/* * Copyright (c) 2011 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * The vsrc_color filter from Stefano Sabatini was used as template to create * this */ /** * @file * Mandelbrot fractal renderer */ #include "avfilter.h" #include "formats.h" #include "video.h" #include "internal.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include #include #define SQR(a) ((a)*(a)) enum Outer{ ITERATION_COUNT, NORMALIZED_ITERATION_COUNT, WHITE, OUTZ, }; enum Inner{ BLACK, PERIOD, CONVTIME, MINCOL, }; typedef struct Point { double p[2]; uint32_t val; } Point; typedef struct MBContext { const AVClass *class; int w, h; AVRational frame_rate; uint64_t pts; int maxiter; double start_x; double start_y; double start_scale; double end_scale; double end_pts; double bailout; int outer; int inner; int cache_allocated; int cache_used; Point *point_cache; Point *next_cache; double (*zyklus)[2]; uint32_t dither; double morphxf; double morphyf; double morphamp; } MBContext; #define OFFSET(x) offsetof(MBContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption mandelbrot_options[] = { {"size", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS }, {"s", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS }, {"rate", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS }, {"r", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS }, {"maxiter", "set max iterations number", OFFSET(maxiter), AV_OPT_TYPE_INT, {.i64=7189}, 1, INT_MAX, FLAGS }, {"start_x", "set the initial x position", OFFSET(start_x), AV_OPT_TYPE_DOUBLE, {.dbl=-0.743643887037158704752191506114774}, -100, 100, FLAGS }, {"start_y", "set the initial y position", OFFSET(start_y), AV_OPT_TYPE_DOUBLE, {.dbl=-0.131825904205311970493132056385139}, -100, 100, FLAGS }, {"start_scale", "set the initial scale value", OFFSET(start_scale), AV_OPT_TYPE_DOUBLE, {.dbl=3.0}, 0, FLT_MAX, FLAGS }, {"end_scale", "set the terminal scale value", OFFSET(end_scale), AV_OPT_TYPE_DOUBLE, {.dbl=0.3}, 0, FLT_MAX, FLAGS }, {"end_pts", "set the terminal pts value", OFFSET(end_pts), AV_OPT_TYPE_DOUBLE, {.dbl=400}, 0, INT64_MAX, FLAGS }, {"bailout", "set the bailout value", OFFSET(bailout), AV_OPT_TYPE_DOUBLE, {.dbl=10}, 0, FLT_MAX, FLAGS }, {"morphxf", "set morph x frequency", OFFSET(morphxf), AV_OPT_TYPE_DOUBLE, {.dbl=0.01}, -FLT_MAX, FLT_MAX, FLAGS }, {"morphyf", "set morph y frequency", OFFSET(morphyf), AV_OPT_TYPE_DOUBLE, {.dbl=0.0123}, -FLT_MAX, FLT_MAX, FLAGS }, {"morphamp", "set morph amplitude", OFFSET(morphamp), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -FLT_MAX, FLT_MAX, FLAGS }, {"outer", "set outer coloring mode", OFFSET(outer), AV_OPT_TYPE_INT, {.i64=NORMALIZED_ITERATION_COUNT}, 0, INT_MAX, FLAGS, "outer" }, {"iteration_count", "set iteration count mode", 0, AV_OPT_TYPE_CONST, {.i64=ITERATION_COUNT}, INT_MIN, INT_MAX, FLAGS, "outer" }, {"normalized_iteration_count", "set normalized iteration count mode", 0, AV_OPT_TYPE_CONST, {.i64=NORMALIZED_ITERATION_COUNT}, INT_MIN, INT_MAX, FLAGS, "outer" }, {"white", "set white mode", 0, AV_OPT_TYPE_CONST, {.i64=WHITE}, INT_MIN, INT_MAX, FLAGS, "outer" }, {"outz", "set outz mode", 0, AV_OPT_TYPE_CONST, {.i64=OUTZ}, INT_MIN, INT_MAX, FLAGS, "outer" }, {"inner", "set inner coloring mode", OFFSET(inner), AV_OPT_TYPE_INT, {.i64=MINCOL}, 0, INT_MAX, FLAGS, "inner" }, {"black", "set black mode", 0, AV_OPT_TYPE_CONST, {.i64=BLACK}, INT_MIN, INT_MAX, FLAGS, "inner"}, {"period", "set period mode", 0, AV_OPT_TYPE_CONST, {.i64=PERIOD}, INT_MIN, INT_MAX, FLAGS, "inner"}, {"convergence", "show time until convergence", 0, AV_OPT_TYPE_CONST, {.i64=CONVTIME}, INT_MIN, INT_MAX, FLAGS, "inner"}, {"mincol", "color based on point closest to the origin of the iterations", 0, AV_OPT_TYPE_CONST, {.i64=MINCOL}, INT_MIN, INT_MAX, FLAGS, "inner"}, {NULL}, }; AVFILTER_DEFINE_CLASS(mandelbrot); static av_cold int init(AVFilterContext *ctx) { MBContext *s = ctx->priv; s->bailout *= s->bailout; s->start_scale /=s->h; s->end_scale /=s->h; s->cache_allocated = s->w * s->h * 3; s->cache_used = 0; s->point_cache= av_malloc_array(s->cache_allocated, sizeof(*s->point_cache)); s-> next_cache= av_malloc_array(s->cache_allocated, sizeof(*s-> next_cache)); s-> zyklus = av_malloc_array(s->maxiter + 16, sizeof(*s->zyklus)); return 0; } static av_cold void uninit(AVFilterContext *ctx) { MBContext *s = ctx->priv; av_freep(&s->point_cache); av_freep(&s-> next_cache); av_freep(&s->zyklus); } static int config_props(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; MBContext *s = ctx->priv; if (av_image_check_size(s->w, s->h, 0, ctx) < 0) return AVERROR(EINVAL); outlink->w = s->w; outlink->h = s->h; outlink->time_base = av_inv_q(s->frame_rate); outlink->frame_rate = s->frame_rate; return 0; } static void fill_from_cache(AVFilterContext *ctx, uint32_t *color, int *in_cidx, int *out_cidx, double py, double scale){ MBContext *s = ctx->priv; if(s->morphamp) return; for(; *in_cidx < s->cache_used; (*in_cidx)++){ Point *p= &s->point_cache[*in_cidx]; int x; if(p->p[1] > py) break; x= lrint((p->p[0] - s->start_x) / scale + s->w/2); if(x<0 || x >= s->w) continue; if(color) color[x] = p->val; if(out_cidx && *out_cidx < s->cache_allocated) s->next_cache[(*out_cidx)++]= *p; } } static int interpol(MBContext *s, uint32_t *color, int x, int y, int linesize) { uint32_t a,b,c,d, i; uint32_t ipol=0xFF000000; int dist; if(!x || !y || x+1==s->w || y+1==s->h) return 0; dist= FFMAX(FFABS(x-(s->w>>1))*s->h, FFABS(y-(s->h>>1))*s->w); if(dist<(s->w*s->h>>3)) return 0; a=color[(x+1) + (y+0)*linesize]; b=color[(x-1) + (y+1)*linesize]; c=color[(x+0) + (y+1)*linesize]; d=color[(x+1) + (y+1)*linesize]; if(a&&c){ b= color[(x-1) + (y+0)*linesize]; d= color[(x+0) + (y-1)*linesize]; }else if(b&&d){ a= color[(x+1) + (y-1)*linesize]; c= color[(x-1) + (y-1)*linesize]; }else if(c){ d= color[(x+0) + (y-1)*linesize]; a= color[(x-1) + (y+0)*linesize]; b= color[(x+1) + (y-1)*linesize]; }else if(d){ c= color[(x-1) + (y-1)*linesize]; a= color[(x-1) + (y+0)*linesize]; b= color[(x+1) + (y-1)*linesize]; }else return 0; for(i=0; i<3; i++){ int s= 8*i; uint8_t ac= a>>s; uint8_t bc= b>>s; uint8_t cc= c>>s; uint8_t dc= d>>s; int ipolab= (ac + bc); int ipolcd= (cc + dc); if(FFABS(ipolab - ipolcd) > 5) return 0; if(FFABS(ac-bc)+FFABS(cc-dc) > 20) return 0; ipol |= ((ipolab + ipolcd + 2)/4)<priv; int x,y,i, in_cidx=0, next_cidx=0, tmp_cidx; double scale= s->start_scale*pow(s->end_scale/s->start_scale, pts/s->end_pts); int use_zyklus=0; fill_from_cache(ctx, NULL, &in_cidx, NULL, s->start_y+scale*(-s->h/2-0.5), scale); tmp_cidx= in_cidx; memset(color, 0, sizeof(*color)*s->w); for(y=0; yh; y++){ int y1= y+1; const double ci=s->start_y+scale*(y-s->h/2); fill_from_cache(ctx, NULL, &in_cidx, &next_cidx, ci, scale); if(y1h){ memset(color+linesize*y1, 0, sizeof(*color)*s->w); fill_from_cache(ctx, color+linesize*y1, &tmp_cidx, NULL, ci + 3*scale/2, scale); } for(x=0; xw; x++){ float av_uninit(epsilon); const double cr=s->start_x+scale*(x-s->w/2); double zr=cr; double zi=ci; uint32_t c=0; double dv= s->dither / (double)(1LL<<32); s->dither= s->dither*1664525+1013904223; if(color[x + y*linesize] & 0xFF000000) continue; if(!s->morphamp){ if(interpol(s, color, x, y, linesize)){ if(next_cidx < s->cache_allocated){ s->next_cache[next_cidx ].p[0]= cr; s->next_cache[next_cidx ].p[1]= ci; s->next_cache[next_cidx++].val = color[x + y*linesize]; } continue; } }else{ zr += cos(pts * s->morphxf) * s->morphamp; zi += sin(pts * s->morphyf) * s->morphamp; } use_zyklus= (x==0 || s->inner!=BLACK ||color[x-1 + y*linesize] == 0xFF000000); if(use_zyklus) epsilon= scale*(abs(x-s->w/2) + abs(y-s->h/2))/s->w; #define Z_Z2_C(outr,outi,inr,ini)\ outr= inr*inr - ini*ini + cr;\ outi= 2*inr*ini + ci; #define Z_Z2_C_ZYKLUS(outr,outi,inr,ini, Z)\ Z_Z2_C(outr,outi,inr,ini)\ if(use_zyklus){\ if(Z && fabs(s->zyklus[i>>1][0]-outr)+fabs(s->zyklus[i>>1][1]-outi) <= epsilon)\ break;\ }\ s->zyklus[i][0]= outr;\ s->zyklus[i][1]= outi;\ for(i=0; imaxiter-8; i++){ double t; Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0) i++; Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1) i++; Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0) i++; Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1) i++; Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0) i++; Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1) i++; Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0) i++; Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1) if(zr*zr + zi*zi > s->bailout){ i-= FFMIN(7, i); for(; imaxiter; i++){ zr= s->zyklus[i][0]; zi= s->zyklus[i][1]; if(zr*zr + zi*zi > s->bailout){ switch(s->outer){ case ITERATION_COUNT: zr = i; c = lrintf((sinf(zr)+1)*127) + lrintf((sinf(zr/1.234)+1)*127)*256*256 + lrintf((sinf(zr/100)+1)*127)*256; break; case NORMALIZED_ITERATION_COUNT: zr = i + log2(log(s->bailout) / log(zr*zr + zi*zi)); c = lrintf((sinf(zr)+1)*127) + lrintf((sinf(zr/1.234)+1)*127)*256*256 + lrintf((sinf(zr/100)+1)*127)*256; break; case WHITE: c = 0xFFFFFF; break; case OUTZ: zr /= s->bailout; zi /= s->bailout; c = (((int)(zr*128+128))&0xFF)*256 + (((int)(zi*128+128))&0xFF); } break; } } break; } } if(!c){ if(s->inner==PERIOD){ int j; for(j=i-1; j; j--) if(SQR(s->zyklus[j][0]-zr) + SQR(s->zyklus[j][1]-zi) < epsilon*epsilon*10) break; if(j){ c= i-j; c= ((c<<5)&0xE0) + ((c<<10)&0xE000) + ((c<<15)&0xE00000); } }else if(s->inner==CONVTIME){ c= floor(i*255.0/s->maxiter+dv)*0x010101; } else if(s->inner==MINCOL){ int j; double closest=9999; int closest_index=0; for(j=i-1; j>=0; j--) if(SQR(s->zyklus[j][0]) + SQR(s->zyklus[j][1]) < closest){ closest= SQR(s->zyklus[j][0]) + SQR(s->zyklus[j][1]); closest_index= j; } closest = sqrt(closest); c= lrintf((s->zyklus[closest_index][0]/closest+1)*127+dv) + lrintf((s->zyklus[closest_index][1]/closest+1)*127+dv)*256; } } c |= 0xFF000000; color[x + y*linesize]= c; if(next_cidx < s->cache_allocated){ s->next_cache[next_cidx ].p[0]= cr; s->next_cache[next_cidx ].p[1]= ci; s->next_cache[next_cidx++].val = c; } } fill_from_cache(ctx, NULL, &in_cidx, &next_cidx, ci + scale/2, scale); } FFSWAP(void*, s->next_cache, s->point_cache); s->cache_used = next_cidx; if(s->cache_used == s->cache_allocated) av_log(ctx, AV_LOG_INFO, "Mandelbrot cache is too small!\n"); } static int request_frame(AVFilterLink *link) { MBContext *s = link->src->priv; AVFrame *picref = ff_get_video_buffer(link, s->w, s->h); if (!picref) return AVERROR(ENOMEM); picref->sample_aspect_ratio = (AVRational) {1, 1}; picref->pts = s->pts++; draw_mandelbrot(link->src, (uint32_t*)picref->data[0], picref->linesize[0]/4, picref->pts); return ff_filter_frame(link, picref); } static const AVFilterPad mandelbrot_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, .config_props = config_props, }, }; const AVFilter ff_vsrc_mandelbrot = { .name = "mandelbrot", .description = NULL_IF_CONFIG_SMALL("Render a Mandelbrot fractal."), .priv_size = sizeof(MBContext), .priv_class = &mandelbrot_class, .init = init, .uninit = uninit, .inputs = NULL, FILTER_OUTPUTS(mandelbrot_outputs), FILTER_SINGLE_PIXFMT(AV_PIX_FMT_0BGR32), };