/* * 4XM codec * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file 4xm.c * 4XM codec. */ #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" //#undef NDEBUG //#include <assert.h> #define BLOCK_TYPE_VLC_BITS 5 #define ACDC_VLC_BITS 9 #define CFRAME_BUFFER_COUNT 100 static const uint8_t block_type_tab[4][8][2]={ { //{8,4,2}x{8,4,2} { 0,1}, { 2,2}, { 6,3}, {14,4}, {30,5}, {31,5}, { 0,0} },{ //{8,4}x1 { 0,1}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}, { 0,0} },{ //1x{8,4} { 0,1}, { 2,2}, { 0,0}, { 6,3}, {14,4}, {15,4}, { 0,0} },{ //1x2, 2x1 { 0,1}, { 0,0}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4} } }; static const uint8_t size2index[4][4]={ {-1, 3, 1, 1}, { 3, 0, 0, 0}, { 2, 0, 0, 0}, { 2, 0, 0, 0}, }; static const int8_t mv[256][2]={ { 0, 0},{ 0, -1},{ -1, 0},{ 1, 0},{ 0, 1},{ -1, -1},{ 1, -1},{ -1, 1}, { 1, 1},{ 0, -2},{ -2, 0},{ 2, 0},{ 0, 2},{ -1, -2},{ 1, -2},{ -2, -1}, { 2, -1},{ -2, 1},{ 2, 1},{ -1, 2},{ 1, 2},{ -2, -2},{ 2, -2},{ -2, 2}, { 2, 2},{ 0, -3},{ -3, 0},{ 3, 0},{ 0, 3},{ -1, -3},{ 1, -3},{ -3, -1}, { 3, -1},{ -3, 1},{ 3, 1},{ -1, 3},{ 1, 3},{ -2, -3},{ 2, -3},{ -3, -2}, { 3, -2},{ -3, 2},{ 3, 2},{ -2, 3},{ 2, 3},{ 0, -4},{ -4, 0},{ 4, 0}, { 0, 4},{ -1, -4},{ 1, -4},{ -4, -1},{ 4, -1},{ 4, 1},{ -1, 4},{ 1, 4}, { -3, -3},{ -3, 3},{ 3, 3},{ -2, -4},{ -4, -2},{ 4, -2},{ -4, 2},{ -2, 4}, { 2, 4},{ -3, -4},{ 3, -4},{ 4, -3},{ -5, 0},{ -4, 3},{ -3, 4},{ 3, 4}, { -1, -5},{ -5, -1},{ -5, 1},{ -1, 5},{ -2, -5},{ 2, -5},{ 5, -2},{ 5, 2}, { -4, -4},{ -4, 4},{ -3, -5},{ -5, -3},{ -5, 3},{ 3, 5},{ -6, 0},{ 0, 6}, { -6, -1},{ -6, 1},{ 1, 6},{ 2, -6},{ -6, 2},{ 2, 6},{ -5, -4},{ 5, 4}, { 4, 5},{ -6, -3},{ 6, 3},{ -7, 0},{ -1, -7},{ 5, -5},{ -7, 1},{ -1, 7}, { 4, -6},{ 6, 4},{ -2, -7},{ -7, 2},{ -3, -7},{ 7, -3},{ 3, 7},{ 6, -5}, { 0, -8},{ -1, -8},{ -7, -4},{ -8, 1},{ 4, 7},{ 2, -8},{ -2, 8},{ 6, 6}, { -8, 3},{ 5, -7},{ -5, 7},{ 8, -4},{ 0, -9},{ -9, -1},{ 1, 9},{ 7, -6}, { -7, 6},{ -5, -8},{ -5, 8},{ -9, 3},{ 9, -4},{ 7, -7},{ 8, -6},{ 6, 8}, { 10, 1},{-10, 2},{ 9, -5},{ 10, -3},{ -8, -7},{-10, -4},{ 6, -9},{-11, 0}, { 11, 1},{-11, -2},{ -2, 11},{ 7, -9},{ -7, 9},{ 10, 6},{ -4, 11},{ 8, -9}, { 8, 9},{ 5, 11},{ 7,-10},{ 12, -3},{ 11, 6},{ -9, -9},{ 8, 10},{ 5, 12}, {-11, 7},{ 13, 2},{ 6,-12},{ 10, 9},{-11, 8},{ -7, 12},{ 0, 14},{ 14, -2}, { -9, 11},{ -6, 13},{-14, -4},{ -5,-14},{ 5, 14},{-15, -1},{-14, -6},{ 3,-15}, { 11,-11},{ -7, 14},{ -5, 15},{ 8,-14},{ 15, 6},{ 3, 16},{ 7,-15},{-16, 5}, { 0, 17},{-16, -6},{-10, 14},{-16, 7},{ 12, 13},{-16, 8},{-17, 6},{-18, 3}, { -7, 17},{ 15, 11},{ 16, 10},{ 2,-19},{ 3,-19},{-11,-16},{-18, 8},{-19, -6}, { 2,-20},{-17,-11},{-10,-18},{ 8, 19},{-21, -1},{-20, 7},{ -4, 21},{ 21, 5}, { 15, 16},{ 2,-22},{-10,-20},{-22, 5},{ 20,-11},{ -7,-22},{-12, 20},{ 23, -5}, { 13,-20},{ 24, -2},{-15, 19},{-11, 22},{ 16, 19},{ 23,-10},{-18,-18},{ -9,-24}, { 24,-10},{ -3, 26},{-23, 13},{-18,-20},{ 17, 21},{ -4, 27},{ 27, 6},{ 1,-28}, {-11, 26},{-17,-23},{ 7, 28},{ 11,-27},{ 29, 5},{-23,-19},{-28,-11},{-21, 22}, {-30, 7},{-17, 26},{-27, 16},{ 13, 29},{ 19,-26},{ 10,-31},{-14,-30},{ 20,-27}, {-29, 18},{-16,-31},{-28,-22},{ 21,-30},{-25, 28},{ 26,-29},{ 25,-32},{-32,-32} }; // this is simply the scaled down elementwise product of the standard jpeg quantizer table and the AAN premul table static const uint8_t dequant_table[64]={ 16, 15, 13, 19, 24, 31, 28, 17, 17, 23, 25, 31, 36, 63, 45, 21, 18, 24, 27, 37, 52, 59, 49, 20, 16, 28, 34, 40, 60, 80, 51, 20, 18, 31, 48, 66, 68, 86, 56, 21, 19, 38, 56, 59, 64, 64, 48, 20, 27, 48, 55, 55, 56, 51, 35, 15, 20, 35, 34, 32, 31, 22, 15, 8, }; static VLC block_type_vlc[4]; typedef struct CFrameBuffer{ unsigned int allocated_size; unsigned int size; int id; uint8_t *data; }CFrameBuffer; typedef struct FourXContext{ AVCodecContext *avctx; DSPContext dsp; AVFrame current_picture, last_picture; GetBitContext pre_gb; ///< ac/dc prefix GetBitContext gb; uint8_t *bytestream; uint16_t *wordstream; int mv[256]; VLC pre_vlc; int last_dc; DECLARE_ALIGNED_8(DCTELEM, block[6][64]); uint8_t *bitstream_buffer; unsigned int bitstream_buffer_size; CFrameBuffer cfrm[CFRAME_BUFFER_COUNT]; } FourXContext; #define FIX_1_082392200 70936 #define FIX_1_414213562 92682 #define FIX_1_847759065 121095 #define FIX_2_613125930 171254 #define MULTIPLY(var,const) (((var)*(const)) >> 16) static void idct(DCTELEM block[64]){ int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int tmp10, tmp11, tmp12, tmp13; int z5, z10, z11, z12, z13; int i; int temp[64]; for(i=0; i<8; i++){ tmp10 = block[8*0 + i] + block[8*4 + i]; tmp11 = block[8*0 + i] - block[8*4 + i]; tmp13 = block[8*2 + i] + block[8*6 + i]; tmp12 = MULTIPLY(block[8*2 + i] - block[8*6 + i], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; z13 = block[8*5 + i] + block[8*3 + i]; z10 = block[8*5 + i] - block[8*3 + i]; z11 = block[8*1 + i] + block[8*7 + i]; z12 = block[8*1 + i] - block[8*7 + i]; tmp7 = z11 + z13; tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); z5 = MULTIPLY(z10 + z12, FIX_1_847759065); tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; temp[8*0 + i] = tmp0 + tmp7; temp[8*7 + i] = tmp0 - tmp7; temp[8*1 + i] = tmp1 + tmp6; temp[8*6 + i] = tmp1 - tmp6; temp[8*2 + i] = tmp2 + tmp5; temp[8*5 + i] = tmp2 - tmp5; temp[8*4 + i] = tmp3 + tmp4; temp[8*3 + i] = tmp3 - tmp4; } for(i=0; i<8*8; i+=8){ tmp10 = temp[0 + i] + temp[4 + i]; tmp11 = temp[0 + i] - temp[4 + i]; tmp13 = temp[2 + i] + temp[6 + i]; tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; z13 = temp[5 + i] + temp[3 + i]; z10 = temp[5 + i] - temp[3 + i]; z11 = temp[1 + i] + temp[7 + i]; z12 = temp[1 + i] - temp[7 + i]; tmp7 = z11 + z13; tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); z5 = MULTIPLY(z10 + z12, FIX_1_847759065); tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; block[0 + i] = (tmp0 + tmp7)>>6; block[7 + i] = (tmp0 - tmp7)>>6; block[1 + i] = (tmp1 + tmp6)>>6; block[6 + i] = (tmp1 - tmp6)>>6; block[2 + i] = (tmp2 + tmp5)>>6; block[5 + i] = (tmp2 - tmp5)>>6; block[4 + i] = (tmp3 + tmp4)>>6; block[3 + i] = (tmp3 - tmp4)>>6; } } static void init_vlcs(FourXContext *f){ int i; for(i=0; i<4; i++){ init_vlc(&block_type_vlc[i], BLOCK_TYPE_VLC_BITS, 7, &block_type_tab[i][0][1], 2, 1, &block_type_tab[i][0][0], 2, 1, 1); } } static void init_mv(FourXContext *f){ int i; for(i=0; i<256; i++){ f->mv[i] = mv[i][0] + mv[i][1]*f->current_picture.linesize[0]/2; } } static inline void mcdc(uint16_t *dst, uint16_t *src, int log2w, int h, int stride, int scale, int dc){ int i; dc*= 0x10001; switch(log2w){ case 0: for(i=0; i<h; i++){ dst[0] = scale*src[0] + dc; if(scale) src += stride; dst += stride; } break; case 1: for(i=0; i<h; i++){ ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc; if(scale) src += stride; dst += stride; } break; case 2: for(i=0; i<h; i++){ ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc; ((uint32_t*)dst)[1] = scale*((uint32_t*)src)[1] + dc; if(scale) src += stride; dst += stride; } break; case 3: for(i=0; i<h; i++){ ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc; ((uint32_t*)dst)[1] = scale*((uint32_t*)src)[1] + dc; ((uint32_t*)dst)[2] = scale*((uint32_t*)src)[2] + dc; ((uint32_t*)dst)[3] = scale*((uint32_t*)src)[3] + dc; if(scale) src += stride; dst += stride; } break; default: assert(0); } } static void decode_p_block(FourXContext *f, uint16_t *dst, uint16_t *src, int log2w, int log2h, int stride){ const int index= size2index[log2h][log2w]; const int h= 1<<log2h; int code= get_vlc2(&f->gb, block_type_vlc[index].table, BLOCK_TYPE_VLC_BITS, 1); assert(code>=0 && code<=6); if(code == 0){ src += f->mv[ *f->bytestream++ ]; mcdc(dst, src, log2w, h, stride, 1, 0); }else if(code == 1){ log2h--; decode_p_block(f, dst , src , log2w, log2h, stride); decode_p_block(f, dst + (stride<<log2h), src + (stride<<log2h), log2w, log2h, stride); }else if(code == 2){ log2w--; decode_p_block(f, dst , src , log2w, log2h, stride); decode_p_block(f, dst + (1<<log2w), src + (1<<log2w), log2w, log2h, stride); }else if(code == 4){ src += f->mv[ *f->bytestream++ ]; mcdc(dst, src, log2w, h, stride, 1, le2me_16(*f->wordstream++)); }else if(code == 5){ mcdc(dst, src, log2w, h, stride, 0, le2me_16(*f->wordstream++)); }else if(code == 6){ if(log2w){ dst[0] = le2me_16(*f->wordstream++); dst[1] = le2me_16(*f->wordstream++); }else{ dst[0 ] = le2me_16(*f->wordstream++); dst[stride] = le2me_16(*f->wordstream++); } } } static int get32(void *p){ return le2me_32(*(uint32_t*)p); } static int decode_p_frame(FourXContext *f, uint8_t *buf, int length){ int x, y; const int width= f->avctx->width; const int height= f->avctx->height; uint16_t *src= (uint16_t*)f->last_picture.data[0]; uint16_t *dst= (uint16_t*)f->current_picture.data[0]; const int stride= f->current_picture.linesize[0]>>1; const unsigned int bitstream_size= get32(buf+8); const unsigned int bytestream_size= get32(buf+16); const unsigned int wordstream_size= get32(buf+12); if(bitstream_size+ bytestream_size+ wordstream_size + 20 != length || bitstream_size > (1<<26) || bytestream_size > (1<<26) || wordstream_size > (1<<26) ){ av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size, bitstream_size+ bytestream_size+ wordstream_size - length); return -1; } f->bitstream_buffer= av_fast_realloc(f->bitstream_buffer, &f->bitstream_buffer_size, bitstream_size + FF_INPUT_BUFFER_PADDING_SIZE); f->dsp.bswap_buf((uint32_t*)f->bitstream_buffer, (uint32_t*)(buf + 20), bitstream_size/4); init_get_bits(&f->gb, f->bitstream_buffer, 8*bitstream_size); f->wordstream= (uint16_t*)(buf + 20 + bitstream_size); f->bytestream= buf + 20 + bitstream_size + wordstream_size; init_mv(f); for(y=0; y<height; y+=8){ for(x=0; x<width; x+=8){ decode_p_block(f, dst + x, src + x, 3, 3, stride); } src += 8*stride; dst += 8*stride; } if(bitstream_size != (get_bits_count(&f->gb)+31)/32*4) av_log(f->avctx, AV_LOG_ERROR, " %d %td %td bytes left\n", bitstream_size - (get_bits_count(&f->gb)+31)/32*4, bytestream_size - (f->bytestream - (buf + 20 + bitstream_size + wordstream_size)), wordstream_size - (((uint8_t*)f->wordstream) - (buf + 20 + bitstream_size)) ); return 0; } /** * decode block and dequantize. * Note this is allmost identical to mjpeg */ static int decode_i_block(FourXContext *f, DCTELEM *block){ int code, i, j, level, val; /* DC coef */ val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3); if (val>>4){ av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n"); } if(val) val = get_xbits(&f->gb, val); val = val * dequant_table[0] + f->last_dc; f->last_dc = block[0] = val; /* AC coefs */ i = 1; for(;;) { code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3); /* EOB */ if (code == 0) break; if (code == 0xf0) { i += 16; } else { level = get_xbits(&f->gb, code & 0xf); i += code >> 4; if (i >= 64) { av_log(f->avctx, AV_LOG_ERROR, "run %d oveflow\n", i); return 0; } j= ff_zigzag_direct[i]; block[j] = level * dequant_table[j]; i++; if (i >= 64) break; } } return 0; } static inline void idct_put(FourXContext *f, int x, int y){ DCTELEM (*block)[64]= f->block; int stride= f->current_picture.linesize[0]>>1; int i; uint16_t *dst = ((uint16_t*)f->current_picture.data[0]) + y * stride + x; for(i=0; i<4; i++){ block[i][0] += 0x80*8*8; idct(block[i]); } if(!(f->avctx->flags&CODEC_FLAG_GRAY)){ for(i=4; i<6; i++) idct(block[i]); } /* Note transform is: y= ( 1b + 4g + 2r)/14 cb=( 3b - 2g - 1r)/14 cr=(-1b - 4g + 5r)/14 */ for(y=0; y<8; y++){ for(x=0; x<8; x++){ DCTELEM *temp= block[(x>>2) + 2*(y>>2)] + 2*(x&3) + 2*8*(y&3); //FIXME optimize int cb= block[4][x + 8*y]; int cr= block[5][x + 8*y]; int cg= (cb + cr)>>1; int y; cb+=cb; y = temp[0]; dst[0 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8); y = temp[1]; dst[1 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8); y = temp[8]; dst[ stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8); y = temp[9]; dst[1+stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8); dst += 2; } dst += 2*stride - 2*8; } } static int decode_i_mb(FourXContext *f){ int i; f->dsp.clear_blocks(f->block[0]); for(i=0; i<6; i++){ if(decode_i_block(f, f->block[i]) < 0) return -1; } return 0; } static uint8_t *read_huffman_tables(FourXContext *f, uint8_t * const buf){ int frequency[512]; uint8_t flag[512]; int up[512]; uint8_t len_tab[257]; int bits_tab[257]; int start, end; uint8_t *ptr= buf; int j; memset(frequency, 0, sizeof(frequency)); memset(up, -1, sizeof(up)); start= *ptr++; end= *ptr++; for(;;){ int i; for(i=start; i<=end; i++){ frequency[i]= *ptr++; } start= *ptr++; if(start==0) break; end= *ptr++; } frequency[256]=1; while((ptr - buf)&3) ptr++; // 4byte align for(j=257; j<512; j++){ int min_freq[2]= {256*256, 256*256}; int smallest[2]= {0, 0}; int i; for(i=0; i<j; i++){ if(frequency[i] == 0) continue; if(frequency[i] < min_freq[1]){ if(frequency[i] < min_freq[0]){ min_freq[1]= min_freq[0]; smallest[1]= smallest[0]; min_freq[0]= frequency[i];smallest[0]= i; }else{ min_freq[1]= frequency[i];smallest[1]= i; } } } if(min_freq[1] == 256*256) break; frequency[j]= min_freq[0] + min_freq[1]; flag[ smallest[0] ]= 0; flag[ smallest[1] ]= 1; up[ smallest[0] ]= up[ smallest[1] ]= j; frequency[ smallest[0] ]= frequency[ smallest[1] ]= 0; } for(j=0; j<257; j++){ int node; int len=0; int bits=0; for(node= j; up[node] != -1; node= up[node]){ bits += flag[node]<<len; len++; if(len > 31) av_log(f->avctx, AV_LOG_ERROR, "vlc length overflow\n"); //can this happen at all ? } bits_tab[j]= bits; len_tab[j]= len; } init_vlc(&f->pre_vlc, ACDC_VLC_BITS, 257, len_tab , 1, 1, bits_tab, 4, 4, 0); return ptr; } static int decode_i_frame(FourXContext *f, uint8_t *buf, int length){ int x, y; const int width= f->avctx->width; const int height= f->avctx->height; uint16_t *dst= (uint16_t*)f->current_picture.data[0]; const int stride= f->current_picture.linesize[0]>>1; const unsigned int bitstream_size= get32(buf); const int token_count av_unused = get32(buf + bitstream_size + 8); unsigned int prestream_size= 4*get32(buf + bitstream_size + 4); uint8_t *prestream= buf + bitstream_size + 12; if(prestream_size + bitstream_size + 12 != length || bitstream_size > (1<<26) || prestream_size > (1<<26)){ av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n", prestream_size, bitstream_size, length); return -1; } prestream= read_huffman_tables(f, prestream); init_get_bits(&f->gb, buf + 4, 8*bitstream_size); prestream_size= length + buf - prestream; f->bitstream_buffer= av_fast_realloc(f->bitstream_buffer, &f->bitstream_buffer_size, prestream_size + FF_INPUT_BUFFER_PADDING_SIZE); f->dsp.bswap_buf((uint32_t*)f->bitstream_buffer, (uint32_t*)prestream, prestream_size/4); init_get_bits(&f->pre_gb, f->bitstream_buffer, 8*prestream_size); f->last_dc= 0*128*8*8; for(y=0; y<height; y+=16){ for(x=0; x<width; x+=16){ if(decode_i_mb(f) < 0) return -1; idct_put(f, x, y); } dst += 16*stride; } if(get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256) av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n"); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { FourXContext * const f = avctx->priv_data; AVFrame *picture = data; AVFrame *p, temp; int i, frame_4cc, frame_size; frame_4cc= get32(buf); if(buf_size != get32(buf+4)+8 || buf_size < 20){ av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d\n", buf_size, get32(buf+4)); } if(frame_4cc == ff_get_fourcc("cfrm")){ int free_index=-1; const int data_size= buf_size - 20; const int id= get32(buf+12); const int whole_size= get32(buf+16); CFrameBuffer *cfrm; for(i=0; i<CFRAME_BUFFER_COUNT; i++){ if(f->cfrm[i].id && f->cfrm[i].id < avctx->frame_number) av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n", f->cfrm[i].id); } for(i=0; i<CFRAME_BUFFER_COUNT; i++){ if(f->cfrm[i].id == id) break; if(f->cfrm[i].size == 0 ) free_index= i; } if(i>=CFRAME_BUFFER_COUNT){ i= free_index; f->cfrm[i].id= id; } cfrm= &f->cfrm[i]; cfrm->data= av_fast_realloc(cfrm->data, &cfrm->allocated_size, cfrm->size + data_size + FF_INPUT_BUFFER_PADDING_SIZE); if(!cfrm->data){ //explicit check needed as memcpy below might not catch a NULL av_log(f->avctx, AV_LOG_ERROR, "realloc falure"); return -1; } memcpy(cfrm->data + cfrm->size, buf+20, data_size); cfrm->size += data_size; if(cfrm->size >= whole_size){ buf= cfrm->data; frame_size= cfrm->size; if(id != avctx->frame_number){ av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %d\n", id, avctx->frame_number); } cfrm->size= cfrm->id= 0; frame_4cc= ff_get_fourcc("pfrm"); }else return buf_size; }else{ buf= buf + 12; frame_size= buf_size - 12; } temp= f->current_picture; f->current_picture= f->last_picture; f->last_picture= temp; p= &f->current_picture; avctx->coded_frame= p; avctx->flags |= CODEC_FLAG_EMU_EDGE; // alternatively we would have to use our own buffer management if(p->data[0]) avctx->release_buffer(avctx, p); p->reference= 1; if(avctx->get_buffer(avctx, p) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if(frame_4cc == ff_get_fourcc("ifrm")){ p->pict_type= I_TYPE; if(decode_i_frame(f, buf, frame_size) < 0) return -1; }else if(frame_4cc == ff_get_fourcc("pfrm")){ p->pict_type= P_TYPE; if(decode_p_frame(f, buf, frame_size) < 0) return -1; }else if(frame_4cc == ff_get_fourcc("snd_")){ av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n", buf_size); }else{ av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n", buf_size); } p->key_frame= p->pict_type == I_TYPE; *picture= *p; *data_size = sizeof(AVPicture); emms_c(); return buf_size; } static void common_init(AVCodecContext *avctx){ FourXContext * const f = avctx->priv_data; dsputil_init(&f->dsp, avctx); f->avctx= avctx; } static int decode_init(AVCodecContext *avctx){ FourXContext * const f = avctx->priv_data; common_init(avctx); init_vlcs(f); avctx->pix_fmt= PIX_FMT_RGB565; return 0; } static int decode_end(AVCodecContext *avctx){ FourXContext * const f = avctx->priv_data; int i; av_freep(&f->bitstream_buffer); f->bitstream_buffer_size=0; for(i=0; i<CFRAME_BUFFER_COUNT; i++){ av_freep(&f->cfrm[i].data); f->cfrm[i].allocated_size= 0; } free_vlc(&f->pre_vlc); return 0; } AVCodec fourxm_decoder = { "4xm", CODEC_TYPE_VIDEO, CODEC_ID_4XM, sizeof(FourXContext), decode_init, NULL, decode_end, decode_frame, /*CODEC_CAP_DR1,*/ };