/* * BobWeaver Deinterlacing Filter * Copyright (C) 2016 Thomas Mundt * * Based on YADIF (Yet Another Deinterlacing Filter) * Copyright (C) 2006-2011 Michael Niedermayer * 2010 James Darnley * * With use of Weston 3 Field Deinterlacing Filter algorithm * Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved * Author of de-interlace algorithm: Jim Easterbrook for BBC R&D * Based on the process described by Martin Weston for BBC R&D * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "internal.h" #include "bwdif.h" /* * Filter coefficients coef_lf and coef_hf taken from BBC PH-2071 (Weston 3 Field Deinterlacer). * Used when there is spatial and temporal interpolation. * Filter coefficients coef_sp are used when there is spatial interpolation only. * Adjusted for matching visual sharpness impression of spatial and temporal interpolation. */ static const uint16_t coef_lf[2] = { 4309, 213 }; static const uint16_t coef_hf[3] = { 5570, 3801, 1016 }; static const uint16_t coef_sp[2] = { 5077, 981 }; typedef struct ThreadData { AVFrame *frame; int plane; int w, h; int parity; int tff; } ThreadData; #define FILTER_INTRA() \ for (x = 0; x < w; x++) { \ interpol = (coef_sp[0] * (cur[mrefs] + cur[prefs]) - coef_sp[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \ dst[0] = av_clip(interpol, 0, clip_max); \ \ dst++; \ cur++; \ } #define FILTER1() \ for (x = 0; x < w; x++) { \ int c = cur[mrefs]; \ int d = (prev2[0] + next2[0]) >> 1; \ int e = cur[prefs]; \ int temporal_diff0 = FFABS(prev2[0] - next2[0]); \ int temporal_diff1 =(FFABS(prev[mrefs] - c) + FFABS(prev[prefs] - e)) >> 1; \ int temporal_diff2 =(FFABS(next[mrefs] - c) + FFABS(next[prefs] - e)) >> 1; \ int diff = FFMAX3(temporal_diff0 >> 1, temporal_diff1, temporal_diff2); \ \ if (!diff) { \ dst[0] = d; \ } else { #define SPAT_CHECK() \ int b = ((prev2[mrefs2] + next2[mrefs2]) >> 1) - c; \ int f = ((prev2[prefs2] + next2[prefs2]) >> 1) - e; \ int dc = d - c; \ int de = d - e; \ int max = FFMAX3(de, dc, FFMIN(b, f)); \ int min = FFMIN3(de, dc, FFMAX(b, f)); \ diff = FFMAX3(diff, min, -max); #define FILTER_LINE() \ SPAT_CHECK() \ if (FFABS(c - e) > temporal_diff0) { \ interpol = (((coef_hf[0] * (prev2[0] + next2[0]) \ - coef_hf[1] * (prev2[mrefs2] + next2[mrefs2] + prev2[prefs2] + next2[prefs2]) \ + coef_hf[2] * (prev2[mrefs4] + next2[mrefs4] + prev2[prefs4] + next2[prefs4])) >> 2) \ + coef_lf[0] * (c + e) - coef_lf[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \ } else { \ interpol = (coef_sp[0] * (c + e) - coef_sp[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \ } #define FILTER_EDGE() \ if (spat) { \ SPAT_CHECK() \ } \ interpol = (c + e) >> 1; #define FILTER2() \ if (interpol > d + diff) \ interpol = d + diff; \ else if (interpol < d - diff) \ interpol = d - diff; \ \ dst[0] = av_clip(interpol, 0, clip_max); \ } \ \ dst++; \ cur++; \ prev++; \ next++; \ prev2++; \ next2++; \ } void ff_bwdif_filter_intra_c(void *dst1, void *cur1, int w, int prefs, int mrefs, int prefs3, int mrefs3, int parity, int clip_max) { uint8_t *dst = dst1; uint8_t *cur = cur1; int interpol, x; FILTER_INTRA() } void ff_bwdif_filter_line_c(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int prefs2, int mrefs2, int prefs3, int mrefs3, int prefs4, int mrefs4, int parity, int clip_max) { uint8_t *dst = dst1; uint8_t *prev = prev1; uint8_t *cur = cur1; uint8_t *next = next1; uint8_t *prev2 = parity ? prev : cur ; uint8_t *next2 = parity ? cur : next; int interpol, x; FILTER1() FILTER_LINE() FILTER2() } #define NEXT_LINE()\ dst += d_stride; \ prev += prefs; \ cur += prefs; \ next += prefs; void ff_bwdif_filter_line3_c(void * dst1, int d_stride, const void * prev1, const void * cur1, const void * next1, int s_stride, int w, int parity, int clip_max) { const int prefs = s_stride; uint8_t * dst = dst1; const uint8_t * prev = prev1; const uint8_t * cur = cur1; const uint8_t * next = next1; ff_bwdif_filter_line_c(dst, (void*)prev, (void*)cur, (void*)next, w, prefs, -prefs, prefs * 2, - prefs * 2, prefs * 3, -prefs * 3, prefs * 4, -prefs * 4, parity, clip_max); NEXT_LINE(); memcpy(dst, cur, w); NEXT_LINE(); ff_bwdif_filter_line_c(dst, (void*)prev, (void*)cur, (void*)next, w, prefs, -prefs, prefs * 2, - prefs * 2, prefs * 3, -prefs * 3, prefs * 4, -prefs * 4, parity, clip_max); } void ff_bwdif_filter_edge_c(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int prefs2, int mrefs2, int parity, int clip_max, int spat) { uint8_t *dst = dst1; uint8_t *prev = prev1; uint8_t *cur = cur1; uint8_t *next = next1; uint8_t *prev2 = parity ? prev : cur ; uint8_t *next2 = parity ? cur : next; int interpol, x; FILTER1() FILTER_EDGE() FILTER2() } static void filter_intra_16bit(void *dst1, void *cur1, int w, int prefs, int mrefs, int prefs3, int mrefs3, int parity, int clip_max) { uint16_t *dst = dst1; uint16_t *cur = cur1; int interpol, x; FILTER_INTRA() } static void filter_line_c_16bit(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int prefs2, int mrefs2, int prefs3, int mrefs3, int prefs4, int mrefs4, int parity, int clip_max) { uint16_t *dst = dst1; uint16_t *prev = prev1; uint16_t *cur = cur1; uint16_t *next = next1; uint16_t *prev2 = parity ? prev : cur ; uint16_t *next2 = parity ? cur : next; int interpol, x; FILTER1() FILTER_LINE() FILTER2() } static void filter_edge_16bit(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int prefs2, int mrefs2, int parity, int clip_max, int spat) { uint16_t *dst = dst1; uint16_t *prev = prev1; uint16_t *cur = cur1; uint16_t *next = next1; uint16_t *prev2 = parity ? prev : cur ; uint16_t *next2 = parity ? cur : next; int interpol, x; FILTER1() FILTER_EDGE() FILTER2() } // Round job start line down to multiple of 4 so that if filter_line3 exists // and the frame is a multiple of 4 high then filter_line will never be called static inline int job_start(const int jobnr, const int nb_jobs, const int h) { return jobnr >= nb_jobs ? h : ((h * jobnr) / nb_jobs) & ~3; } static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { BWDIFContext *s = ctx->priv; YADIFContext *yadif = &s->yadif; ThreadData *td = arg; int linesize = yadif->cur->linesize[td->plane]; int clip_max = (1 << (yadif->csp->comp[td->plane].depth)) - 1; int df = (yadif->csp->comp[td->plane].depth + 7) / 8; int refs = linesize / df; int slice_start = job_start(jobnr, nb_jobs, td->h); int slice_end = job_start(jobnr + 1, nb_jobs, td->h); int y; for (y = slice_start; y < slice_end; y++) { if ((y ^ td->parity) & 1) { uint8_t *prev = &yadif->prev->data[td->plane][y * linesize]; uint8_t *cur = &yadif->cur ->data[td->plane][y * linesize]; uint8_t *next = &yadif->next->data[td->plane][y * linesize]; uint8_t *dst = &td->frame->data[td->plane][y * td->frame->linesize[td->plane]]; if (yadif->current_field == YADIF_FIELD_END) { s->filter_intra(dst, cur, td->w, (y + df) < td->h ? refs : -refs, y > (df - 1) ? -refs : refs, (y + 3*df) < td->h ? 3 * refs : -refs, y > (3*df - 1) ? -3 * refs : refs, td->parity ^ td->tff, clip_max); } else if ((y < 4) || ((y + 5) > td->h)) { s->filter_edge(dst, prev, cur, next, td->w, (y + df) < td->h ? refs : -refs, y > (df - 1) ? -refs : refs, refs << 1, -(refs << 1), td->parity ^ td->tff, clip_max, (y < 2) || ((y + 3) > td->h) ? 0 : 1); } else if (s->filter_line3 && y + 2 < slice_end && y + 6 < td->h) { s->filter_line3(dst, td->frame->linesize[td->plane], prev, cur, next, linesize, td->w, td->parity ^ td->tff, clip_max); y += 2; } else { s->filter_line(dst, prev, cur, next, td->w, refs, -refs, refs << 1, -(refs << 1), 3 * refs, -3 * refs, refs << 2, -(refs << 2), td->parity ^ td->tff, clip_max); } } else { memcpy(&td->frame->data[td->plane][y * td->frame->linesize[td->plane]], &yadif->cur->data[td->plane][y * linesize], td->w * df); } } return 0; } static void filter(AVFilterContext *ctx, AVFrame *dstpic, int parity, int tff) { BWDIFContext *bwdif = ctx->priv; YADIFContext *yadif = &bwdif->yadif; ThreadData td = { .frame = dstpic, .parity = parity, .tff = tff }; int i; for (i = 0; i < yadif->csp->nb_components; i++) { int w = dstpic->width; int h = dstpic->height; if (i == 1 || i == 2) { w = AV_CEIL_RSHIFT(w, yadif->csp->log2_chroma_w); h = AV_CEIL_RSHIFT(h, yadif->csp->log2_chroma_h); } td.w = w; td.h = h; td.plane = i; ff_filter_execute(ctx, filter_slice, &td, NULL, FFMIN((h+3)/4, ff_filter_get_nb_threads(ctx))); } if (yadif->current_field == YADIF_FIELD_END) { yadif->current_field = YADIF_FIELD_NORMAL; } } static av_cold void uninit(AVFilterContext *ctx) { BWDIFContext *bwdif = ctx->priv; YADIFContext *yadif = &bwdif->yadif; av_frame_free(&yadif->prev); av_frame_free(&yadif->cur ); av_frame_free(&yadif->next); ff_ccfifo_uninit(&yadif->cc_fifo); } static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; static int config_props(AVFilterLink *link) { AVFilterContext *ctx = link->src; BWDIFContext *s = link->src->priv; YADIFContext *yadif = &s->yadif; int ret; link->time_base = av_mul_q(ctx->inputs[0]->time_base, (AVRational){1, 2}); link->w = link->src->inputs[0]->w; link->h = link->src->inputs[0]->h; if(yadif->mode&1) link->frame_rate = av_mul_q(link->src->inputs[0]->frame_rate, (AVRational){2,1}); else link->frame_rate = ctx->inputs[0]->frame_rate; ret = ff_ccfifo_init(&yadif->cc_fifo, link->frame_rate, ctx); if (ret < 0 ) { av_log(ctx, AV_LOG_ERROR, "Failure to setup CC FIFO queue\n"); return ret; } if (link->w < 3 || link->h < 4) { av_log(ctx, AV_LOG_ERROR, "Video of less than 3 columns or 4 lines is not supported\n"); return AVERROR(EINVAL); } yadif->csp = av_pix_fmt_desc_get(link->format); yadif->filter = filter; ff_bwdif_init_filter_line(s, yadif->csp->comp[0].depth); return 0; } av_cold void ff_bwdif_init_filter_line(BWDIFContext *s, int bit_depth) { s->filter_line3 = 0; if (bit_depth > 8) { s->filter_intra = filter_intra_16bit; s->filter_line = filter_line_c_16bit; s->filter_edge = filter_edge_16bit; } else { s->filter_intra = ff_bwdif_filter_intra_c; s->filter_line = ff_bwdif_filter_line_c; s->filter_edge = ff_bwdif_filter_edge_c; } #if ARCH_X86 ff_bwdif_init_x86(s, bit_depth); #elif ARCH_AARCH64 ff_bwdif_init_aarch64(s, bit_depth); #endif } #define OFFSET(x) offsetof(YADIFContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, INT_MIN, INT_MAX, FLAGS, unit } static const AVOption bwdif_options[] = { { "mode", "specify the interlacing mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=YADIF_MODE_SEND_FIELD}, 0, 1, FLAGS, "mode"}, CONST("send_frame", "send one frame for each frame", YADIF_MODE_SEND_FRAME, "mode"), CONST("send_field", "send one frame for each field", YADIF_MODE_SEND_FIELD, "mode"), { "parity", "specify the assumed picture field parity", OFFSET(parity), AV_OPT_TYPE_INT, {.i64=YADIF_PARITY_AUTO}, -1, 1, FLAGS, "parity" }, CONST("tff", "assume top field first", YADIF_PARITY_TFF, "parity"), CONST("bff", "assume bottom field first", YADIF_PARITY_BFF, "parity"), CONST("auto", "auto detect parity", YADIF_PARITY_AUTO, "parity"), { "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=YADIF_DEINT_ALL}, 0, 1, FLAGS, "deint" }, CONST("all", "deinterlace all frames", YADIF_DEINT_ALL, "deint"), CONST("interlaced", "only deinterlace frames marked as interlaced", YADIF_DEINT_INTERLACED, "deint"), { NULL } }; AVFILTER_DEFINE_CLASS(bwdif); static const AVFilterPad avfilter_vf_bwdif_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = ff_yadif_filter_frame, }, }; static const AVFilterPad avfilter_vf_bwdif_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = ff_yadif_request_frame, .config_props = config_props, }, }; const AVFilter ff_vf_bwdif = { .name = "bwdif", .description = NULL_IF_CONFIG_SMALL("Deinterlace the input image."), .priv_size = sizeof(BWDIFContext), .priv_class = &bwdif_class, .uninit = uninit, FILTER_INPUTS(avfilter_vf_bwdif_inputs), FILTER_OUTPUTS(avfilter_vf_bwdif_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };