/* * H.264 hardware encoding using nvidia nvenc * Copyright (c) 2014 Timo Rothenpieler * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #if defined(_WIN32) || defined(__CYGWIN__) # define CUDA_LIBNAME "nvcuda.dll" # if ARCH_X86_64 # define NVENC_LIBNAME "nvEncodeAPI64.dll" # else # define NVENC_LIBNAME "nvEncodeAPI.dll" # endif #else # define CUDA_LIBNAME "libcuda.so" # define NVENC_LIBNAME "libnvidia-encode.so" #endif #if defined(_WIN32) #include #define dlopen(filename, flags) LoadLibrary(TEXT(filename)) #define dlsym(handle, symbol) GetProcAddress(handle, symbol) #define dlclose(handle) FreeLibrary(handle) #else #include #endif #include "libavutil/hwcontext.h" #include "libavutil/imgutils.h" #include "libavutil/avassert.h" #include "libavutil/mem.h" #include "internal.h" #include "nvenc.h" #define NVENC_CAP 0x30 #define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR || \ rc == NV_ENC_PARAMS_RC_2_PASS_QUALITY || \ rc == NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP) #define LOAD_LIBRARY(l, path) \ do { \ if (!((l) = dlopen(path, RTLD_LAZY))) { \ av_log(avctx, AV_LOG_ERROR, \ "Cannot load %s\n", \ path); \ return AVERROR_UNKNOWN; \ } \ } while (0) #define LOAD_SYMBOL(fun, lib, symbol) \ do { \ if (!((fun) = dlsym(lib, symbol))) { \ av_log(avctx, AV_LOG_ERROR, \ "Cannot load %s\n", \ symbol); \ return AVERROR_UNKNOWN; \ } \ } while (0) const enum AVPixelFormat ff_nvenc_pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NV12, AV_PIX_FMT_P010, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P16, #if CONFIG_CUDA AV_PIX_FMT_CUDA, #endif AV_PIX_FMT_NONE }; #define IS_10BIT(pix_fmt) (pix_fmt == AV_PIX_FMT_P010 || \ pix_fmt == AV_PIX_FMT_YUV444P16) #define IS_YUV444(pix_fmt) (pix_fmt == AV_PIX_FMT_YUV444P || \ pix_fmt == AV_PIX_FMT_YUV444P16) static const struct { NVENCSTATUS nverr; int averr; const char *desc; } nvenc_errors[] = { { NV_ENC_SUCCESS, 0, "success" }, { NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" }, { NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" }, { NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" }, { NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" }, { NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" }, { NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" }, { NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" }, { NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" }, { NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" }, { NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" }, { NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" }, { NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" }, { NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" }, { NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR(ENOBUFS), "not enough buffer" }, { NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" }, { NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" }, { NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" }, { NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" }, { NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" }, { NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" }, { NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" }, { NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" }, { NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" }, { NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" }, { NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" }, }; static int nvenc_map_error(NVENCSTATUS err, const char **desc) { int i; for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) { if (nvenc_errors[i].nverr == err) { if (desc) *desc = nvenc_errors[i].desc; return nvenc_errors[i].averr; } } if (desc) *desc = "unknown error"; return AVERROR_UNKNOWN; } static int nvenc_print_error(void *log_ctx, NVENCSTATUS err, const char *error_string) { const char *desc; int ret; ret = nvenc_map_error(err, &desc); av_log(log_ctx, AV_LOG_ERROR, "%s: %s (%d)\n", error_string, desc, err); return ret; } static av_cold int nvenc_load_libraries(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; PNVENCODEAPICREATEINSTANCE nvenc_create_instance; NVENCSTATUS err; #if CONFIG_CUDA dl_fn->cu_init = cuInit; dl_fn->cu_device_get_count = cuDeviceGetCount; dl_fn->cu_device_get = cuDeviceGet; dl_fn->cu_device_get_name = cuDeviceGetName; dl_fn->cu_device_compute_capability = cuDeviceComputeCapability; dl_fn->cu_ctx_create = cuCtxCreate_v2; dl_fn->cu_ctx_pop_current = cuCtxPopCurrent_v2; dl_fn->cu_ctx_destroy = cuCtxDestroy_v2; #else LOAD_LIBRARY(dl_fn->cuda, CUDA_LIBNAME); LOAD_SYMBOL(dl_fn->cu_init, dl_fn->cuda, "cuInit"); LOAD_SYMBOL(dl_fn->cu_device_get_count, dl_fn->cuda, "cuDeviceGetCount"); LOAD_SYMBOL(dl_fn->cu_device_get, dl_fn->cuda, "cuDeviceGet"); LOAD_SYMBOL(dl_fn->cu_device_get_name, dl_fn->cuda, "cuDeviceGetName"); LOAD_SYMBOL(dl_fn->cu_device_compute_capability, dl_fn->cuda, "cuDeviceComputeCapability"); LOAD_SYMBOL(dl_fn->cu_ctx_create, dl_fn->cuda, "cuCtxCreate_v2"); LOAD_SYMBOL(dl_fn->cu_ctx_pop_current, dl_fn->cuda, "cuCtxPopCurrent_v2"); LOAD_SYMBOL(dl_fn->cu_ctx_destroy, dl_fn->cuda, "cuCtxDestroy_v2"); #endif LOAD_LIBRARY(dl_fn->nvenc, NVENC_LIBNAME); LOAD_SYMBOL(nvenc_create_instance, dl_fn->nvenc, "NvEncodeAPICreateInstance"); dl_fn->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER; err = nvenc_create_instance(&dl_fn->nvenc_funcs); if (err != NV_ENC_SUCCESS) return nvenc_print_error(avctx, err, "Failed to create nvenc instance"); av_log(avctx, AV_LOG_VERBOSE, "Nvenc initialized successfully\n"); return 0; } static av_cold int nvenc_open_session(AVCodecContext *avctx) { NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 }; NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; NVENCSTATUS ret; params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER; params.apiVersion = NVENCAPI_VERSION; params.device = ctx->cu_context; params.deviceType = NV_ENC_DEVICE_TYPE_CUDA; ret = p_nvenc->nvEncOpenEncodeSessionEx(¶ms, &ctx->nvencoder); if (ret != NV_ENC_SUCCESS) { ctx->nvencoder = NULL; return nvenc_print_error(avctx, ret, "OpenEncodeSessionEx failed"); } return 0; } static int nvenc_check_codec_support(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; int i, ret, count = 0; GUID *guids = NULL; ret = p_nvenc->nvEncGetEncodeGUIDCount(ctx->nvencoder, &count); if (ret != NV_ENC_SUCCESS || !count) return AVERROR(ENOSYS); guids = av_malloc(count * sizeof(GUID)); if (!guids) return AVERROR(ENOMEM); ret = p_nvenc->nvEncGetEncodeGUIDs(ctx->nvencoder, guids, count, &count); if (ret != NV_ENC_SUCCESS) { ret = AVERROR(ENOSYS); goto fail; } ret = AVERROR(ENOSYS); for (i = 0; i < count; i++) { if (!memcmp(&guids[i], &ctx->init_encode_params.encodeGUID, sizeof(*guids))) { ret = 0; break; } } fail: av_free(guids); return ret; } static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap) { NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; NV_ENC_CAPS_PARAM params = { 0 }; int ret, val = 0; params.version = NV_ENC_CAPS_PARAM_VER; params.capsToQuery = cap; ret = p_nvenc->nvEncGetEncodeCaps(ctx->nvencoder, ctx->init_encode_params.encodeGUID, ¶ms, &val); if (ret == NV_ENC_SUCCESS) return val; return 0; } static int nvenc_check_capabilities(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int ret; ret = nvenc_check_codec_support(avctx); if (ret < 0) { av_log(avctx, AV_LOG_VERBOSE, "Codec not supported\n"); return ret; } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE); if (IS_YUV444(ctx->data_pix_fmt) && ret <= 0) { av_log(avctx, AV_LOG_VERBOSE, "YUV444P not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOSSLESS_ENCODE); if (ctx->preset >= PRESET_LOSSLESS_DEFAULT && ret <= 0) { av_log(avctx, AV_LOG_VERBOSE, "Lossless encoding not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX); if (ret < avctx->width) { av_log(avctx, AV_LOG_VERBOSE, "Width %d exceeds %d\n", avctx->width, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX); if (ret < avctx->height) { av_log(avctx, AV_LOG_VERBOSE, "Height %d exceeds %d\n", avctx->height, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES); if (ret < avctx->max_b_frames) { av_log(avctx, AV_LOG_VERBOSE, "Max B-frames %d exceed %d\n", avctx->max_b_frames, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_FIELD_ENCODING); if (ret < 1 && avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { av_log(avctx, AV_LOG_VERBOSE, "Interlaced encoding is not supported. Supported level: %d\n", ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_10BIT_ENCODE); if (IS_10BIT(ctx->data_pix_fmt) && ret <= 0) { av_log(avctx, AV_LOG_VERBOSE, "10 bit encode not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOOKAHEAD); if (ctx->rc_lookahead > 0 && ret <= 0) { av_log(avctx, AV_LOG_VERBOSE, "RC lookahead not supported\n"); return AVERROR(ENOSYS); } return 0; } static av_cold int nvenc_check_device(AVCodecContext *avctx, int idx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; char name[128] = { 0}; int major, minor, ret; CUresult cu_res; CUdevice cu_device; CUcontext dummy; int loglevel = AV_LOG_VERBOSE; if (ctx->device == LIST_DEVICES) loglevel = AV_LOG_INFO; cu_res = dl_fn->cu_device_get(&cu_device, idx); if (cu_res != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot access the CUDA device %d\n", idx); return -1; } cu_res = dl_fn->cu_device_get_name(name, sizeof(name), cu_device); if (cu_res != CUDA_SUCCESS) return -1; cu_res = dl_fn->cu_device_compute_capability(&major, &minor, cu_device); if (cu_res != CUDA_SUCCESS) return -1; av_log(avctx, loglevel, "[ GPU #%d - < %s > has Compute SM %d.%d ]\n", idx, name, major, minor); if (((major << 4) | minor) < NVENC_CAP) { av_log(avctx, loglevel, "does not support NVENC\n"); goto fail; } cu_res = dl_fn->cu_ctx_create(&ctx->cu_context_internal, 0, cu_device); if (cu_res != CUDA_SUCCESS) { av_log(avctx, AV_LOG_FATAL, "Failed creating CUDA context for NVENC: 0x%x\n", (int)cu_res); goto fail; } ctx->cu_context = ctx->cu_context_internal; cu_res = dl_fn->cu_ctx_pop_current(&dummy); if (cu_res != CUDA_SUCCESS) { av_log(avctx, AV_LOG_FATAL, "Failed popping CUDA context: 0x%x\n", (int)cu_res); goto fail2; } if ((ret = nvenc_open_session(avctx)) < 0) goto fail2; if ((ret = nvenc_check_capabilities(avctx)) < 0) goto fail3; av_log(avctx, loglevel, "supports NVENC\n"); dl_fn->nvenc_device_count++; if (ctx->device == dl_fn->nvenc_device_count - 1 || ctx->device == ANY_DEVICE) return 0; fail3: p_nvenc->nvEncDestroyEncoder(ctx->nvencoder); ctx->nvencoder = NULL; fail2: dl_fn->cu_ctx_destroy(ctx->cu_context_internal); ctx->cu_context_internal = NULL; fail: return AVERROR(ENOSYS); } static av_cold int nvenc_setup_device(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; switch (avctx->codec->id) { case AV_CODEC_ID_H264: ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_H264_GUID; break; case AV_CODEC_ID_HEVC: ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_HEVC_GUID; break; default: return AVERROR_BUG; } if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { #if CONFIG_CUDA AVHWFramesContext *frames_ctx; AVCUDADeviceContext *device_hwctx; int ret; if (!avctx->hw_frames_ctx) return AVERROR(EINVAL); frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; device_hwctx = frames_ctx->device_ctx->hwctx; ctx->cu_context = device_hwctx->cuda_ctx; ret = nvenc_open_session(avctx); if (ret < 0) return ret; ret = nvenc_check_capabilities(avctx); if (ret < 0) { av_log(avctx, AV_LOG_FATAL, "Provided device doesn't support required NVENC features\n"); return ret; } #else return AVERROR_BUG; #endif } else { int i, nb_devices = 0; if ((dl_fn->cu_init(0)) != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot init CUDA\n"); return AVERROR_UNKNOWN; } if ((dl_fn->cu_device_get_count(&nb_devices)) != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot enumerate the CUDA devices\n"); return AVERROR_UNKNOWN; } if (!nb_devices) { av_log(avctx, AV_LOG_FATAL, "No CUDA capable devices found\n"); return AVERROR_EXTERNAL; } av_log(avctx, AV_LOG_VERBOSE, "%d CUDA capable devices found\n", nb_devices); dl_fn->nvenc_device_count = 0; for (i = 0; i < nb_devices; ++i) { if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES) return 0; } if (ctx->device == LIST_DEVICES) return AVERROR_EXIT; if (!dl_fn->nvenc_device_count) { av_log(avctx, AV_LOG_FATAL, "No NVENC capable devices found\n"); return AVERROR_EXTERNAL; } av_log(avctx, AV_LOG_FATAL, "Requested GPU %d, but only %d GPUs are available!\n", ctx->device, dl_fn->nvenc_device_count); return AVERROR(EINVAL); } return 0; } typedef struct GUIDTuple { const GUID guid; int flags; } GUIDTuple; static void nvenc_map_preset(NvencContext *ctx) { GUIDTuple presets[] = { { NV_ENC_PRESET_DEFAULT_GUID }, { NV_ENC_PRESET_HQ_GUID, NVENC_TWO_PASSES }, /* slow */ { NV_ENC_PRESET_HQ_GUID, NVENC_ONE_PASS }, /* medium */ { NV_ENC_PRESET_HP_GUID, NVENC_ONE_PASS }, /* fast */ { NV_ENC_PRESET_HP_GUID }, { NV_ENC_PRESET_HQ_GUID }, { NV_ENC_PRESET_BD_GUID }, { NV_ENC_PRESET_LOW_LATENCY_DEFAULT_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOW_LATENCY_HQ_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOW_LATENCY_HP_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOSSLESS_DEFAULT_GUID, NVENC_LOSSLESS }, { NV_ENC_PRESET_LOSSLESS_HP_GUID, NVENC_LOSSLESS }, }; GUIDTuple *t = &presets[ctx->preset]; ctx->init_encode_params.presetGUID = t->guid; ctx->flags = t->flags; } static av_cold void set_constqp(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; rc->constQP.qpInterB = avctx->global_quality; rc->constQP.qpInterP = avctx->global_quality; rc->constQP.qpIntra = avctx->global_quality; avctx->qmin = -1; avctx->qmax = -1; } static av_cold void set_vbr(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; int qp_inter_p; if (avctx->qmin >= 0 && avctx->qmax >= 0) { rc->enableMinQP = 1; rc->enableMaxQP = 1; rc->minQP.qpInterB = avctx->qmin; rc->minQP.qpInterP = avctx->qmin; rc->minQP.qpIntra = avctx->qmin; rc->maxQP.qpInterB = avctx->qmax; rc->maxQP.qpInterP = avctx->qmax; rc->maxQP.qpIntra = avctx->qmax; qp_inter_p = (avctx->qmax + 3 * avctx->qmin) / 4; // biased towards Qmin } else if (avctx->qmin >= 0) { rc->enableMinQP = 1; rc->minQP.qpInterB = avctx->qmin; rc->minQP.qpInterP = avctx->qmin; rc->minQP.qpIntra = avctx->qmin; qp_inter_p = avctx->qmin; } else { qp_inter_p = 26; // default to 26 } rc->enableInitialRCQP = 1; rc->initialRCQP.qpInterP = qp_inter_p; if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) { rc->initialRCQP.qpIntra = av_clip( qp_inter_p * fabs(avctx->i_quant_factor) + avctx->i_quant_offset, 0, 51); rc->initialRCQP.qpInterB = av_clip( qp_inter_p * fabs(avctx->b_quant_factor) + avctx->b_quant_offset, 0, 51); } else { rc->initialRCQP.qpIntra = qp_inter_p; rc->initialRCQP.qpInterB = qp_inter_p; } } static av_cold void set_lossless(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; rc->constQP.qpInterB = 0; rc->constQP.qpInterP = 0; rc->constQP.qpIntra = 0; avctx->qmin = -1; avctx->qmax = -1; } static void nvenc_override_rate_control(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; switch (ctx->rc) { case NV_ENC_PARAMS_RC_CONSTQP: if (avctx->global_quality <= 0) { av_log(avctx, AV_LOG_WARNING, "The constant quality rate-control requires " "the 'global_quality' option set.\n"); return; } set_constqp(avctx); return; case NV_ENC_PARAMS_RC_2_PASS_VBR: case NV_ENC_PARAMS_RC_VBR: if (avctx->qmin < 0 && avctx->qmax < 0) { av_log(avctx, AV_LOG_WARNING, "The variable bitrate rate-control requires " "the 'qmin' and/or 'qmax' option set.\n"); set_vbr(avctx); return; } case NV_ENC_PARAMS_RC_VBR_MINQP: if (avctx->qmin < 0) { av_log(avctx, AV_LOG_WARNING, "The variable bitrate rate-control requires " "the 'qmin' option set.\n"); set_vbr(avctx); return; } set_vbr(avctx); break; case NV_ENC_PARAMS_RC_CBR: case NV_ENC_PARAMS_RC_2_PASS_QUALITY: case NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP: break; } rc->rateControlMode = ctx->rc; } static av_cold void nvenc_setup_rate_control(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; if (avctx->bit_rate > 0) { ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate; } else if (ctx->encode_config.rcParams.averageBitRate > 0) { ctx->encode_config.rcParams.maxBitRate = ctx->encode_config.rcParams.averageBitRate; } if (avctx->rc_max_rate > 0) ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate; if (ctx->rc < 0) { if (ctx->flags & NVENC_ONE_PASS) ctx->twopass = 0; if (ctx->flags & NVENC_TWO_PASSES) ctx->twopass = 1; if (ctx->twopass < 0) ctx->twopass = (ctx->flags & NVENC_LOWLATENCY) != 0; if (ctx->cbr) { if (ctx->twopass) { ctx->rc = NV_ENC_PARAMS_RC_2_PASS_QUALITY; } else { ctx->rc = NV_ENC_PARAMS_RC_CBR; } } else if (avctx->global_quality > 0) { ctx->rc = NV_ENC_PARAMS_RC_CONSTQP; } else if (ctx->twopass) { ctx->rc = NV_ENC_PARAMS_RC_2_PASS_VBR; } else if (avctx->qmin >= 0 && avctx->qmax >= 0) { ctx->rc = NV_ENC_PARAMS_RC_VBR_MINQP; } } if (ctx->flags & NVENC_LOSSLESS) { set_lossless(avctx); } else if (ctx->rc >= 0) { nvenc_override_rate_control(avctx); } else { ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR; set_vbr(avctx); } if (avctx->rc_buffer_size > 0) { ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size; } else if (ctx->encode_config.rcParams.averageBitRate > 0) { ctx->encode_config.rcParams.vbvBufferSize = 2 * ctx->encode_config.rcParams.averageBitRate; } if (ctx->rc_lookahead > 0) { ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = FFMIN(ctx->rc_lookahead, 32); } } static av_cold int nvenc_setup_h264_config(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->encode_config; NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config; NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P); vui->colourDescriptionPresentFlag = (avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2); vui->videoSignalTypePresentFlag = (vui->colourDescriptionPresentFlag || vui->videoFormat != 5 || vui->videoFullRangeFlag != 0); h264->sliceMode = 3; h264->sliceModeData = 1; h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; h264->outputAUD = 1; if (avctx->refs >= 0) { /* 0 means "let the hardware decide" */ h264->maxNumRefFrames = avctx->refs; } if (avctx->gop_size >= 0) { h264->idrPeriod = cc->gopLength; } if (IS_CBR(cc->rcParams.rateControlMode)) { h264->outputBufferingPeriodSEI = 1; h264->outputPictureTimingSEI = 1; } if (cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_QUALITY || cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP || cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_VBR) { h264->adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE; h264->fmoMode = NV_ENC_H264_FMO_DISABLE; } if (ctx->flags & NVENC_LOSSLESS) { h264->qpPrimeYZeroTransformBypassFlag = 1; } else { switch(ctx->profile) { case NV_ENC_H264_PROFILE_BASELINE: cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID; avctx->profile = FF_PROFILE_H264_BASELINE; break; case NV_ENC_H264_PROFILE_MAIN: cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID; avctx->profile = FF_PROFILE_H264_MAIN; break; case NV_ENC_H264_PROFILE_HIGH: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID; avctx->profile = FF_PROFILE_H264_HIGH; break; case NV_ENC_H264_PROFILE_HIGH_444P: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID; avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE; break; } } // force setting profile as high444p if input is AV_PIX_FMT_YUV444P if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P) { cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID; avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE; } h264->chromaFormatIDC = avctx->profile == FF_PROFILE_H264_HIGH_444_PREDICTIVE ? 3 : 1; h264->level = ctx->level; return 0; } static av_cold int nvenc_setup_hevc_config(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->encode_config; NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig; NV_ENC_CONFIG_HEVC_VUI_PARAMETERS *vui = &hevc->hevcVUIParameters; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P); vui->colourDescriptionPresentFlag = (avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2); vui->videoSignalTypePresentFlag = (vui->colourDescriptionPresentFlag || vui->videoFormat != 5 || vui->videoFullRangeFlag != 0); hevc->sliceMode = 3; hevc->sliceModeData = 1; hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; hevc->outputAUD = 1; if (avctx->refs >= 0) { /* 0 means "let the hardware decide" */ hevc->maxNumRefFramesInDPB = avctx->refs; } if (avctx->gop_size >= 0) { hevc->idrPeriod = cc->gopLength; } if (IS_CBR(cc->rcParams.rateControlMode)) { hevc->outputBufferingPeriodSEI = 1; hevc->outputPictureTimingSEI = 1; } switch(ctx->profile) { case NV_ENC_HEVC_PROFILE_MAIN: cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN; break; case NV_ENC_HEVC_PROFILE_MAIN_10: cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN_10; break; } // force setting profile as main10 if input is 10 bit if (IS_10BIT(ctx->data_pix_fmt)) { cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN_10; } hevc->chromaFormatIDC = IS_YUV444(ctx->data_pix_fmt) ? 3 : 1; hevc->pixelBitDepthMinus8 = IS_10BIT(ctx->data_pix_fmt) ? 2 : 0; hevc->level = ctx->level; hevc->tier = ctx->tier; return 0; } static av_cold int nvenc_setup_codec_config(AVCodecContext *avctx) { switch (avctx->codec->id) { case AV_CODEC_ID_H264: return nvenc_setup_h264_config(avctx); case AV_CODEC_ID_HEVC: return nvenc_setup_hevc_config(avctx); /* Earlier switch/case will return if unknown codec is passed. */ } return 0; } static av_cold int nvenc_setup_encoder(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NV_ENC_PRESET_CONFIG preset_config = { 0 }; NVENCSTATUS nv_status = NV_ENC_SUCCESS; AVCPBProperties *cpb_props; int res = 0; int dw, dh; ctx->encode_config.version = NV_ENC_CONFIG_VER; ctx->init_encode_params.version = NV_ENC_INITIALIZE_PARAMS_VER; ctx->init_encode_params.encodeHeight = avctx->height; ctx->init_encode_params.encodeWidth = avctx->width; ctx->init_encode_params.encodeConfig = &ctx->encode_config; nvenc_map_preset(ctx); preset_config.version = NV_ENC_PRESET_CONFIG_VER; preset_config.presetCfg.version = NV_ENC_CONFIG_VER; nv_status = p_nvenc->nvEncGetEncodePresetConfig(ctx->nvencoder, ctx->init_encode_params.encodeGUID, ctx->init_encode_params.presetGUID, &preset_config); if (nv_status != NV_ENC_SUCCESS) return nvenc_print_error(avctx, nv_status, "Cannot get the preset configuration"); memcpy(&ctx->encode_config, &preset_config.presetCfg, sizeof(ctx->encode_config)); ctx->encode_config.version = NV_ENC_CONFIG_VER; if (avctx->sample_aspect_ratio.num && avctx->sample_aspect_ratio.den && (avctx->sample_aspect_ratio.num != 1 || avctx->sample_aspect_ratio.num != 1)) { av_reduce(&dw, &dh, avctx->width * avctx->sample_aspect_ratio.num, avctx->height * avctx->sample_aspect_ratio.den, 1024 * 1024); ctx->init_encode_params.darHeight = dh; ctx->init_encode_params.darWidth = dw; } else { ctx->init_encode_params.darHeight = avctx->height; ctx->init_encode_params.darWidth = avctx->width; } // De-compensate for hardware, dubiously, trying to compensate for // playback at 704 pixel width. if (avctx->width == 720 && (avctx->height == 480 || avctx->height == 576)) { av_reduce(&dw, &dh, ctx->init_encode_params.darWidth * 44, ctx->init_encode_params.darHeight * 45, 1024 * 1024); ctx->init_encode_params.darHeight = dh; ctx->init_encode_params.darWidth = dw; } ctx->init_encode_params.frameRateNum = avctx->time_base.den; ctx->init_encode_params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame; ctx->init_encode_params.enableEncodeAsync = 0; ctx->init_encode_params.enablePTD = 1; if (avctx->gop_size > 0) { if (avctx->max_b_frames >= 0) { /* 0 is intra-only, 1 is I/P only, 2 is one B-Frame, 3 two B-frames, and so on. */ ctx->encode_config.frameIntervalP = avctx->max_b_frames + 1; } ctx->encode_config.gopLength = avctx->gop_size; } else if (avctx->gop_size == 0) { ctx->encode_config.frameIntervalP = 0; ctx->encode_config.gopLength = 1; } ctx->initial_pts[0] = AV_NOPTS_VALUE; ctx->initial_pts[1] = AV_NOPTS_VALUE; nvenc_setup_rate_control(avctx); if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD; } else { ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME; } res = nvenc_setup_codec_config(avctx); if (res) return res; nv_status = p_nvenc->nvEncInitializeEncoder(ctx->nvencoder, &ctx->init_encode_params); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "InitializeEncoder failed"); } if (ctx->encode_config.frameIntervalP > 1) avctx->has_b_frames = 2; if (ctx->encode_config.rcParams.averageBitRate > 0) avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate; cpb_props = ff_add_cpb_side_data(avctx); if (!cpb_props) return AVERROR(ENOMEM); cpb_props->max_bitrate = ctx->encode_config.rcParams.maxBitRate; cpb_props->avg_bitrate = avctx->bit_rate; cpb_props->buffer_size = ctx->encode_config.rcParams.vbvBufferSize; return 0; } static av_cold int nvenc_alloc_surface(AVCodecContext *avctx, int idx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NVENCSTATUS nv_status; NV_ENC_CREATE_BITSTREAM_BUFFER allocOut = { 0 }; allocOut.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER; switch (ctx->data_pix_fmt) { case AV_PIX_FMT_YUV420P: ctx->surfaces[idx].format = NV_ENC_BUFFER_FORMAT_YV12_PL; break; case AV_PIX_FMT_NV12: ctx->surfaces[idx].format = NV_ENC_BUFFER_FORMAT_NV12_PL; break; case AV_PIX_FMT_P010: ctx->surfaces[idx].format = NV_ENC_BUFFER_FORMAT_YUV420_10BIT; break; case AV_PIX_FMT_YUV444P: ctx->surfaces[idx].format = NV_ENC_BUFFER_FORMAT_YUV444_PL; break; case AV_PIX_FMT_YUV444P16: ctx->surfaces[idx].format = NV_ENC_BUFFER_FORMAT_YUV444_10BIT; break; default: av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format\n"); return AVERROR(EINVAL); } if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { ctx->surfaces[idx].in_ref = av_frame_alloc(); if (!ctx->surfaces[idx].in_ref) return AVERROR(ENOMEM); } else { NV_ENC_CREATE_INPUT_BUFFER allocSurf = { 0 }; allocSurf.version = NV_ENC_CREATE_INPUT_BUFFER_VER; allocSurf.width = (avctx->width + 31) & ~31; allocSurf.height = (avctx->height + 31) & ~31; allocSurf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED; allocSurf.bufferFmt = ctx->surfaces[idx].format; nv_status = p_nvenc->nvEncCreateInputBuffer(ctx->nvencoder, &allocSurf); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "CreateInputBuffer failed"); } ctx->surfaces[idx].input_surface = allocSurf.inputBuffer; ctx->surfaces[idx].width = allocSurf.width; ctx->surfaces[idx].height = allocSurf.height; } ctx->surfaces[idx].lockCount = 0; /* 1MB is large enough to hold most output frames. * NVENC increases this automaticaly if it is not enough. */ allocOut.size = 1024 * 1024; allocOut.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED; nv_status = p_nvenc->nvEncCreateBitstreamBuffer(ctx->nvencoder, &allocOut); if (nv_status != NV_ENC_SUCCESS) { int err = nvenc_print_error(avctx, nv_status, "CreateBitstreamBuffer failed"); if (avctx->pix_fmt != AV_PIX_FMT_CUDA) p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[idx].input_surface); av_frame_free(&ctx->surfaces[idx].in_ref); return err; } ctx->surfaces[idx].output_surface = allocOut.bitstreamBuffer; ctx->surfaces[idx].size = allocOut.size; return 0; } static av_cold int nvenc_setup_surfaces(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int i, res; int num_mbs = ((avctx->width + 15) >> 4) * ((avctx->height + 15) >> 4); ctx->nb_surfaces = FFMAX((num_mbs >= 8160) ? 32 : 48, ctx->nb_surfaces); ctx->async_depth = FFMIN(ctx->async_depth, ctx->nb_surfaces - 1); ctx->surfaces = av_mallocz_array(ctx->nb_surfaces, sizeof(*ctx->surfaces)); if (!ctx->surfaces) return AVERROR(ENOMEM); ctx->timestamp_list = av_fifo_alloc(ctx->nb_surfaces * sizeof(int64_t)); if (!ctx->timestamp_list) return AVERROR(ENOMEM); ctx->output_surface_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*)); if (!ctx->output_surface_queue) return AVERROR(ENOMEM); ctx->output_surface_ready_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*)); if (!ctx->output_surface_ready_queue) return AVERROR(ENOMEM); for (i = 0; i < ctx->nb_surfaces; i++) { if ((res = nvenc_alloc_surface(avctx, i)) < 0) return res; } return 0; } static av_cold int nvenc_setup_extradata(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NVENCSTATUS nv_status; uint32_t outSize = 0; char tmpHeader[256]; NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 }; payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER; payload.spsppsBuffer = tmpHeader; payload.inBufferSize = sizeof(tmpHeader); payload.outSPSPPSPayloadSize = &outSize; nv_status = p_nvenc->nvEncGetSequenceParams(ctx->nvencoder, &payload); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "GetSequenceParams failed"); } avctx->extradata_size = outSize; avctx->extradata = av_mallocz(outSize + AV_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) { return AVERROR(ENOMEM); } memcpy(avctx->extradata, tmpHeader, outSize); return 0; } av_cold int ff_nvenc_encode_close(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; int i; /* the encoder has to be flushed before it can be closed */ if (ctx->nvencoder) { NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER, .encodePicFlags = NV_ENC_PIC_FLAG_EOS }; p_nvenc->nvEncEncodePicture(ctx->nvencoder, ¶ms); } av_fifo_freep(&ctx->timestamp_list); av_fifo_freep(&ctx->output_surface_ready_queue); av_fifo_freep(&ctx->output_surface_queue); if (ctx->surfaces && avctx->pix_fmt == AV_PIX_FMT_CUDA) { for (i = 0; i < ctx->nb_surfaces; ++i) { if (ctx->surfaces[i].input_surface) { p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->surfaces[i].in_map.mappedResource); } } for (i = 0; i < ctx->nb_registered_frames; i++) { if (ctx->registered_frames[i].regptr) p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr); } ctx->nb_registered_frames = 0; } if (ctx->surfaces) { for (i = 0; i < ctx->nb_surfaces; ++i) { if (avctx->pix_fmt != AV_PIX_FMT_CUDA) p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[i].input_surface); av_frame_free(&ctx->surfaces[i].in_ref); p_nvenc->nvEncDestroyBitstreamBuffer(ctx->nvencoder, ctx->surfaces[i].output_surface); } } av_freep(&ctx->surfaces); ctx->nb_surfaces = 0; if (ctx->nvencoder) p_nvenc->nvEncDestroyEncoder(ctx->nvencoder); ctx->nvencoder = NULL; if (ctx->cu_context_internal) dl_fn->cu_ctx_destroy(ctx->cu_context_internal); ctx->cu_context = ctx->cu_context_internal = NULL; if (dl_fn->nvenc) dlclose(dl_fn->nvenc); dl_fn->nvenc = NULL; dl_fn->nvenc_device_count = 0; #if !CONFIG_CUDA if (dl_fn->cuda) dlclose(dl_fn->cuda); dl_fn->cuda = NULL; #endif dl_fn->cu_init = NULL; dl_fn->cu_device_get_count = NULL; dl_fn->cu_device_get = NULL; dl_fn->cu_device_get_name = NULL; dl_fn->cu_device_compute_capability = NULL; dl_fn->cu_ctx_create = NULL; dl_fn->cu_ctx_pop_current = NULL; dl_fn->cu_ctx_destroy = NULL; av_log(avctx, AV_LOG_VERBOSE, "Nvenc unloaded\n"); return 0; } av_cold int ff_nvenc_encode_init(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int ret; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { AVHWFramesContext *frames_ctx; if (!avctx->hw_frames_ctx) { av_log(avctx, AV_LOG_ERROR, "hw_frames_ctx must be set when using GPU frames as input\n"); return AVERROR(EINVAL); } frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; ctx->data_pix_fmt = frames_ctx->sw_format; } else { ctx->data_pix_fmt = avctx->pix_fmt; } if ((ret = nvenc_load_libraries(avctx)) < 0) return ret; if ((ret = nvenc_setup_device(avctx)) < 0) return ret; if ((ret = nvenc_setup_encoder(avctx)) < 0) return ret; if ((ret = nvenc_setup_surfaces(avctx)) < 0) return ret; if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { if ((ret = nvenc_setup_extradata(avctx)) < 0) return ret; } return 0; } static NvencSurface *get_free_frame(NvencContext *ctx) { int i; for (i = 0; i < ctx->nb_surfaces; ++i) { if (!ctx->surfaces[i].lockCount) { ctx->surfaces[i].lockCount = 1; return &ctx->surfaces[i]; } } return NULL; } static int nvenc_copy_frame(AVCodecContext *avctx, NvencSurface *inSurf, NV_ENC_LOCK_INPUT_BUFFER *lockBufferParams, const AVFrame *frame) { uint8_t *buf = lockBufferParams->bufferDataPtr; int off = inSurf->height * lockBufferParams->pitch; if (frame->format == AV_PIX_FMT_YUV420P) { av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[0], frame->linesize[0], avctx->width, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch >> 1, frame->data[2], frame->linesize[2], avctx->width >> 1, avctx->height >> 1); buf += off >> 2; av_image_copy_plane(buf, lockBufferParams->pitch >> 1, frame->data[1], frame->linesize[1], avctx->width >> 1, avctx->height >> 1); } else if (frame->format == AV_PIX_FMT_NV12) { av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[0], frame->linesize[0], avctx->width, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[1], frame->linesize[1], avctx->width, avctx->height >> 1); } else if (frame->format == AV_PIX_FMT_P010) { av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[0], frame->linesize[0], avctx->width << 1, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[1], frame->linesize[1], avctx->width << 1, avctx->height >> 1); } else if (frame->format == AV_PIX_FMT_YUV444P) { av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[0], frame->linesize[0], avctx->width, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[1], frame->linesize[1], avctx->width, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[2], frame->linesize[2], avctx->width, avctx->height); } else if (frame->format == AV_PIX_FMT_YUV444P16) { av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[0], frame->linesize[0], avctx->width << 1, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[1], frame->linesize[1], avctx->width << 1, avctx->height); buf += off; av_image_copy_plane(buf, lockBufferParams->pitch, frame->data[2], frame->linesize[2], avctx->width << 1, avctx->height); } else { av_log(avctx, AV_LOG_FATAL, "Invalid pixel format!\n"); return AVERROR(EINVAL); } return 0; } static int nvenc_find_free_reg_resource(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; int i; if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) { for (i = 0; i < ctx->nb_registered_frames; i++) { if (!ctx->registered_frames[i].mapped) { if (ctx->registered_frames[i].regptr) { p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr); ctx->registered_frames[i].regptr = NULL; } return i; } } } else { return ctx->nb_registered_frames++; } av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n"); return AVERROR(ENOMEM); } static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; NV_ENC_REGISTER_RESOURCE reg; int i, idx, ret; for (i = 0; i < ctx->nb_registered_frames; i++) { if (ctx->registered_frames[i].ptr == (CUdeviceptr)frame->data[0]) return i; } idx = nvenc_find_free_reg_resource(avctx); if (idx < 0) return idx; reg.version = NV_ENC_REGISTER_RESOURCE_VER; reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR; reg.width = frames_ctx->width; reg.height = frames_ctx->height; reg.bufferFormat = ctx->surfaces[0].format; reg.pitch = frame->linesize[0]; reg.resourceToRegister = frame->data[0]; ret = p_nvenc->nvEncRegisterResource(ctx->nvencoder, ®); if (ret != NV_ENC_SUCCESS) { nvenc_print_error(avctx, ret, "Error registering an input resource"); return AVERROR_UNKNOWN; } ctx->registered_frames[idx].ptr = (CUdeviceptr)frame->data[0]; ctx->registered_frames[idx].regptr = reg.registeredResource; return idx; } static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame, NvencSurface *nvenc_frame) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; int res; NVENCSTATUS nv_status; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { int reg_idx = nvenc_register_frame(avctx, frame); if (reg_idx < 0) { av_log(avctx, AV_LOG_ERROR, "Could not register an input CUDA frame\n"); return reg_idx; } res = av_frame_ref(nvenc_frame->in_ref, frame); if (res < 0) return res; nvenc_frame->in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER; nvenc_frame->in_map.registeredResource = ctx->registered_frames[reg_idx].regptr; nv_status = p_nvenc->nvEncMapInputResource(ctx->nvencoder, &nvenc_frame->in_map); if (nv_status != NV_ENC_SUCCESS) { av_frame_unref(nvenc_frame->in_ref); return nvenc_print_error(avctx, nv_status, "Error mapping an input resource"); } ctx->registered_frames[reg_idx].mapped = 1; nvenc_frame->reg_idx = reg_idx; nvenc_frame->input_surface = nvenc_frame->in_map.mappedResource; return 0; } else { NV_ENC_LOCK_INPUT_BUFFER lockBufferParams = { 0 }; lockBufferParams.version = NV_ENC_LOCK_INPUT_BUFFER_VER; lockBufferParams.inputBuffer = nvenc_frame->input_surface; nv_status = p_nvenc->nvEncLockInputBuffer(ctx->nvencoder, &lockBufferParams); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "Failed locking nvenc input buffer"); } res = nvenc_copy_frame(avctx, nvenc_frame, &lockBufferParams, frame); nv_status = p_nvenc->nvEncUnlockInputBuffer(ctx->nvencoder, nvenc_frame->input_surface); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "Failed unlocking input buffer!"); } return res; } } static void nvenc_codec_specific_pic_params(AVCodecContext *avctx, NV_ENC_PIC_PARAMS *params) { NvencContext *ctx = avctx->priv_data; switch (avctx->codec->id) { case AV_CODEC_ID_H264: params->codecPicParams.h264PicParams.sliceMode = ctx->encode_config.encodeCodecConfig.h264Config.sliceMode; params->codecPicParams.h264PicParams.sliceModeData = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData; break; case AV_CODEC_ID_HEVC: params->codecPicParams.hevcPicParams.sliceMode = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceMode; params->codecPicParams.hevcPicParams.sliceModeData = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData; break; } } static inline void timestamp_queue_enqueue(AVFifoBuffer* queue, int64_t timestamp) { av_fifo_generic_write(queue, ×tamp, sizeof(timestamp), NULL); } static inline int64_t timestamp_queue_dequeue(AVFifoBuffer* queue) { int64_t timestamp = AV_NOPTS_VALUE; if (av_fifo_size(queue) > 0) av_fifo_generic_read(queue, ×tamp, sizeof(timestamp), NULL); return timestamp; } static int nvenc_set_timestamp(AVCodecContext *avctx, NV_ENC_LOCK_BITSTREAM *params, AVPacket *pkt) { NvencContext *ctx = avctx->priv_data; pkt->pts = params->outputTimeStamp; /* generate the first dts by linearly extrapolating the * first two pts values to the past */ if (avctx->max_b_frames > 0 && !ctx->first_packet_output && ctx->initial_pts[1] != AV_NOPTS_VALUE) { int64_t ts0 = ctx->initial_pts[0], ts1 = ctx->initial_pts[1]; int64_t delta; if ((ts0 < 0 && ts1 > INT64_MAX + ts0) || (ts0 > 0 && ts1 < INT64_MIN + ts0)) return AVERROR(ERANGE); delta = ts1 - ts0; if ((delta < 0 && ts0 > INT64_MAX + delta) || (delta > 0 && ts0 < INT64_MIN + delta)) return AVERROR(ERANGE); pkt->dts = ts0 - delta; ctx->first_packet_output = 1; return 0; } pkt->dts = timestamp_queue_dequeue(ctx->timestamp_list); return 0; } static int process_output_surface(AVCodecContext *avctx, AVPacket *pkt, NvencSurface *tmpoutsurf) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; uint32_t slice_mode_data; uint32_t *slice_offsets; NV_ENC_LOCK_BITSTREAM lock_params = { 0 }; NVENCSTATUS nv_status; int res = 0; enum AVPictureType pict_type; switch (avctx->codec->id) { case AV_CODEC_ID_H264: slice_mode_data = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData; break; case AV_CODEC_ID_H265: slice_mode_data = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown codec name\n"); res = AVERROR(EINVAL); goto error; } slice_offsets = av_mallocz(slice_mode_data * sizeof(*slice_offsets)); if (!slice_offsets) goto error; lock_params.version = NV_ENC_LOCK_BITSTREAM_VER; lock_params.doNotWait = 0; lock_params.outputBitstream = tmpoutsurf->output_surface; lock_params.sliceOffsets = slice_offsets; nv_status = p_nvenc->nvEncLockBitstream(ctx->nvencoder, &lock_params); if (nv_status != NV_ENC_SUCCESS) { res = nvenc_print_error(avctx, nv_status, "Failed locking bitstream buffer"); goto error; } if (res = ff_alloc_packet2(avctx, pkt, lock_params.bitstreamSizeInBytes,0)) { p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); goto error; } memcpy(pkt->data, lock_params.bitstreamBufferPtr, lock_params.bitstreamSizeInBytes); nv_status = p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); if (nv_status != NV_ENC_SUCCESS) nvenc_print_error(avctx, nv_status, "Failed unlocking bitstream buffer, expect the gates of mordor to open"); if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, tmpoutsurf->in_map.mappedResource); av_frame_unref(tmpoutsurf->in_ref); ctx->registered_frames[tmpoutsurf->reg_idx].mapped = 0; tmpoutsurf->input_surface = NULL; } switch (lock_params.pictureType) { case NV_ENC_PIC_TYPE_IDR: pkt->flags |= AV_PKT_FLAG_KEY; case NV_ENC_PIC_TYPE_I: pict_type = AV_PICTURE_TYPE_I; break; case NV_ENC_PIC_TYPE_P: pict_type = AV_PICTURE_TYPE_P; break; case NV_ENC_PIC_TYPE_B: pict_type = AV_PICTURE_TYPE_B; break; case NV_ENC_PIC_TYPE_BI: pict_type = AV_PICTURE_TYPE_BI; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown picture type encountered, expect the output to be broken.\n"); av_log(avctx, AV_LOG_ERROR, "Please report this error and include as much information on how to reproduce it as possible.\n"); res = AVERROR_EXTERNAL; goto error; } #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->coded_frame->pict_type = pict_type; FF_ENABLE_DEPRECATION_WARNINGS #endif ff_side_data_set_encoder_stats(pkt, (lock_params.frameAvgQP - 1) * FF_QP2LAMBDA, NULL, 0, pict_type); res = nvenc_set_timestamp(avctx, &lock_params, pkt); if (res < 0) goto error2; av_free(slice_offsets); return 0; error: timestamp_queue_dequeue(ctx->timestamp_list); error2: av_free(slice_offsets); return res; } static int output_ready(AVCodecContext *avctx, int flush) { NvencContext *ctx = avctx->priv_data; int nb_ready, nb_pending; /* when B-frames are enabled, we wait for two initial timestamps to * calculate the first dts */ if (!flush && avctx->max_b_frames > 0 && (ctx->initial_pts[0] == AV_NOPTS_VALUE || ctx->initial_pts[1] == AV_NOPTS_VALUE)) return 0; nb_ready = av_fifo_size(ctx->output_surface_ready_queue) / sizeof(NvencSurface*); nb_pending = av_fifo_size(ctx->output_surface_queue) / sizeof(NvencSurface*); if (flush) return nb_ready > 0; return (nb_ready > 0) && (nb_ready + nb_pending >= ctx->async_depth); } int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { NVENCSTATUS nv_status; NvencSurface *tmpoutsurf, *inSurf; int res; NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NV_ENC_PIC_PARAMS pic_params = { 0 }; pic_params.version = NV_ENC_PIC_PARAMS_VER; if (frame) { inSurf = get_free_frame(ctx); if (!inSurf) { av_log(avctx, AV_LOG_ERROR, "No free surfaces\n"); return AVERROR_BUG; } res = nvenc_upload_frame(avctx, frame, inSurf); if (res) { inSurf->lockCount = 0; return res; } pic_params.inputBuffer = inSurf->input_surface; pic_params.bufferFmt = inSurf->format; pic_params.inputWidth = avctx->width; pic_params.inputHeight = avctx->height; pic_params.outputBitstream = inSurf->output_surface; if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { if (frame->top_field_first) pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM; else pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP; } else { pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME; } pic_params.encodePicFlags = 0; pic_params.inputTimeStamp = frame->pts; nvenc_codec_specific_pic_params(avctx, &pic_params); } else { pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS; } nv_status = p_nvenc->nvEncEncodePicture(ctx->nvencoder, &pic_params); if (nv_status != NV_ENC_SUCCESS && nv_status != NV_ENC_ERR_NEED_MORE_INPUT) return nvenc_print_error(avctx, nv_status, "EncodePicture failed!"); if (frame) { av_fifo_generic_write(ctx->output_surface_queue, &inSurf, sizeof(inSurf), NULL); timestamp_queue_enqueue(ctx->timestamp_list, frame->pts); if (ctx->initial_pts[0] == AV_NOPTS_VALUE) ctx->initial_pts[0] = frame->pts; else if (ctx->initial_pts[1] == AV_NOPTS_VALUE) ctx->initial_pts[1] = frame->pts; } /* all the pending buffers are now ready for output */ if (nv_status == NV_ENC_SUCCESS) { while (av_fifo_size(ctx->output_surface_queue) > 0) { av_fifo_generic_read(ctx->output_surface_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL); av_fifo_generic_write(ctx->output_surface_ready_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL); } } if (output_ready(avctx, !frame)) { av_fifo_generic_read(ctx->output_surface_ready_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL); res = process_output_surface(avctx, pkt, tmpoutsurf); if (res) return res; av_assert0(tmpoutsurf->lockCount); tmpoutsurf->lockCount--; *got_packet = 1; } else { *got_packet = 0; } return 0; }