbf_luma || SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) || (s->sps->chroma_format_idc == 2 && (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << log2_trafo_size_c)) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << log2_trafo_size_c))))) { int scan_idx = SCAN_DIAG; int scan_idx_c = SCAN_DIAG; int cbf_luma = lc->tt.cbf_luma; int cbf_chroma = SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) || (s->sps->chroma_format_idc == 2 && (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << log2_trafo_size_c)) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << log2_trafo_size_c)))); if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s); if (lc->tu.cu_qp_delta != 0) if (ff_hevc_cu_qp_delta_sign_flag(s) == 1) lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; lc->tu.is_cu_qp_delta_coded = 1; if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) || lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) { av_log(s->avctx, AV_LOG_ERROR, "The cu_qp_delta %d is outside the valid range " "[%d, %d].\n", lc->tu.cu_qp_delta, -(26 + s->sps->qp_bd_offset / 2), (25 + s->sps->qp_bd_offset / 2)); return AVERROR_INVALIDDATA; } ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size); } if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma && !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) { int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s); if (cu_chroma_qp_offset_flag) { int cu_chroma_qp_offset_idx = 0; if (s->pps->chroma_qp_offset_list_len_minus1 > 0) { cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s); av_log(s->avctx, AV_LOG_ERROR, "cu_chroma_qp_offset_idx not yet tested.\n"); } lc->tu.cu_qp_offset_cb = s->pps->cb_qp_offset_list[cu_chroma_qp_offset_idx]; lc->tu.cu_qp_offset_cr = s->pps->cr_qp_offset_list[cu_chroma_qp_offset_idx]; } else { lc->tu.cu_qp_offset_cb = 0; lc->tu.cu_qp_offset_cr = 0; } lc->tu.is_cu_chroma_qp_offset_coded = 1; } if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { if (lc->tu.intra_pred_mode >= 6 && lc->tu.intra_pred_mode <= 14) { scan_idx = SCAN_VERT; } else if (lc->tu.intra_pred_mode >= 22 && lc->tu.intra_pred_mode <= 30) { scan_idx = SCAN_HORIZ; } if (lc->tu.intra_pred_mode_c >= 6 && lc->tu.intra_pred_mode_c <= 14) { scan_idx_c = SCAN_VERT; } else if (lc->tu.intra_pred_mode_c >= 22 && lc->tu.intra_pred_mode_c <= 30) { scan_idx_c = SCAN_HORIZ; } } lc->tu.cross_pf = 0; if (cbf_luma) ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0); if (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3) { int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]); int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]); lc->tu.cross_pf = (s->pps->cross_component_prediction_enabled_flag && cbf_luma && (lc->cu.pred_mode == MODE_INTER || (lc->tu.chroma_mode_c == 4))); if (lc->tu.cross_pf) { hls_cross_component_pred(s, 0); } for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1); } if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (i << log2_trafo_size_c))) ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c), log2_trafo_size_c, scan_idx_c, 1); else if (lc->tu.cross_pf) { ptrdiff_t stride = s->frame->linesize[1]; int hshift = s->sps->hshift[1]; int vshift = s->sps->vshift[1]; int16_t *coeffs_y = lc->tu.coeffs[0]; int16_t *coeffs = lc->tu.coeffs[1]; int size = 1 << log2_trafo_size_c; uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride + ((x0 >> hshift) << s->sps->pixel_shift)]; for (i = 0; i < (size * size); i++) { coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); } s->hevcdsp.transform_add[log2_trafo_size-2](dst, coeffs, stride); } } if (lc->tu.cross_pf) { hls_cross_component_pred(s, 1); } for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2); } if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (i << log2_trafo_size_c))) ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c), log2_trafo_size_c, scan_idx_c, 2); else if (lc->tu.cross_pf) { ptrdiff_t stride = s->frame->linesize[2]; int hshift = s->sps->hshift[2]; int vshift = s->sps->vshift[2]; int16_t *coeffs_y = lc->tu.coeffs[0]; int16_t *coeffs = lc->tu.coeffs[1]; int size = 1 << log2_trafo_size_c; uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride + ((x0 >> hshift) << s->sps->pixel_shift)]; for (i = 0; i < (size * size); i++) { coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); } s->hevcdsp.transform_add[log2_trafo_size-2](dst, coeffs, stride); } } } else if (blk_idx == 3) { int trafo_size_h = 1 << (log2_trafo_size + 1); int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]); for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1); } if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase + (i << log2_trafo_size_c))) ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size), log2_trafo_size, scan_idx_c, 1); } for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2); } if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase + (i << log2_trafo_size_c))) ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size), log2_trafo_size, scan_idx_c, 2); } } } else if (lc->cu.pred_mode == MODE_INTRA) { if (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3) { int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]); int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]); ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2); if (s->sps->chroma_format_idc == 2) { ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1); s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2); } } else if (blk_idx == 3) { int trafo_size_h = 1 << (log2_trafo_size + 1); int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]); ff_hevc_set_neighbour_available(s, xBase, yBase, trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2); if (s->sps->chroma_format_idc == 2) { ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)), trafo_size_h, trafo_size_v); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2); } } } return 0; } static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; int log2_min_pu_size = s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; int x_end = FFMIN(x0 + cb_size, s->sps->width); int y_end = FFMIN(y0 + cb_size, s->sps->height); int i, j; for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) s->is_pcm[i + j * min_pu_width] = 2; } static int hls_transform_tree(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx) { HEVCLocalContext *lc = s->HEVClc; uint8_t split_transform_flag; int ret; if (trafo_depth > 0 && log2_trafo_size == 2) { SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase); SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase); if (s->sps->chroma_format_idc == 2) { int xBase_cb = xBase & ((1 << log2_trafo_size) - 1); int yBase_cb = yBase & ((1 << log2_trafo_size) - 1); SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = SAMPLE_CBF2(lc->tt.cbf_cb[trafo_depth - 1], xBase_cb, yBase_cb + (1 << (log2_trafo_size))); SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = SAMPLE_CBF2(lc->tt.cbf_cr[trafo_depth - 1], xBase_cb, yBase_cb + (1 << (log2_trafo_size))); } } else { SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0; if (s->sps->chroma_format_idc == 2) { SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = 0; } } if (lc->cu.intra_split_flag) { if (trafo_depth == 1) { lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; if (s->sps->chroma_format_idc == 3) { lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx]; } else { lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; } } } else { lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0]; lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; } lc->tt.cbf_luma = 1; lc->tt.inter_split_flag = s->sps->max_transform_hierarchy_depth_inter == 0 && lc->cu.pred_mode == MODE_INTER && lc->cu.part_mode != PART_2Nx2N && trafo_depth == 0; if (log2_trafo_size <= s->sps->log2_max_trafo_size && log2_trafo_size > s->sps->log2_min_tb_size && trafo_depth < lc->cu.max_trafo_depth && !(lc->cu.intra_split_flag && trafo_depth == 0)) { split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size); } else { split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size || (lc->cu.intra_split_flag && trafo_depth == 0) || lc->tt.inter_split_flag; } if (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3) { if (trafo_depth == 0 || SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) { SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); } } if (trafo_depth == 0 || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) { SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); } } } if (split_transform_flag) { int x1 = x0 + ((1 << log2_trafo_size) >> 1); int y1 = y0 + ((1 << log2_trafo_size) >> 1); ret = hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size - 1, trafo_depth + 1, 0); if (ret < 0) return ret; ret = hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size - 1, trafo_depth + 1, 1); if (ret < 0) return ret; ret = hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size - 1, trafo_depth + 1, 2); if (ret < 0) return ret; ret = hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size - 1, trafo_depth + 1, 3); if (ret < 0) return ret; } else { int min_tu_size = 1 << s->sps->log2_min_tb_size; int log2_min_tu_size = s->sps->log2_min_tb_size; int min_tu_width = s->sps->min_tb_width; if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) || (s->sps->chroma_format_idc == 2 && (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1))) || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0 + (1 << (log2_trafo_size - 1)))))) { lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth); } ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size, trafo_depth, blk_idx); if (ret < 0) return ret; // TODO: store cbf_luma somewhere else if (lc->tt.cbf_luma) { int i, j; for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { int x_tu = (x0 + j) >> log2_min_tu_size; int y_tu = (y0 + i) >> log2_min_tu_size; s->cbf_luma[y_tu * min_tu_width + x_tu] = 1; } } if (!s->sh.disable_deblocking_filter_flag) { ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size); if (s->pps->transquant_bypass_enable_flag && lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, x0, y0, log2_trafo_size); } } return 0; } static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size) { //TODO: non-4:2:0 support HEVCLocalContext *lc = s->HEVClc; GetBitContext gb; int cb_size = 1 << log2_cb_size; int stride0 = s->frame->linesize[0]; uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)]; int stride1 = s->frame->linesize[1]; uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)]; int stride2 = s->frame->linesize[2]; uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)]; int length = cb_size * cb_size * s->sps->pcm.bit_depth + (((cb_size >> s->sps->hshift[1]) * (cb_size >> s->sps->vshift[1])) + ((cb_size >> s->sps->hshift[2]) * (cb_size >> s->sps->vshift[2]))) * s->sps->pcm.bit_depth_chroma; const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3); int ret; if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); ret = init_get_bits(&gb, pcm, length); if (ret < 0) return ret; s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->sps->pcm.bit_depth); s->hevcdsp.put_pcm(dst1, stride1, cb_size >> s->sps->hshift[1], cb_size >> s->sps->vshift[1], &gb, s->sps->pcm.bit_depth_chroma); s->hevcdsp.put_pcm(dst2, stride2, cb_size >> s->sps->hshift[2], cb_size >> s->sps->vshift[2], &gb, s->sps->pcm.bit_depth_chroma); return 0; } /** * 8.5.3.2.2.1 Luma sample unidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param luma_weight weighting factor applied to the luma prediction * @param luma_offset additive offset applied to the luma prediction value */ static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h, int luma_weight, int luma_offset) { HEVCLocalContext *lc = s->HEVClc; uint8_t *src = ref->data[0]; ptrdiff_t srcstride = ref->linesize[0]; int pic_width = s->sps->width; int pic_height = s->sps->height; int mx = mv->x & 3; int my = mv->y & 3; int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); int idx = ff_hevc_pel_weight[block_w]; x_off += mv->x >> 2; y_off += mv->y >> 2; src += y_off * srcstride + (x_off << s->sps->pixel_shift); if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER || x_off >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, edge_emu_stride, srcstride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE, pic_width, pic_height); src = lc->edge_emu_buffer + buf_offset; srcstride = edge_emu_stride; } if (!weight_flag) s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride, block_h, mx, my, block_w); else s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride, block_h, s->sh.luma_log2_weight_denom, luma_weight, luma_offset, mx, my, block_w); } /** * 8.5.3.2.2.1 Luma sample bidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref0 reference picture0 buffer at origin (0, 0) * @param mv0 motion vector0 (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param ref1 reference picture1 buffer at origin (0, 0) * @param mv1 motion vector1 (relative to block position) to get pixel data from * @param current_mv current motion vector structure */ static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, AVFrame *ref0, const Mv *mv0, int x_off, int y_off, int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv) { HEVCLocalContext *lc = s->HEVClc; DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]); ptrdiff_t src0stride = ref0->linesize[0]; ptrdiff_t src1stride = ref1->linesize[0]; int pic_width = s->sps->width; int pic_height = s->sps->height; int mx0 = mv0->x & 3; int my0 = mv0->y & 3; int mx1 = mv1->x & 3; int my1 = mv1->y & 3; int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); int x_off0 = x_off + (mv0->x >> 2); int y_off0 = y_off + (mv0->y >> 2); int x_off1 = x_off + (mv1->x >> 2); int y_off1 = y_off + (mv1->y >> 2); int idx = ff_hevc_pel_weight[block_w]; uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->sps->pixel_shift); uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->sps->pixel_shift); if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER || x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset, edge_emu_stride, src0stride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE, pic_width, pic_height); src0 = lc->edge_emu_buffer + buf_offset; src0stride = edge_emu_stride; } if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER || x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset, edge_emu_stride, src1stride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE, pic_width, pic_height); src1 = lc->edge_emu_buffer2 + buf_offset; src1stride = edge_emu_stride; } s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](tmp, MAX_PB_SIZE, src0, src0stride, block_h, mx0, my0, block_w); if (!weight_flag) s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE, block_h, mx1, my1, block_w); else s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE, block_h, s->sh.luma_log2_weight_denom, s->sh.luma_weight_l0[current_mv->ref_idx[0]], s->sh.luma_weight_l1[current_mv->ref_idx[1]], s->sh.luma_offset_l0[current_mv->ref_idx[0]], s->sh.luma_offset_l1[current_mv->ref_idx[1]], mx1, my1, block_w); } /** * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process * * @param s HEVC decoding context * @param dst1 target buffer for block data at block position (U plane) * @param dst2 target buffer for block data at block position (V plane) * @param dststride stride of the dst1 and dst2 buffers * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param chroma_weight weighting factor applied to the chroma prediction * @param chroma_offset additive offset applied to the chroma prediction value */ static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist, int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset) { HEVCLocalContext *lc = s->HEVClc; int pic_width = s->sps->width >> s->sps->hshift[1]; int pic_height = s->sps->height >> s->sps->vshift[1]; const Mv *mv = ¤t_mv->mv[reflist]; int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); int idx = ff_hevc_pel_weight[block_w]; int hshift = s->sps->hshift[1]; int vshift = s->sps->vshift[1]; intptr_t mx = mv->x & ((1 << (2 + hshift)) - 1); intptr_t my = mv->y & ((1 << (2 + vshift)) - 1); intptr_t _mx = mx << (1 - hshift); intptr_t _my = my << (1 - vshift); x_off += mv->x >> (2 + hshift); y_off += mv->y >> (2 + vshift); src0 += y_off * srcstride + (x_off << s->sps->pixel_shift); if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift)); int buf_offset0 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << s->sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0, edge_emu_stride, srcstride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE, pic_width, pic_height); src0 = lc->edge_emu_buffer + buf_offset0; srcstride = edge_emu_stride; } if (!weight_flag) s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride, block_h, _mx, _my, block_w); else s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride, block_h, s->sh.chroma_log2_weight_denom, chroma_weight, chroma_offset, _mx, _my, block_w); } /** * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref0 reference picture0 buffer at origin (0, 0) * @param mv0 motion vector0 (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param ref1 reference picture1 buffer at origin (0, 0) * @param mv1 motion vector1 (relative to block position) to get pixel data from * @param current_mv current motion vector structure * @param cidx chroma component(cb, cr) */ static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1, int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx) { DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]); int tmpstride = MAX_PB_SIZE; HEVCLocalContext *lc = s->HEVClc; uint8_t *src1 = ref0->data[cidx+1]; uint8_t *src2 = ref1->data[cidx+1]; ptrdiff_t src1stride = ref0->linesize[cidx+1]; ptrdiff_t src2stride = ref1->linesize[cidx+1]; int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); int pic_width = s->sps->width >> s->sps->hshift[1]; int pic_height = s->sps->height >> s->sps->vshift[1]; Mv *mv0 = ¤t_mv->mv[0]; Mv *mv1 = ¤t_mv->mv[1]; int hshift = s->sps->hshift[1]; int vshift = s->sps->vshift[1]; intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1); intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1); intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1); intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1); intptr_t _mx0 = mx0 << (1 - hshift); intptr_t _my0 = my0 << (1 - vshift); intptr_t _mx1 = mx1 << (1 - hshift); intptr_t _my1 = my1 << (1 - vshift); int x_off0 = x_off + (mv0->x >> (2 + hshift)); int y_off0 = y_off + (mv0->y >> (2 + vshift)); int x_off1 = x_off + (mv1->x >> (2 + hshift)); int y_off1 = y_off + (mv1->y >> (2 + vshift)); int idx = ff_hevc_pel_weight[block_w]; src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->sps->pixel_shift); src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->sps->pixel_shift); if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER || x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift)); int buf_offset1 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << s->sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, edge_emu_stride, src1stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off0 - EPEL_EXTRA_BEFORE, y_off0 - EPEL_EXTRA_BEFORE, pic_width, pic_height); src1 = lc->edge_emu_buffer + buf_offset1; src1stride = edge_emu_stride; } if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER || x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift)); int buf_offset1 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << s->sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1, edge_emu_stride, src2stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off1 - EPEL_EXTRA_BEFORE, y_off1 - EPEL_EXTRA_BEFORE, pic_width, pic_height); src2 = lc->edge_emu_buffer2 + buf_offset1; src2stride = edge_emu_stride; } s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](tmp, tmpstride, src1, src1stride, block_h, _mx0, _my0, block_w); if (!weight_flag) s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], src2, src2stride, tmp, tmpstride, block_h, _mx1, _my1, block_w); else s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], src2, src2stride, tmp, tmpstride, block_h, s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx], s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx], s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx], s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx], _mx1, _my1, block_w); } static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, const Mv *mv, int y0, int height) { int y = (mv->y >> 2) + y0 + height + 9; if (s->threads_type == FF_THREAD_FRAME ) ff_thread_await_progress(&ref->tf, y, 0); } static void hls_prediction_unit(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx, int idx) { #define POS(c_idx, x, y) \ &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \ (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)] HEVCLocalContext *lc = s->HEVClc; int merge_idx = 0; struct MvField current_mv = {{{ 0 }}}; int min_pu_width = s->sps->min_pu_width; MvField *tab_mvf = s->ref->tab_mvf; RefPicList *refPicList = s->ref->refPicList; HEVCFrame *ref0, *ref1; uint8_t *dst0 = POS(0, x0, y0); uint8_t *dst1 = POS(1, x0, y0); uint8_t *dst2 = POS(2, x0, y0); int log2_min_cb_size = s->sps->log2_min_cb_size; int min_cb_width = s->sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int ref_idx[2]; int mvp_flag[2]; int x_pu, y_pu; int i, j; if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { if (s->sh.max_num_merge_cand > 1) merge_idx = ff_hevc_merge_idx_decode(s); else merge_idx = 0; ff_hevc_luma_mv_merge_mode(s, x0, y0, 1 << log2_cb_size, 1 << log2_cb_size, log2_cb_size, partIdx, merge_idx, ¤t_mv); x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } else { /* MODE_INTER */ lc->pu.merge_flag = ff_hevc_merge_flag_decode(s); if (lc->pu.merge_flag) { if (s->sh.max_num_merge_cand > 1) merge_idx = ff_hevc_merge_idx_decode(s); else merge_idx = 0; ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv); x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } else { enum InterPredIdc inter_pred_idc = PRED_L0; ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); current_mv.pred_flag = 0; if (s->sh.slice_type == B_SLICE) inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH); if (inter_pred_idc != PRED_L1) { if (s->sh.nb_refs[L0]) { ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]); current_mv.ref_idx[0] = ref_idx[0]; } current_mv.pred_flag = PF_L0; ff_hevc_hls_mvd_coding(s, x0, y0, 0); mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s); ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv, mvp_flag[0], 0); current_mv.mv[0].x += lc->pu.mvd.x; current_mv.mv[0].y += lc->pu.mvd.y; } if (inter_pred_idc != PRED_L0) { if (s->sh.nb_refs[L1]) { ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]); current_mv.ref_idx[1] = ref_idx[1]; } if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { AV_ZERO32(&lc->pu.mvd); } else { ff_hevc_hls_mvd_coding(s, x0, y0, 1); } current_mv.pred_flag += PF_L1; mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s); ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv, mvp_flag[1], 1); current_mv.mv[1].x += lc->pu.mvd.x; current_mv.mv[1].y += lc->pu.mvd.y; } x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } } if (current_mv.pred_flag & PF_L0) { ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; if (!ref0) return; hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); } if (current_mv.pred_flag & PF_L1) { ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; if (!ref1) return; hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); } if (current_mv.pred_flag == PF_L0) { int x0_c = x0 >> s->sps->hshift[1]; int y0_c = y0 >> s->sps->vshift[1]; int nPbW_c = nPbW >> s->sps->hshift[1]; int nPbH_c = nPbH >> s->sps->vshift[1]; luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame, ¤t_mv.mv[0], x0, y0, nPbW, nPbH, s->sh.luma_weight_l0[current_mv.ref_idx[0]], s->sh.luma_offset_l0[current_mv.ref_idx[0]]); chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1], 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]); chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2], 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]); } else if (current_mv.pred_flag == PF_L1) { int x0_c = x0 >> s->sps->hshift[1]; int y0_c = y0 >> s->sps->vshift[1]; int nPbW_c = nPbW >> s->sps->hshift[1]; int nPbH_c = nPbH >> s->sps->vshift[1]; luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame, ¤t_mv.mv[1], x0, y0, nPbW, nPbH, s->sh.luma_weight_l1[current_mv.ref_idx[1]], s->sh.luma_offset_l1[current_mv.ref_idx[1]]); chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1], 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]); chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2], 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]); } else if (current_mv.pred_flag == PF_BI) { int x0_c = x0 >> s->sps->hshift[1]; int y0_c = y0 >> s->sps->vshift[1]; int nPbW_c = nPbW >> s->sps->hshift[1]; int nPbH_c = nPbH >> s->sps->vshift[1]; luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame, ¤t_mv.mv[0], x0, y0, nPbW, nPbH, ref1->frame, ¤t_mv.mv[1], ¤t_mv); chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0); chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1); } } /** * 8.4.1 */ static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag) { HEVCLocalContext *lc = s->HEVClc; int x_pu = x0 >> s->sps->log2_min_pu_size; int y_pu = y0 >> s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; int size_in_pus = pu_size >> s->sps->log2_min_pu_size; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); int cand_up = (lc->ctb_up_flag || y0b) ? s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; int cand_left = (lc->ctb_left_flag || x0b) ? s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size); MvField *tab_mvf = s->ref->tab_mvf; int intra_pred_mode; int candidate[3]; int i, j; // intra_pred_mode prediction does not cross vertical CTB boundaries if ((y0 - 1) < y_ctb) cand_up = INTRA_DC; if (cand_left == cand_up) { if (cand_left < 2) { candidate[0] = INTRA_PLANAR; candidate[1] = INTRA_DC; candidate[2] = INTRA_ANGULAR_26; } else { candidate[0] = cand_left; candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); candidate[2] = 2 + ((cand_left - 2 + 1) & 31); } } else { candidate[0] = cand_left; candidate[1] = cand_up; if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { candidate[2] = INTRA_PLANAR; } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { candidate[2] = INTRA_DC; } else { candidate[2] = INTRA_ANGULAR_26; } } if (prev_intra_luma_pred_flag) { intra_pred_mode = candidate[lc->pu.mpm_idx]; } else { if (candidate[0] > candidate[1]) FFSWAP(uint8_t, candidate[0], candidate[1]); if (candidate[0] > candidate[2]) FFSWAP(uint8_t, candidate[0], candidate[2]); if (candidate[1] > candidate[2]) FFSWAP(uint8_t, candidate[1], candidate[2]); intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; for (i = 0; i < 3; i++) if (intra_pred_mode >= candidate[i]) intra_pred_mode++; } /* write the intra prediction units into the mv array */ if (!size_in_pus) size_in_pus = 1; for (i = 0; i < size_in_pus; i++) { memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu], intra_pred_mode, size_in_pus); for (j = 0; j < size_in_pus; j++) { tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA; } } return intra_pred_mode; } static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, int log2_cb_size, int ct_depth) { int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size; int x_cb = x0 >> s->sps->log2_min_cb_size; int y_cb = y0 >> s->sps->log2_min_cb_size; int y; for (y = 0; y < length; y++) memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb], ct_depth, length); } static const uint8_t tab_mode_idx[] = { 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31}; static void intra_prediction_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) { HEVCLocalContext *lc = s->HEVClc; static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; uint8_t prev_intra_luma_pred_flag[4]; int split = lc->cu.part_mode == PART_NxN; int pb_size = (1 << log2_cb_size) >> split; int side = split + 1; int chroma_mode; int i, j; for (i = 0; i < side; i++) for (j = 0; j < side; j++) prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s); for (i = 0; i < side; i++) { for (j = 0; j < side; j++) { if (prev_intra_luma_pred_flag[2 * i + j]) lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s); else lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s); lc->pu.intra_pred_mode[2 * i + j] = luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size, prev_intra_luma_pred_flag[2 * i + j]); } } if (s->sps->chroma_format_idc == 3) { for (i = 0; i < side; i++) { for (j = 0; j < side; j++) { lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode]) lc->pu.intra_pred_mode_c[2 * i + j] = 34; else lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode]; } else { lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j]; } } } } else if (s->sps->chroma_format_idc == 2) { int mode_idx; lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) mode_idx = 34; else mode_idx = intra_chroma_table[chroma_mode]; } else { mode_idx = lc->pu.intra_pred_mode[0]; } lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx]; } else if (s->sps->chroma_format_idc != 0) { chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) lc->pu.intra_pred_mode_c[0] = 34; else lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode]; } else { lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0]; } } } static void intra_prediction_unit_default_value(HEVCContext *s, int x0, int y0, int log2_cb_size) { HEVCLocalContext *lc = s->HEVClc; int pb_size = 1 << log2_cb_size; int size_in_pus = pb_size >> s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; MvField *tab_mvf = s->ref->tab_mvf; int x_pu = x0 >> s->sps->log2_min_pu_size; int y_pu = y0 >> s->sps->log2_min_pu_size; int j, k; if (size_in_pus == 0) size_in_pus = 1; for (j = 0; j < size_in_pus; j++) memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); if (lc->cu.pred_mode == MODE_INTRA) for (j = 0; j < size_in_pus; j++) for (k = 0; k < size_in_pus; k++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA; } static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; HEVCLocalContext *lc = s->HEVClc; int log2_min_cb_size = s->sps->log2_min_cb_size; int length = cb_size >> log2_min_cb_size; int min_cb_width = s->sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int idx = log2_cb_size - 2; int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1; int x, y, ret; lc->cu.x = x0; lc->cu.y = y0; lc->cu.rqt_root_cbf = 1; lc->cu.pred_mode = MODE_INTRA; lc->cu.part_mode = PART_2Nx2N; lc->cu.intra_split_flag = 0; lc->cu.pcm_flag = 0; SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0; for (x = 0; x < 4; x++) lc->pu.intra_pred_mode[x] = 1; if (s->pps->transquant_bypass_enable_flag) { lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s); if (lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, x0, y0, log2_cb_size); } else lc->cu.cu_transquant_bypass_flag = 0; if (s->sh.slice_type != I_SLICE) { uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb); x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->skip_flag[x], skip_flag, length); x += min_cb_width; } lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; } if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); } else { if (s->sh.slice_type != I_SLICE) lc->cu.pred_mode = ff_hevc_pred_mode_decode(s); if (lc->cu.pred_mode != MODE_INTRA || log2_cb_size == s->sps->log2_min_cb_size) { lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size); lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && lc->cu.pred_mode == MODE_INTRA; } if (lc->cu.pred_mode == MODE_INTRA) { if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag && log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size && log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) { lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s); } if (lc->cu.pcm_flag) { intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); ret = hls_pcm_sample(s, x0, y0, log2_cb_size); if (s->sps->pcm.loop_filter_disable_flag) set_deblocking_bypass(s, x0, y0, log2_cb_size); if (ret < 0) return ret; } else { intra_prediction_unit(s, x0, y0, log2_cb_size); } } else { intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); switch (lc->cu.part_mode) { case PART_2Nx2N: hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); break; case PART_2NxN: hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx); hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx); break; case PART_Nx2N: hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1); hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1); break; case PART_2NxnU: hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx); hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx); break; case PART_2NxnD: hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx); hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx); break; case PART_nLx2N: hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2); hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2); break; case PART_nRx2N: hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2); hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2); break; case PART_NxN: hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1); hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1); hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1); hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1); break; } } if (!lc->cu.pcm_flag) { if (lc->cu.pred_mode != MODE_INTRA && !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s); } if (lc->cu.rqt_root_cbf) { lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : s->sps->max_transform_hierarchy_depth_inter; ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0, log2_cb_size, log2_cb_size, 0, 0); if (ret < 0) return ret; } else { if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); } } } if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size); x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->qp_y_tab[x], lc->qp_y, length); x += min_cb_width; } if(((x0 + (1<qPy_pred = lc->qp_y; } set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth); return 0; } static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, int log2_cb_size, int cb_depth) { HEVCLocalContext *lc = s->HEVClc; const int cb_size = 1 << log2_cb_size; int ret; int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1; int split_cu_flag; lc->ct.depth = cb_depth; if (x0 + cb_size <= s->sps->width && y0 + cb_size <= s->sps->height && log2_cb_size > s->sps->log2_min_cb_size) { split_cu_flag = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0); } else { split_cu_flag = (log2_cb_size > s->sps->log2_min_cb_size); } if (s->pps->cu_qp_delta_enabled_flag && log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) { lc->tu.is_cu_qp_delta_coded = 0; lc->tu.cu_qp_delta = 0; } if (s->sh.cu_chroma_qp_offset_enabled_flag && log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_chroma_qp_offset_depth) { lc->tu.is_cu_chroma_qp_offset_coded = 0; } if (split_cu_flag) { const int cb_size_split = cb_size >> 1; const int x1 = x0 + cb_size_split; const int y1 = y0 + cb_size_split; int more_data = 0; more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; if (more_data && x1 < s->sps->width) { more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if (more_data && y1 < s->sps->height) { more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if (more_data && x1 < s->sps->width && y1 < s->sps->height) { more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if(((x0 + (1<qPy_pred = lc->qp_y; if (more_data) return ((x1 + cb_size_split) < s->sps->width || (y1 + cb_size_split) < s->sps->height); else return 0; } else { ret = hls_coding_unit(s, x0, y0, log2_cb_size); if (ret < 0) return ret; if ((!((x0 + cb_size) % (1 << (s->sps->log2_ctb_size))) || (x0 + cb_size >= s->sps->width)) && (!((y0 + cb_size) % (1 << (s->sps->log2_ctb_size))) || (y0 + cb_size >= s->sps->height))) { int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s); return !end_of_slice_flag; } else { return 1; } } return 0; } static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts) { HEVCLocalContext *lc = s->HEVClc; int ctb_size = 1 << s->sps->log2_ctb_size; int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; int tile_left_boundary, tile_up_boundary; int slice_left_boundary, slice_up_boundary; s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; if (s->pps->entropy_coding_sync_enabled_flag) { if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) lc->first_qp_group = 1; lc->end_of_tiles_x = s->sps->width; } else if (s->pps->tiles_enabled_flag) { if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) { int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size]; lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size); lc->first_qp_group = 1; } } else { lc->end_of_tiles_x = s->sps->width; } lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height); if (s->pps->tiles_enabled_flag) { tile_left_boundary = x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]]; slice_left_boundary = x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1]; tile_up_boundary = y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]; slice_up_boundary = y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width]; } else { tile_left_boundary = tile_up_boundary = 0; slice_left_boundary = ctb_addr_in_slice <= 0; slice_up_boundary = ctb_addr_in_slice < s->sps->ctb_width; } lc->slice_or_tiles_left_boundary = slice_left_boundary + (tile_left_boundary << 1); lc->slice_or_tiles_up_boundary = slice_up_boundary + (tile_up_boundary << 1); lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !tile_left_boundary); lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !tile_up_boundary); lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]])); lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]])); } static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread) { HEVCContext *s = avctxt->priv_data; int ctb_size = 1 << s->sps->log2_ctb_size; int more_data = 1; int x_ctb = 0; int y_ctb = 0; int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) { av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n"); return AVERROR_INVALIDDATA; } if (s->sh.dependent_slice_segment_flag) { int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1]; if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) { av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n"); return AVERROR_INVALIDDATA; } } while (more_data && ctb_addr_ts < s->sps->ctb_size) { int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts); ff_hevc_cabac_init(s, ctb_addr_ts); hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size); s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0); if (more_data < 0) { s->tab_slice_address[ctb_addr_rs] = -1; return more_data; } ctb_addr_ts++; ff_hevc_save_states(s, ctb_addr_ts); ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size); } if (x_ctb + ctb_size >= s->sps->width && y_ctb + ctb_size >= s->sps->height) ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size); return ctb_addr_ts; } static int hls_slice_data(HEVCContext *s) { int arg[2]; int ret[2]; arg[0] = 0; arg[1] = 1; s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int)); return ret[0]; } static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id) { HEVCContext *s1 = avctxt->priv_data, *s; HEVCLocalContext *lc; int ctb_size = 1<< s1->sps->log2_ctb_size; int more_data = 1; int *ctb_row_p = input_ctb_row; int ctb_row = ctb_row_p[job]; int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size); int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs]; int thread = ctb_row % s1->threads_number; int ret; s = s1->sList[self_id]; lc = s->HEVClc; if(ctb_row) { ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]); if (ret < 0) return ret; ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]); } while(more_data && ctb_addr_ts < s->sps->ctb_size) { int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size; int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size; hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts); ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP); if (avpriv_atomic_int_get(&s1->wpp_err)){ ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); return 0; } ff_hevc_cabac_init(s, ctb_addr_ts); hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size); more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0); if (more_data < 0) { s->tab_slice_address[ctb_addr_rs] = -1; return more_data; } ctb_addr_ts++; ff_hevc_save_states(s, ctb_addr_ts); ff_thread_report_progress2(s->avctx, ctb_row, thread, 1); ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size); if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) { avpriv_atomic_int_set(&s1->wpp_err, 1); ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); return 0; } if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) { ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size); ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); return ctb_addr_ts; } ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; x_ctb+=ctb_size; if(x_ctb >= s->sps->width) { break; } } ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); return 0; } static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length) { HEVCLocalContext *lc = s->HEVClc; int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int)); int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int)); int offset; int startheader, cmpt = 0; int i, j, res = 0; if (!s->sList[1]) { ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1); for (i = 1; i < s->threads_number; i++) { s->sList[i] = av_malloc(sizeof(HEVCContext)); memcpy(s->sList[i], s, sizeof(HEVCContext)); s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext)); s->sList[i]->HEVClc = s->HEVClcList[i]; } } offset = (lc->gb.index >> 3); for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) { if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) { startheader--; cmpt++; } } for (i = 1; i < s->sh.num_entry_point_offsets; i++) { offset += (s->sh.entry_point_offset[i - 1] - cmpt); for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) { if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) { startheader--; cmpt++; } } s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt; s->sh.offset[i - 1] = offset; } if (s->sh.num_entry_point_offsets != 0) { offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt; s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset; s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset; } s->data = nal; for (i = 1; i < s->threads_number; i++) { s->sList[i]->HEVClc->first_qp_group = 1; s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y; memcpy(s->sList[i], s, sizeof(HEVCContext)); s->sList[i]->HEVClc = s->HEVClcList[i]; } avpriv_atomic_int_set(&s->wpp_err, 0); ff_reset_entries(s->avctx); for (i = 0; i <= s->sh.num_entry_point_offsets; i++) { arg[i] = i; ret[i] = 0; } if (s->pps->entropy_coding_sync_enabled_flag) s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1); for (i = 0; i <= s->sh.num_entry_point_offsets; i++) res += ret[i]; av_free(ret); av_free(arg); return res; } /** * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit, * 0 if the unit should be skipped, 1 otherwise */ static int hls_nal_unit(HEVCContext *s) { GetBitContext *gb = &s->HEVClc->gb; int nuh_layer_id; if (get_bits1(gb) != 0) return AVERROR_INVALIDDATA; s->nal_unit_type = get_bits(gb, 6); nuh_layer_id = get_bits(gb, 6); s->temporal_id = get_bits(gb, 3) - 1; if (s->temporal_id < 0) return AVERROR_INVALIDDATA; av_log(s->avctx, AV_LOG_DEBUG, "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n", s->nal_unit_type, nuh_layer_id, s->temporal_id); return nuh_layer_id == 0; } static int set_side_data(HEVCContext *s) { AVFrame *out = s->ref->frame; if (s->sei_frame_packing_present && s->frame_packing_arrangement_type >= 3 && s->frame_packing_arrangement_type <= 5 && s->content_interpretation_type > 0 && s->content_interpretation_type < 3) { AVStereo3D *stereo = av_stereo3d_create_side_data(out); if (!stereo) return AVERROR(ENOMEM); switch (s->frame_packing_arrangement_type) { case 3: if (s->quincunx_subsampling) stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; else stereo->type = AV_STEREO3D_SIDEBYSIDE; break; case 4: stereo->type = AV_STEREO3D_TOPBOTTOM; break; case 5: stereo->type = AV_STEREO3D_FRAMESEQUENCE; break; } if (s->content_interpretation_type == 2) stereo->flags = AV_STEREO3D_FLAG_INVERT; } if (s->sei_display_orientation_present && (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) { double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16); AVFrameSideData *rotation = av_frame_new_side_data(out, AV_FRAME_DATA_DISPLAYMATRIX, sizeof(int32_t) * 9); if (!rotation) return AVERROR(ENOMEM); av_display_rotation_set((int32_t *)rotation->data, angle); av_display_matrix_flip((int32_t *)rotation->data, s->sei_vflip, s->sei_hflip); } return 0; } static int hevc_frame_start(HEVCContext *s) { HEVCLocalContext *lc = s->HEVClc; int pic_size_in_ctb = ((s->sps->width >> s->sps->log2_min_cb_size) + 1) * ((s->sps->height >> s->sps->log2_min_cb_size) + 1); int ret; memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height); memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height); memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address)); s->is_decoded = 0; s->first_nal_type = s->nal_unit_type; if (s->pps->tiles_enabled_flag) lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size; ret = ff_hevc_set_new_ref(s, &s->frame, s->poc); if (ret < 0) goto fail; ret = ff_hevc_frame_rps(s); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n"); goto fail; } s->ref->frame->key_frame = IS_IRAP(s); ret = set_side_data(s); if (ret < 0) goto fail; s->frame->pict_type = 3 - s->sh.slice_type; av_frame_unref(s->output_frame); ret = ff_hevc_output_frame(s, s->output_frame, 0); if (ret < 0) goto fail; ff_thread_finish_setup(s->avctx); return 0; fail: if (s->ref && s->threads_type == FF_THREAD_FRAME) ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); s->ref = NULL; return ret; } static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length) { HEVCLocalContext *lc = s->HEVClc; GetBitContext *gb = &lc->gb; int ctb_addr_ts, ret; ret = init_get_bits8(gb, nal, length); if (ret < 0) return ret; ret = hls_nal_unit(s); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n", s->nal_unit_type); goto fail; } else if (!ret) return 0; switch (s->nal_unit_type) { case NAL_VPS: ret = ff_hevc_decode_nal_vps(s); if (ret < 0) goto fail; break; case NAL_SPS: ret = ff_hevc_decode_nal_sps(s); if (ret < 0) goto fail; break; case NAL_PPS: ret = ff_hevc_decode_nal_pps(s); if (ret < 0) goto fail; break; case NAL_SEI_PREFIX: case NAL_SEI_SUFFIX: ret = ff_hevc_decode_nal_sei(s); if (ret < 0) goto fail; break; case NAL_TRAIL_R: case NAL_TRAIL_N: case NAL_TSA_N: case NAL_TSA_R: case NAL_STSA_N: case NAL_STSA_R: case NAL_BLA_W_LP: case NAL_BLA_W_RADL: case NAL_BLA_N_LP: case NAL_IDR_W_RADL: case NAL_IDR_N_LP: case NAL_CRA_NUT: case NAL_RADL_N: case NAL_RADL_R: case NAL_RASL_N: case NAL_RASL_R: ret = hls_slice_header(s); if (ret < 0) return ret; if (s->max_ra == INT_MAX) { if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) { s->max_ra = s->poc; } else { if (IS_IDR(s)) s->max_ra = INT_MIN; } } if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) && s->poc <= s->max_ra) { s->is_decoded = 0; break; } else { if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra) s->max_ra = INT_MIN; } if (s->sh.first_slice_in_pic_flag) { ret = hevc_frame_start(s); if (ret < 0) return ret; } else if (!s->ref) { av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n"); goto fail; } if (s->nal_unit_type != s->first_nal_type) { av_log(s->avctx, AV_LOG_ERROR, "Non-matching NAL types of the VCL NALUs: %d %d\n", s->first_nal_type, s->nal_unit_type); return AVERROR_INVALIDDATA; } if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != I_SLICE) { ret = ff_hevc_slice_rpl(s); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error constructing the reference lists for the current slice.\n"); goto fail; } } if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0) ctb_addr_ts = hls_slice_data_wpp(s, nal, length); else ctb_addr_ts = hls_slice_data(s); if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) { s->is_decoded = 1; } if (ctb_addr_ts < 0) { ret = ctb_addr_ts; goto fail; } break; case NAL_EOS_NUT: case NAL_EOB_NUT: s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; break; case NAL_AUD: case NAL_FD_NUT: break; default: av_log(s->avctx, AV_LOG_INFO, "Skipping NAL unit %d\n", s->nal_unit_type); } return 0; fail: if (s->avctx->err_recognition & AV_EF_EXPLODE) return ret; return 0; } /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication * between these functions would be nice. */ int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length, HEVCNAL *nal) { int i, si, di; uint8_t *dst; s->skipped_bytes = 0; #define STARTCODE_TEST \ if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ if (src[i + 2] != 3) { \ /* startcode, so we must be past the end */ \ length = i; \ } \ break; \ } #if HAVE_FAST_UNALIGNED #define FIND_FIRST_ZERO \ if (i > 0 && !src[i]) \ i--; \ while (src[i]) \ i++ #if HAVE_FAST_64BIT for (i = 0; i + 1 < length; i += 9) { if (!((~AV_RN64A(src + i) & (AV_RN64A(src + i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 7; } #else for (i = 0; i + 1 < length; i += 5) { if (!((~AV_RN32A(src + i) & (AV_RN32A(src + i) - 0x01000101U)) & 0x80008080U)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 3; } #endif /* HAVE_FAST_64BIT */ #else for (i = 0; i + 1 < length; i += 2) { if (src[i]) continue; if (i > 0 && src[i - 1] == 0) i--; STARTCODE_TEST; } #endif /* HAVE_FAST_UNALIGNED */ if (i >= length - 1) { // no escaped 0 nal->data = src; nal->size = length; return length; } av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size, length + FF_INPUT_BUFFER_PADDING_SIZE); if (!nal->rbsp_buffer) return AVERROR(ENOMEM); dst = nal->rbsp_buffer; memcpy(dst, src, i); si = di = i; while (si + 2 < length) { // remove escapes (very rare 1:2^22) if (src[si + 2] > 3) { dst[di++] = src[si++]; dst[di++] = src[si++]; } else if (src[si] == 0 && src[si + 1] == 0) { if (src[si + 2] == 3) { // escape dst[di++] = 0; dst[di++] = 0; si += 3; s->skipped_bytes++; if (s->skipped_bytes_pos_size < s->skipped_bytes) { s->skipped_bytes_pos_size *= 2; av_reallocp_array(&s->skipped_bytes_pos, s->skipped_bytes_pos_size, sizeof(*s->skipped_bytes_pos)); if (!s->skipped_bytes_pos) return AVERROR(ENOMEM); } if (s->skipped_bytes_pos) s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1; continue; } else // next start code goto nsc; } dst[di++] = src[si++]; } while (si < length) dst[di++] = src[si++]; nsc: memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); nal->data = dst; nal->size = di; return si; } static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length) { int i, consumed, ret = 0; s->ref = NULL; s->last_eos = s->eos; s->eos = 0; /* split the input packet into NAL units, so we know the upper bound on the * number of slices in the frame */ s->nb_nals = 0; while (length >= 4) { HEVCNAL *nal; int extract_length = 0; if (s->is_nalff) { int i; for (i = 0; i < s->nal_length_size; i++) extract_length = (extract_length << 8) | buf[i]; buf += s->nal_length_size; length -= s->nal_length_size; if (extract_length > length) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n"); ret = AVERROR_INVALIDDATA; goto fail; } } else { /* search start code */ while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) { ++buf; --length; if (length < 4) { av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n"); ret = AVERROR_INVALIDDATA; goto fail; } } buf += 3; length -= 3; } if (!s->is_nalff) extract_length = length; if (s->nals_allocated < s->nb_nals + 1) { int new_size = s->nals_allocated + 1; HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp)); if (!tmp) { ret = AVERROR(ENOMEM); goto fail; } s->nals = tmp; memset(s->nals + s->nals_allocated, 0, (new_size - s->nals_allocated) * sizeof(*tmp)); av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal)); av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal)); av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal)); s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos)); s->nals_allocated = new_size; } s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals]; s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals]; nal = &s->nals[s->nb_nals]; consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal); s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes; s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size; s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos; if (consumed < 0) { ret = consumed; goto fail; } ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size); if (ret < 0) goto fail; hls_nal_unit(s); if (s->nal_unit_type == NAL_EOB_NUT || s->nal_unit_type == NAL_EOS_NUT) s->eos = 1; buf += consumed; length -= consumed; } /* parse the NAL units */ for (i = 0; i < s->nb_nals; i++) { int ret; s->skipped_bytes = s->skipped_bytes_nal[i]; s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i]; ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error parsing NAL unit #%d.\n", i); goto fail; } } fail: if (s->ref && s->threads_type == FF_THREAD_FRAME) ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); return ret; } static void print_md5(void *log_ctx, int level, uint8_t md5[16]) { int i; for (i = 0; i < 16; i++) av_log(log_ctx, level, "%02"PRIx8, md5[i]); } static int verify_md5(HEVCContext *s, AVFrame *frame) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format); int pixel_shift; int i, j; if (!desc) return AVERROR(EINVAL); pixel_shift = desc->comp[0].depth_minus1 > 7; av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ", s->poc); /* the checksums are LE, so we have to byteswap for >8bpp formats * on BE arches */ #if HAVE_BIGENDIAN if (pixel_shift && !s->checksum_buf) { av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size, FFMAX3(frame->linesize[0], frame->linesize[1], frame->linesize[2])); if (!s->checksum_buf) return AVERROR(ENOMEM); } #endif for (i = 0; frame->data[i]; i++) { int width = s->avctx->coded_width; int height = s->avctx->coded_height; int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width; int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height; uint8_t md5[16]; av_md5_init(s->md5_ctx); for (j = 0; j < h; j++) { const uint8_t *src = frame->data[i] + j * frame->linesize[i]; #if HAVE_BIGENDIAN if (pixel_shift) { s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf, (const uint16_t *) src, w); src = s->checksum_buf; } #endif av_md5_update(s->md5_ctx, src, w << pixel_shift); } av_md5_final(s->md5_ctx, md5); if (!memcmp(md5, s->md5[i], 16)) { av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i); print_md5(s->avctx, AV_LOG_DEBUG, md5); av_log (s->avctx, AV_LOG_DEBUG, "; "); } else { av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i); print_md5(s->avctx, AV_LOG_ERROR, md5); av_log (s->avctx, AV_LOG_ERROR, " != "); print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]); av_log (s->avctx, AV_LOG_ERROR, "\n"); return AVERROR_INVALIDDATA; } } av_log(s->avctx, AV_LOG_DEBUG, "\n"); return 0; } static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output, AVPacket *avpkt) { int ret; HEVCContext *s = avctx->priv_data; if (!avpkt->size) { ret = ff_hevc_output_frame(s, data, 1); if (ret < 0) return ret; *got_output = ret; return 0; } s->ref = NULL; ret = decode_nal_units(s, avpkt->data, avpkt->size); if (ret < 0) return ret; /* verify the SEI checksum */ if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded && s->is_md5) { ret = verify_md5(s, s->ref->frame); if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) { ff_hevc_unref_frame(s, s->ref, ~0); return ret; } } s->is_md5 = 0; if (s->is_decoded) { av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc); s->is_decoded = 0; } if (s->output_frame->buf[0]) { av_frame_move_ref(data, s->output_frame); *got_output = 1; } return avpkt->size; } static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src) { int ret; ret = ff_thread_ref_frame(&dst->tf, &src->tf); if (ret < 0) return ret; dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf); if (!dst->tab_mvf_buf) goto fail; dst->tab_mvf = src->tab_mvf; dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf); if (!dst->rpl_tab_buf) goto fail; dst->rpl_tab = src->rpl_tab; dst->rpl_buf = av_buffer_ref(src->rpl_buf); if (!dst->rpl_buf) goto fail; dst->poc = src->poc; dst->ctb_count = src->ctb_count; dst->window = src->window; dst->flags = src->flags; dst->sequence = src->sequence; return 0; fail: ff_hevc_unref_frame(s, dst, ~0); return AVERROR(ENOMEM); } static av_cold int hevc_decode_free(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; HEVCLocalContext *lc = s->HEVClc; int i; pic_arrays_free(s); av_freep(&s->md5_ctx); for(i=0; i < s->nals_allocated; i++) { av_freep(&s->skipped_bytes_pos_nal[i]); } av_freep(&s->skipped_bytes_pos_size_nal); av_freep(&s->skipped_bytes_nal); av_freep(&s->skipped_bytes_pos_nal); av_freep(&s->cabac_state); av_frame_free(&s->tmp_frame); av_frame_free(&s->output_frame); for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(s, &s->DPB[i], ~0); av_frame_free(&s->DPB[i].frame); } for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) av_buffer_unref(&s->vps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) av_buffer_unref(&s->sps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) av_buffer_unref(&s->pps_list[i]); s->sps = NULL; s->pps = NULL; s->vps = NULL; av_buffer_unref(&s->current_sps); av_freep(&s->sh.entry_point_offset); av_freep(&s->sh.offset); av_freep(&s->sh.size); for (i = 1; i < s->threads_number; i++) { lc = s->HEVClcList[i]; if (lc) { av_freep(&s->HEVClcList[i]); av_freep(&s->sList[i]); } } if (s->HEVClc == s->HEVClcList[0]) s->HEVClc = NULL; av_freep(&s->HEVClcList[0]); for (i = 0; i < s->nals_allocated; i++) av_freep(&s->nals[i].rbsp_buffer); av_freep(&s->nals); s->nals_allocated = 0; return 0; } static av_cold int hevc_init_context(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int i; s->avctx = avctx; s->HEVClc = av_mallocz(sizeof(HEVCLocalContext)); if (!s->HEVClc) goto fail; s->HEVClcList[0] = s->HEVClc; s->sList[0] = s; s->cabac_state = av_malloc(HEVC_CONTEXTS); if (!s->cabac_state) goto fail; s->tmp_frame = av_frame_alloc(); if (!s->tmp_frame) goto fail; s->output_frame = av_frame_alloc(); if (!s->output_frame) goto fail; for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { s->DPB[i].frame = av_frame_alloc(); if (!s->DPB[i].frame) goto fail; s->DPB[i].tf.f = s->DPB[i].frame; } s->max_ra = INT_MAX; s->md5_ctx = av_md5_alloc(); if (!s->md5_ctx) goto fail; ff_bswapdsp_init(&s->bdsp); s->context_initialized = 1; s->eos = 0; return 0; fail: hevc_decode_free(avctx); return AVERROR(ENOMEM); } static int hevc_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { HEVCContext *s = dst->priv_data; HEVCContext *s0 = src->priv_data; int i, ret; if (!s->context_initialized) { ret = hevc_init_context(dst); if (ret < 0) return ret; } for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(s, &s->DPB[i], ~0); if (s0->DPB[i].frame->buf[0]) { ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]); if (ret < 0) return ret; } } if (s->sps != s0->sps) s->sps = NULL; for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) { av_buffer_unref(&s->vps_list[i]); if (s0->vps_list[i]) { s->vps_list[i] = av_buffer_ref(s0->vps_list[i]); if (!s->vps_list[i]) return AVERROR(ENOMEM); } } for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) { av_buffer_unref(&s->sps_list[i]); if (s0->sps_list[i]) { s->sps_list[i] = av_buffer_ref(s0->sps_list[i]); if (!s->sps_list[i]) return AVERROR(ENOMEM); } } for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) { av_buffer_unref(&s->pps_list[i]); if (s0->pps_list[i]) { s->pps_list[i] = av_buffer_ref(s0->pps_list[i]); if (!s->pps_list[i]) return AVERROR(ENOMEM); } } av_buffer_unref(&s->current_sps); if (s0->current_sps) { s->current_sps = av_buffer_ref(s0->current_sps); if (!s->current_sps) return AVERROR(ENOMEM); } if (s->sps != s0->sps) ret = set_sps(s, s0->sps); s->seq_decode = s0->seq_decode; s->seq_output = s0->seq_output; s->pocTid0 = s0->pocTid0; s->max_ra = s0->max_ra; s->eos = s0->eos; s->is_nalff = s0->is_nalff; s->nal_length_size = s0->nal_length_size; s->threads_number = s0->threads_number; s->threads_type = s0->threads_type; if (s0->eos) { s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; } return 0; } static int hevc_decode_extradata(HEVCContext *s) { AVCodecContext *avctx = s->avctx; GetByteContext gb; int ret; bytestream2_init(&gb, avctx->extradata, avctx->extradata_size); if (avctx->extradata_size > 3 && (avctx->extradata[0] || avctx->extradata[1] || avctx->extradata[2] > 1)) { /* It seems the extradata is encoded as hvcC format. * Temporarily, we support configurationVersion==0 until 14496-15 3rd * is finalized. When finalized, configurationVersion will be 1 and we * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */ int i, j, num_arrays, nal_len_size; s->is_nalff = 1; bytestream2_skip(&gb, 21); nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1; num_arrays = bytestream2_get_byte(&gb); /* nal units in the hvcC always have length coded with 2 bytes, * so put a fake nal_length_size = 2 while parsing them */ s->nal_length_size = 2; /* Decode nal units from hvcC. */ for (i = 0; i < num_arrays; i++) { int type = bytestream2_get_byte(&gb) & 0x3f; int cnt = bytestream2_get_be16(&gb); for (j = 0; j < cnt; j++) { // +2 for the nal size field int nalsize = bytestream2_peek_be16(&gb) + 2; if (bytestream2_get_bytes_left(&gb) < nalsize) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size in extradata.\n"); return AVERROR_INVALIDDATA; } ret = decode_nal_units(s, gb.buffer, nalsize); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding nal unit %d %d from hvcC failed\n", type, i); return ret; } bytestream2_skip(&gb, nalsize); } } /* Now store right nal length size, that will be used to parse * all other nals */ s->nal_length_size = nal_len_size; } else { s->is_nalff = 0; ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size); if (ret < 0) return ret; } return 0; } static av_cold int hevc_decode_init(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int ret; ff_init_cabac_states(); avctx->internal->allocate_progress = 1; ret = hevc_init_context(avctx); if (ret < 0) return ret; s->enable_parallel_tiles = 0; s->picture_struct = 0; if(avctx->active_thread_type & FF_THREAD_SLICE) s->threads_number = avctx->thread_count; else s->threads_number = 1; if (avctx->extradata_size > 0 && avctx->extradata) { ret = hevc_decode_extradata(s); if (ret < 0) { hevc_decode_free(avctx); return ret; } } if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1) s->threads_type = FF_THREAD_FRAME; else s->threads_type = FF_THREAD_SLICE; return 0; } static av_cold int hevc_init_thread_copy(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int ret; memset(s, 0, sizeof(*s)); ret = hevc_init_context(avctx); if (ret < 0) return ret; return 0; } static void hevc_decode_flush(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; ff_hevc_flush_dpb(s); s->max_ra = INT_MAX; } #define OFFSET(x) offsetof(HEVCContext, x) #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) static const AVProfile profiles[] = { { FF_PROFILE_HEVC_MAIN, "Main" }, { FF_PROFILE_HEVC_MAIN_10, "Main 10" }, { FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" }, { FF_PROFILE_HEVC_REXT, "Rext" }, { FF_PROFILE_UNKNOWN }, }; static const AVOption options[] = { { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR }, { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR }, { NULL }, }; static const AVClass hevc_decoder_class = { .class_name = "HEVC decoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_hevc_decoder = { .name = "hevc", .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HEVC, .priv_data_size = sizeof(HEVCContext), .priv_class = &hevc_decoder_class, .init = hevc_decode_init, .close = hevc_decode_free, .decode = hevc_decode_frame, .flush = hevc_decode_flush, .update_thread_context = hevc_update_thread_context, .init_thread_copy = hevc_init_thread_copy, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS, .profiles = NULL_IF_CONFIG_SMALL(profiles), };