/* * UDP prototype streaming system * Copyright (c) 2000, 2001, 2002 Fabrice Bellard * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * UDP protocol */ #define _DEFAULT_SOURCE #define _BSD_SOURCE /* Needed for using struct ip_mreq with recent glibc */ #include "avformat.h" #include "avio_internal.h" #include "libavutil/avassert.h" #include "libavutil/parseutils.h" #include "libavutil/fifo.h" #include "libavutil/intreadwrite.h" #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/log.h" #include "libavutil/time.h" #include "internal.h" #include "network.h" #include "os_support.h" #include "url.h" #include "ip.h" #ifdef __APPLE__ #include "TargetConditionals.h" #endif #if HAVE_UDPLITE_H #include "udplite.h" #else /* On many Linux systems, udplite.h is missing but the kernel supports UDP-Lite. * So, we provide a fallback here. */ #define UDPLITE_SEND_CSCOV 10 #define UDPLITE_RECV_CSCOV 11 #endif #ifndef IPPROTO_UDPLITE #define IPPROTO_UDPLITE 136 #endif #if HAVE_W32THREADS #undef HAVE_PTHREAD_CANCEL #define HAVE_PTHREAD_CANCEL 1 #endif #if HAVE_PTHREAD_CANCEL #include "libavutil/thread.h" #endif #ifndef IPV6_ADD_MEMBERSHIP #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #define IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP #endif #define UDP_TX_BUF_SIZE 32768 #define UDP_RX_BUF_SIZE 393216 #define UDP_MAX_PKT_SIZE 65536 #define UDP_HEADER_SIZE 8 typedef struct UDPContext { const AVClass *class; int udp_fd; int ttl; int udplite_coverage; int buffer_size; int pkt_size; int is_multicast; int is_broadcast; int local_port; int reuse_socket; int overrun_nonfatal; struct sockaddr_storage dest_addr; int dest_addr_len; int is_connected; /* Circular Buffer variables for use in UDP receive code */ int circular_buffer_size; AVFifo *fifo; int circular_buffer_error; int64_t bitrate; /* number of bits to send per second */ int64_t burst_bits; int close_req; #if HAVE_PTHREAD_CANCEL pthread_t circular_buffer_thread; pthread_mutex_t mutex; pthread_cond_t cond; int thread_started; #endif uint8_t tmp[UDP_MAX_PKT_SIZE+4]; int remaining_in_dg; char *localaddr; int timeout; struct sockaddr_storage local_addr_storage; char *sources; char *block; IPSourceFilters filters; } UDPContext; #define OFFSET(x) offsetof(UDPContext, x) #define D AV_OPT_FLAG_DECODING_PARAM #define E AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "buffer_size", "System data size (in bytes)", OFFSET(buffer_size), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E }, { "bitrate", "Bits to send per second", OFFSET(bitrate), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E }, { "burst_bits", "Max length of bursts in bits (when using bitrate)", OFFSET(burst_bits), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E }, { "localport", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, D|E }, { "local_port", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E }, { "localaddr", "Local address", OFFSET(localaddr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { "udplite_coverage", "choose UDPLite head size which should be validated by checksum", OFFSET(udplite_coverage), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, D|E }, { "pkt_size", "Maximum UDP packet size", OFFSET(pkt_size), AV_OPT_TYPE_INT, { .i64 = 1472 }, -1, INT_MAX, .flags = D|E }, { "reuse", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, D|E }, { "reuse_socket", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, .flags = D|E }, { "broadcast", "explicitly allow or disallow broadcast destination", OFFSET(is_broadcast), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, E }, { "ttl", "Time to live (multicast only)", OFFSET(ttl), AV_OPT_TYPE_INT, { .i64 = 16 }, 0, 255, E }, { "connect", "set if connect() should be called on socket", OFFSET(is_connected), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, .flags = D|E }, { "fifo_size", "set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes", OFFSET(circular_buffer_size), AV_OPT_TYPE_INT, {.i64 = 7*4096}, 0, INT_MAX, D }, { "overrun_nonfatal", "survive in case of UDP receiving circular buffer overrun", OFFSET(overrun_nonfatal), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, D }, { "timeout", "set raise error timeout, in microseconds (only in read mode)",OFFSET(timeout), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, D }, { "sources", "Source list", OFFSET(sources), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { "block", "Block list", OFFSET(block), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { NULL } }; static const AVClass udp_class = { .class_name = "udp", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static const AVClass udplite_context_class = { .class_name = "udplite", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static int udp_set_multicast_ttl(int sockfd, int mcastTTL, struct sockaddr *addr, void *logctx) { #ifdef IP_MULTICAST_TTL if (addr->sa_family == AF_INET) { if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &mcastTTL, sizeof(mcastTTL)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IP_MULTICAST_TTL)"); return ff_neterrno(); } } #endif #if defined(IPPROTO_IPV6) && defined(IPV6_MULTICAST_HOPS) if (addr->sa_family == AF_INET6) { if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &mcastTTL, sizeof(mcastTTL)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IPV6_MULTICAST_HOPS)"); return ff_neterrno(); } } #endif return 0; } static int udp_join_multicast_group(int sockfd, struct sockaddr *addr, struct sockaddr *local_addr, void *logctx) { #ifdef IP_ADD_MEMBERSHIP if (addr->sa_family == AF_INET) { struct ip_mreq mreq; mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (local_addr) mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr; else mreq.imr_interface.s_addr = INADDR_ANY; if (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IP_ADD_MEMBERSHIP)"); return ff_neterrno(); } } #endif #if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6) if (addr->sa_family == AF_INET6) { struct ipv6_mreq mreq6; memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr)); //TODO: Interface index should be looked up from local_addr mreq6.ipv6mr_interface = 0; if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IPV6_ADD_MEMBERSHIP)"); return ff_neterrno(); } } #endif return 0; } static int udp_leave_multicast_group(int sockfd, struct sockaddr *addr, struct sockaddr *local_addr, void *logctx) { #ifdef IP_DROP_MEMBERSHIP if (addr->sa_family == AF_INET) { struct ip_mreq mreq; mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (local_addr) mreq.imr_interface = ((struct sockaddr_in *)local_addr)->sin_addr; else mreq.imr_interface.s_addr = INADDR_ANY; if (setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IP_DROP_MEMBERSHIP)"); return -1; } } #endif #if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6) if (addr->sa_family == AF_INET6) { struct ipv6_mreq mreq6; memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr)); //TODO: Interface index should be looked up from local_addr mreq6.ipv6mr_interface = 0; if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_DROP_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) { ff_log_net_error(logctx, AV_LOG_ERROR, "setsockopt(IPV6_DROP_MEMBERSHIP)"); return -1; } } #endif return 0; } static int udp_set_multicast_sources(URLContext *h, int sockfd, struct sockaddr *addr, int addr_len, struct sockaddr_storage *local_addr, struct sockaddr_storage *sources, int nb_sources, int include) { int i; if (addr->sa_family != AF_INET) { #if HAVE_STRUCT_GROUP_SOURCE_REQ && defined(MCAST_BLOCK_SOURCE) /* For IPv4 prefer the old approach, as that alone works reliably on * Windows and it also supports supplying the interface based on its * address. */ int i; for (i = 0; i < nb_sources; i++) { struct group_source_req mreqs; int level = addr->sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; //TODO: Interface index should be looked up from local_addr mreqs.gsr_interface = 0; memcpy(&mreqs.gsr_group, addr, addr_len); memcpy(&mreqs.gsr_source, &sources[i], sizeof(*sources)); if (setsockopt(sockfd, level, include ? MCAST_JOIN_SOURCE_GROUP : MCAST_BLOCK_SOURCE, (const void *)&mreqs, sizeof(mreqs)) < 0) { if (include) ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(MCAST_JOIN_SOURCE_GROUP)"); else ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(MCAST_BLOCK_SOURCE)"); return ff_neterrno(); } } return 0; #else av_log(h, AV_LOG_ERROR, "Setting multicast sources only supported for IPv4\n"); return AVERROR(EINVAL); #endif } #if HAVE_STRUCT_IP_MREQ_SOURCE && defined(IP_BLOCK_SOURCE) for (i = 0; i < nb_sources; i++) { struct ip_mreq_source mreqs; if (sources[i].ss_family != AF_INET) { av_log(h, AV_LOG_ERROR, "Source/block address %d is of incorrect protocol family\n", i + 1); return AVERROR(EINVAL); } mreqs.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (local_addr) mreqs.imr_interface = ((struct sockaddr_in *)local_addr)->sin_addr; else mreqs.imr_interface.s_addr = INADDR_ANY; mreqs.imr_sourceaddr.s_addr = ((struct sockaddr_in *)&sources[i])->sin_addr.s_addr; if (setsockopt(sockfd, IPPROTO_IP, include ? IP_ADD_SOURCE_MEMBERSHIP : IP_BLOCK_SOURCE, (const void *)&mreqs, sizeof(mreqs)) < 0) { if (include) ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(IP_ADD_SOURCE_MEMBERSHIP)"); else ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(IP_BLOCK_SOURCE)"); return ff_neterrno(); } } #else return AVERROR(ENOSYS); #endif return 0; } static int udp_set_url(URLContext *h, struct sockaddr_storage *addr, const char *hostname, int port) { struct addrinfo *res0; int addr_len; res0 = ff_ip_resolve_host(h, hostname, port, SOCK_DGRAM, AF_UNSPEC, 0); if (!res0) return AVERROR(EIO); memcpy(addr, res0->ai_addr, res0->ai_addrlen); addr_len = res0->ai_addrlen; freeaddrinfo(res0); return addr_len; } static int udp_socket_create(URLContext *h, struct sockaddr_storage *addr, socklen_t *addr_len, const char *localaddr) { UDPContext *s = h->priv_data; int udp_fd = -1; struct addrinfo *res0, *res; int family = AF_UNSPEC; if (((struct sockaddr *) &s->dest_addr)->sa_family) family = ((struct sockaddr *) &s->dest_addr)->sa_family; res0 = ff_ip_resolve_host(h, (localaddr && localaddr[0]) ? localaddr : NULL, s->local_port, SOCK_DGRAM, family, AI_PASSIVE); if (!res0) goto fail; for (res = res0; res; res=res->ai_next) { if (s->udplite_coverage) udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, IPPROTO_UDPLITE, h); else udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, 0, h); if (udp_fd != -1) break; ff_log_net_error(h, AV_LOG_ERROR, "socket"); } if (udp_fd < 0) goto fail; memcpy(addr, res->ai_addr, res->ai_addrlen); *addr_len = res->ai_addrlen; freeaddrinfo(res0); return udp_fd; fail: if (udp_fd >= 0) closesocket(udp_fd); if(res0) freeaddrinfo(res0); return -1; } static int udp_port(struct sockaddr_storage *addr, int addr_len) { char sbuf[sizeof(int)*3+1]; int error; if ((error = getnameinfo((struct sockaddr *)addr, addr_len, NULL, 0, sbuf, sizeof(sbuf), NI_NUMERICSERV)) != 0) { av_log(NULL, AV_LOG_ERROR, "getnameinfo: %s\n", gai_strerror(error)); return -1; } return strtol(sbuf, NULL, 10); } /** * If no filename is given to av_open_input_file because you want to * get the local port first, then you must call this function to set * the remote server address. * * url syntax: udp://host:port[?option=val...] * option: 'ttl=n' : set the ttl value (for multicast only) * 'localport=n' : set the local port * 'pkt_size=n' : set max packet size * 'reuse=1' : enable reusing the socket * 'overrun_nonfatal=1': survive in case of circular buffer overrun * * @param h media file context * @param uri of the remote server * @return zero if no error. */ int ff_udp_set_remote_url(URLContext *h, const char *uri) { UDPContext *s = h->priv_data; char hostname[256], buf[10]; int port; const char *p; av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri); /* set the destination address */ s->dest_addr_len = udp_set_url(h, &s->dest_addr, hostname, port); if (s->dest_addr_len < 0) { return AVERROR(EIO); } s->is_multicast = ff_is_multicast_address((struct sockaddr*) &s->dest_addr); p = strchr(uri, '?'); if (p) { if (av_find_info_tag(buf, sizeof(buf), "connect", p)) { int was_connected = s->is_connected; s->is_connected = strtol(buf, NULL, 10); if (s->is_connected && !was_connected) { if (connect(s->udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) { s->is_connected = 0; ff_log_net_error(h, AV_LOG_ERROR, "connect"); return AVERROR(EIO); } } } } return 0; } /** * Return the local port used by the UDP connection * @param h media file context * @return the local port number */ int ff_udp_get_local_port(URLContext *h) { UDPContext *s = h->priv_data; return s->local_port; } /** * Return the udp file handle for select() usage to wait for several RTP * streams at the same time. * @param h media file context */ static int udp_get_file_handle(URLContext *h) { UDPContext *s = h->priv_data; return s->udp_fd; } #if HAVE_PTHREAD_CANCEL static void *circular_buffer_task_rx( void *_URLContext) { URLContext *h = _URLContext; UDPContext *s = h->priv_data; int old_cancelstate; pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate); pthread_mutex_lock(&s->mutex); if (ff_socket_nonblock(s->udp_fd, 0) < 0) { av_log(h, AV_LOG_ERROR, "Failed to set blocking mode"); s->circular_buffer_error = AVERROR(EIO); goto end; } while(1) { int len; struct sockaddr_storage addr; socklen_t addr_len = sizeof(addr); pthread_mutex_unlock(&s->mutex); /* Blocking operations are always cancellation points; see "General Information" / "Thread Cancelation Overview" in Single Unix. */ pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate); len = recvfrom(s->udp_fd, s->tmp+4, sizeof(s->tmp)-4, 0, (struct sockaddr *)&addr, &addr_len); pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate); pthread_mutex_lock(&s->mutex); if (len < 0) { if (ff_neterrno() != AVERROR(EAGAIN) && ff_neterrno() != AVERROR(EINTR)) { s->circular_buffer_error = ff_neterrno(); goto end; } continue; } if (ff_ip_check_source_lists(&addr, &s->filters)) continue; AV_WL32(s->tmp, len); if (av_fifo_can_write(s->fifo) < len + 4) { /* No Space left */ if (s->overrun_nonfatal) { av_log(h, AV_LOG_WARNING, "Circular buffer overrun. " "Surviving due to overrun_nonfatal option\n"); continue; } else { av_log(h, AV_LOG_ERROR, "Circular buffer overrun. " "To avoid, increase fifo_size URL option. " "To survive in such case, use overrun_nonfatal option\n"); s->circular_buffer_error = AVERROR(EIO); goto end; } } av_fifo_write(s->fifo, s->tmp, len + 4); pthread_cond_signal(&s->cond); } end: pthread_cond_signal(&s->cond); pthread_mutex_unlock(&s->mutex); return NULL; } static void *circular_buffer_task_tx( void *_URLContext) { URLContext *h = _URLContext; UDPContext *s = h->priv_data; int64_t target_timestamp = av_gettime_relative(); int64_t start_timestamp = av_gettime_relative(); int64_t sent_bits = 0; int64_t burst_interval = s->bitrate ? (s->burst_bits * 1000000 / s->bitrate) : 0; int64_t max_delay = s->bitrate ? ((int64_t)h->max_packet_size * 8 * 1000000 / s->bitrate + 1) : 0; pthread_mutex_lock(&s->mutex); if (ff_socket_nonblock(s->udp_fd, 0) < 0) { av_log(h, AV_LOG_ERROR, "Failed to set blocking mode"); s->circular_buffer_error = AVERROR(EIO); goto end; } for(;;) { int len; const uint8_t *p; uint8_t tmp[4]; int64_t timestamp; len = av_fifo_can_read(s->fifo); while (len<4) { if (s->close_req) goto end; pthread_cond_wait(&s->cond, &s->mutex); len = av_fifo_can_read(s->fifo); } av_fifo_read(s->fifo, tmp, 4); len = AV_RL32(tmp); av_assert0(len >= 0); av_assert0(len <= sizeof(s->tmp)); av_fifo_read(s->fifo, s->tmp, len); pthread_mutex_unlock(&s->mutex); if (s->bitrate) { timestamp = av_gettime_relative(); if (timestamp < target_timestamp) { int64_t delay = target_timestamp - timestamp; if (delay > max_delay) { delay = max_delay; start_timestamp = timestamp + delay; sent_bits = 0; } av_usleep(delay); } else { if (timestamp - burst_interval > target_timestamp) { start_timestamp = timestamp - burst_interval; sent_bits = 0; } } sent_bits += len * 8; target_timestamp = start_timestamp + sent_bits * 1000000 / s->bitrate; } p = s->tmp; while (len) { int ret; av_assert0(len > 0); if (!s->is_connected) { ret = sendto (s->udp_fd, p, len, 0, (struct sockaddr *) &s->dest_addr, s->dest_addr_len); } else ret = send(s->udp_fd, p, len, 0); if (ret >= 0) { len -= ret; p += ret; } else { ret = ff_neterrno(); if (ret != AVERROR(EAGAIN) && ret != AVERROR(EINTR)) { pthread_mutex_lock(&s->mutex); s->circular_buffer_error = ret; pthread_mutex_unlock(&s->mutex); return NULL; } } } pthread_mutex_lock(&s->mutex); } end: pthread_mutex_unlock(&s->mutex); return NULL; } #endif /* put it in UDP context */ /* return non zero if error */ static int udp_open(URLContext *h, const char *uri, int flags) { char hostname[1024]; int port, udp_fd = -1, tmp, bind_ret = -1, dscp = -1; UDPContext *s = h->priv_data; int is_output; const char *p; char buf[256]; struct sockaddr_storage my_addr; socklen_t len; int ret; h->is_streamed = 1; is_output = !(flags & AVIO_FLAG_READ); if (s->buffer_size < 0) s->buffer_size = is_output ? UDP_TX_BUF_SIZE : UDP_RX_BUF_SIZE; if (s->sources) { if ((ret = ff_ip_parse_sources(h, s->sources, &s->filters)) < 0) goto fail; } if (s->block) { if ((ret = ff_ip_parse_blocks(h, s->block, &s->filters)) < 0) goto fail; } p = strchr(uri, '?'); if (p) { if (av_find_info_tag(buf, sizeof(buf), "reuse", p)) { char *endptr = NULL; s->reuse_socket = strtol(buf, &endptr, 10); /* assume if no digits were found it is a request to enable it */ if (buf == endptr) s->reuse_socket = 1; } if (av_find_info_tag(buf, sizeof(buf), "overrun_nonfatal", p)) { char *endptr = NULL; s->overrun_nonfatal = strtol(buf, &endptr, 10); /* assume if no digits were found it is a request to enable it */ if (buf == endptr) s->overrun_nonfatal = 1; if (!HAVE_PTHREAD_CANCEL) av_log(h, AV_LOG_WARNING, "'overrun_nonfatal' option was set but it is not supported " "on this build (pthread support is required)\n"); } if (av_find_info_tag(buf, sizeof(buf), "ttl", p)) { s->ttl = strtol(buf, NULL, 10); if (s->ttl < 0 || s->ttl > 255) { av_log(h, AV_LOG_ERROR, "ttl(%d) should be in range [0,255]\n", s->ttl); ret = AVERROR(EINVAL); goto fail; } } if (av_find_info_tag(buf, sizeof(buf), "udplite_coverage", p)) { s->udplite_coverage = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "localport", p)) { s->local_port = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "pkt_size", p)) { s->pkt_size = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "buffer_size", p)) { s->buffer_size = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "connect", p)) { s->is_connected = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "dscp", p)) { dscp = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "fifo_size", p)) { s->circular_buffer_size = strtol(buf, NULL, 10); if (!HAVE_PTHREAD_CANCEL) av_log(h, AV_LOG_WARNING, "'circular_buffer_size' option was set but it is not supported " "on this build (pthread support is required)\n"); } if (av_find_info_tag(buf, sizeof(buf), "bitrate", p)) { s->bitrate = strtoll(buf, NULL, 10); if (!HAVE_PTHREAD_CANCEL) av_log(h, AV_LOG_WARNING, "'bitrate' option was set but it is not supported " "on this build (pthread support is required)\n"); } if (av_find_info_tag(buf, sizeof(buf), "burst_bits", p)) { s->burst_bits = strtoll(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "localaddr", p)) { av_freep(&s->localaddr); s->localaddr = av_strdup(buf); } if (av_find_info_tag(buf, sizeof(buf), "sources", p)) { if ((ret = ff_ip_parse_sources(h, buf, &s->filters)) < 0) goto fail; } if (av_find_info_tag(buf, sizeof(buf), "block", p)) { if ((ret = ff_ip_parse_blocks(h, buf, &s->filters)) < 0) goto fail; } if (!is_output && av_find_info_tag(buf, sizeof(buf), "timeout", p)) s->timeout = strtol(buf, NULL, 10); if (is_output && av_find_info_tag(buf, sizeof(buf), "broadcast", p)) s->is_broadcast = strtol(buf, NULL, 10); } /* handling needed to support options picking from both AVOption and URL */ s->circular_buffer_size *= 188; if (flags & AVIO_FLAG_WRITE) { h->max_packet_size = s->pkt_size; } else { h->max_packet_size = UDP_MAX_PKT_SIZE; } h->rw_timeout = s->timeout; /* fill the dest addr */ av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri); /* XXX: fix av_url_split */ if (hostname[0] == '\0' || hostname[0] == '?') { /* only accepts null hostname if input */ if (!(flags & AVIO_FLAG_READ)) { ret = AVERROR(EINVAL); goto fail; } } else { if ((ret = ff_udp_set_remote_url(h, uri)) < 0) goto fail; } if ((s->is_multicast || s->local_port <= 0) && (h->flags & AVIO_FLAG_READ)) s->local_port = port; udp_fd = udp_socket_create(h, &my_addr, &len, s->localaddr); if (udp_fd < 0) { ret = AVERROR(EIO); goto fail; } s->local_addr_storage=my_addr; //store for future multicast join /* Follow the requested reuse option, unless it's multicast in which * case enable reuse unless explicitly disabled. */ if (s->reuse_socket > 0 || (s->is_multicast && s->reuse_socket < 0)) { s->reuse_socket = 1; if (setsockopt (udp_fd, SOL_SOCKET, SO_REUSEADDR, &(s->reuse_socket), sizeof(s->reuse_socket)) != 0) { ret = ff_neterrno(); goto fail; } } if (s->is_broadcast) { #ifdef SO_BROADCAST if (setsockopt (udp_fd, SOL_SOCKET, SO_BROADCAST, &(s->is_broadcast), sizeof(s->is_broadcast)) != 0) { ret = ff_neterrno(); goto fail; } #else ret = AVERROR(ENOSYS); goto fail; #endif } /* Set the checksum coverage for UDP-Lite (RFC 3828) for sending and receiving. * The receiver coverage has to be less than or equal to the sender coverage. * Otherwise, the receiver will drop all packets. */ if (s->udplite_coverage) { if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0) av_log(h, AV_LOG_WARNING, "socket option UDPLITE_SEND_CSCOV not available"); if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0) av_log(h, AV_LOG_WARNING, "socket option UDPLITE_RECV_CSCOV not available"); } if (dscp >= 0) { dscp <<= 2; if (setsockopt (udp_fd, IPPROTO_IP, IP_TOS, &dscp, sizeof(dscp)) != 0) { ret = ff_neterrno(); goto fail; } } /* If multicast, try binding the multicast address first, to avoid * receiving UDP packets from other sources aimed at the same UDP * port. This fails on windows. This makes sending to the same address * using sendto() fail, so only do it if we're opened in read-only mode. */ if (s->is_multicast && (h->flags & AVIO_FLAG_READ)) { bind_ret = bind(udp_fd,(struct sockaddr *)&s->dest_addr, len); } /* bind to the local address if not multicast or if the multicast * bind failed */ /* the bind is needed to give a port to the socket now */ if (bind_ret < 0 && bind(udp_fd,(struct sockaddr *)&my_addr, len) < 0) { ff_log_net_error(h, AV_LOG_ERROR, "bind failed"); ret = ff_neterrno(); goto fail; } len = sizeof(my_addr); getsockname(udp_fd, (struct sockaddr *)&my_addr, &len); s->local_port = udp_port(&my_addr, len); if (s->is_multicast) { if (h->flags & AVIO_FLAG_WRITE) { /* output */ if ((ret = udp_set_multicast_ttl(udp_fd, s->ttl, (struct sockaddr *)&s->dest_addr, h)) < 0) goto fail; } if (h->flags & AVIO_FLAG_READ) { /* input */ if (s->filters.nb_include_addrs) { if ((ret = udp_set_multicast_sources(h, udp_fd, (struct sockaddr *)&s->dest_addr, s->dest_addr_len, &s->local_addr_storage, s->filters.include_addrs, s->filters.nb_include_addrs, 1)) < 0) goto fail; } else { if ((ret = udp_join_multicast_group(udp_fd, (struct sockaddr *)&s->dest_addr, (struct sockaddr *)&s->local_addr_storage, h)) < 0) goto fail; } if (s->filters.nb_exclude_addrs) { if ((ret = udp_set_multicast_sources(h, udp_fd, (struct sockaddr *)&s->dest_addr, s->dest_addr_len, &s->local_addr_storage, s->filters.exclude_addrs, s->filters.nb_exclude_addrs, 0)) < 0) goto fail; } } } if (is_output) { /* limit the tx buf size to limit latency */ tmp = s->buffer_size; if (setsockopt(udp_fd, SOL_SOCKET, SO_SNDBUF, &tmp, sizeof(tmp)) < 0) { ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(SO_SNDBUF)"); ret = ff_neterrno(); goto fail; } } else { /* set udp recv buffer size to the requested value (default UDP_RX_BUF_SIZE) */ tmp = s->buffer_size; if (setsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, sizeof(tmp)) < 0) { ff_log_net_error(h, AV_LOG_WARNING, "setsockopt(SO_RECVBUF)"); } len = sizeof(tmp); if (getsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, &len) < 0) { ff_log_net_error(h, AV_LOG_WARNING, "getsockopt(SO_RCVBUF)"); } else { av_log(h, AV_LOG_DEBUG, "end receive buffer size reported is %d\n", tmp); if(tmp < s->buffer_size) av_log(h, AV_LOG_WARNING, "attempted to set receive buffer to size %d but it only ended up set as %d\n", s->buffer_size, tmp); } /* make the socket non-blocking */ ff_socket_nonblock(udp_fd, 1); } if (s->is_connected) { if (connect(udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) { ff_log_net_error(h, AV_LOG_ERROR, "connect"); ret = ff_neterrno(); goto fail; } } s->udp_fd = udp_fd; #if HAVE_PTHREAD_CANCEL /* Create thread in case of: 1. Input and circular_buffer_size is set 2. Output and bitrate and circular_buffer_size is set */ if (is_output && s->bitrate && !s->circular_buffer_size) { /* Warn user in case of 'circular_buffer_size' is not set */ av_log(h, AV_LOG_WARNING,"'bitrate' option was set but 'circular_buffer_size' is not, but required\n"); } if ((!is_output && s->circular_buffer_size) || (is_output && s->bitrate && s->circular_buffer_size)) { /* start the task going */ s->fifo = av_fifo_alloc2(s->circular_buffer_size, 1, 0); if (!s->fifo) { ret = AVERROR(ENOMEM); goto fail; } ret = pthread_mutex_init(&s->mutex, NULL); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n", strerror(ret)); ret = AVERROR(ret); goto fail; } ret = pthread_cond_init(&s->cond, NULL); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_cond_init failed : %s\n", strerror(ret)); ret = AVERROR(ret); goto cond_fail; } ret = pthread_create(&s->circular_buffer_thread, NULL, is_output?circular_buffer_task_tx:circular_buffer_task_rx, h); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_create failed : %s\n", strerror(ret)); ret = AVERROR(ret); goto thread_fail; } s->thread_started = 1; } #endif return 0; #if HAVE_PTHREAD_CANCEL thread_fail: pthread_cond_destroy(&s->cond); cond_fail: pthread_mutex_destroy(&s->mutex); #endif fail: if (udp_fd >= 0) closesocket(udp_fd); av_fifo_freep2(&s->fifo); ff_ip_reset_filters(&s->filters); return ret; } static int udplite_open(URLContext *h, const char *uri, int flags) { UDPContext *s = h->priv_data; // set default checksum coverage s->udplite_coverage = UDP_HEADER_SIZE; return udp_open(h, uri, flags); } static int udp_read(URLContext *h, uint8_t *buf, int size) { UDPContext *s = h->priv_data; int ret; struct sockaddr_storage addr; socklen_t addr_len = sizeof(addr); #if HAVE_PTHREAD_CANCEL int avail, nonblock = h->flags & AVIO_FLAG_NONBLOCK; if (s->fifo) { pthread_mutex_lock(&s->mutex); do { avail = av_fifo_can_read(s->fifo); if (avail) { // >=size) { uint8_t tmp[4]; av_fifo_read(s->fifo, tmp, 4); avail = AV_RL32(tmp); if(avail > size){ av_log(h, AV_LOG_WARNING, "Part of datagram lost due to insufficient buffer size\n"); avail = size; } av_fifo_read(s->fifo, buf, avail); av_fifo_drain2(s->fifo, AV_RL32(tmp) - avail); pthread_mutex_unlock(&s->mutex); return avail; } else if(s->circular_buffer_error){ int err = s->circular_buffer_error; pthread_mutex_unlock(&s->mutex); return err; } else if(nonblock) { pthread_mutex_unlock(&s->mutex); return AVERROR(EAGAIN); } else { /* FIXME: using the monotonic clock would be better, but it does not exist on all supported platforms. */ int64_t t = av_gettime() + 100000; struct timespec tv = { .tv_sec = t / 1000000, .tv_nsec = (t % 1000000) * 1000 }; int err = pthread_cond_timedwait(&s->cond, &s->mutex, &tv); if (err) { pthread_mutex_unlock(&s->mutex); return AVERROR(err == ETIMEDOUT ? EAGAIN : err); } nonblock = 1; } } while(1); } #endif if (!(h->flags & AVIO_FLAG_NONBLOCK)) { ret = ff_network_wait_fd(s->udp_fd, 0); if (ret < 0) return ret; } ret = recvfrom(s->udp_fd, buf, size, 0, (struct sockaddr *)&addr, &addr_len); if (ret < 0) return ff_neterrno(); if (ff_ip_check_source_lists(&addr, &s->filters)) return AVERROR(EINTR); return ret; } static int udp_write(URLContext *h, const uint8_t *buf, int size) { UDPContext *s = h->priv_data; int ret; #if HAVE_PTHREAD_CANCEL if (s->fifo) { uint8_t tmp[4]; pthread_mutex_lock(&s->mutex); /* Return error if last tx failed. Here we can't know on which packet error was, but it needs to know that error exists. */ if (s->circular_buffer_error<0) { int err = s->circular_buffer_error; pthread_mutex_unlock(&s->mutex); return err; } if (av_fifo_can_write(s->fifo) < size + 4) { /* What about a partial packet tx ? */ pthread_mutex_unlock(&s->mutex); return AVERROR(ENOMEM); } AV_WL32(tmp, size); av_fifo_write(s->fifo, tmp, 4); /* size of packet */ av_fifo_write(s->fifo, buf, size); /* the data */ pthread_cond_signal(&s->cond); pthread_mutex_unlock(&s->mutex); return size; } #endif if (!(h->flags & AVIO_FLAG_NONBLOCK)) { ret = ff_network_wait_fd(s->udp_fd, 1); if (ret < 0) return ret; } if (!s->is_connected) { ret = sendto (s->udp_fd, buf, size, 0, (struct sockaddr *) &s->dest_addr, s->dest_addr_len); } else ret = send(s->udp_fd, buf, size, 0); return ret < 0 ? ff_neterrno() : ret; } static int udp_close(URLContext *h) { UDPContext *s = h->priv_data; #if HAVE_PTHREAD_CANCEL // Request close once writing is finished if (s->thread_started && !(h->flags & AVIO_FLAG_READ)) { pthread_mutex_lock(&s->mutex); s->close_req = 1; pthread_cond_signal(&s->cond); pthread_mutex_unlock(&s->mutex); } #endif if (s->is_multicast && (h->flags & AVIO_FLAG_READ)) udp_leave_multicast_group(s->udp_fd, (struct sockaddr *)&s->dest_addr, (struct sockaddr *)&s->local_addr_storage, h); #if HAVE_PTHREAD_CANCEL if (s->thread_started) { int ret; // Cancel only read, as write has been signaled as success to the user if (h->flags & AVIO_FLAG_READ) { #ifdef _WIN32 /* recvfrom() is not a cancellation point for win32, so we shutdown * the socket and abort pending IO, subsequent recvfrom() calls * will fail with WSAESHUTDOWN causing the thread to exit. */ shutdown(s->udp_fd, SD_RECEIVE); CancelIoEx((HANDLE)(SOCKET)s->udp_fd, NULL); #else pthread_cancel(s->circular_buffer_thread); #endif } ret = pthread_join(s->circular_buffer_thread, NULL); if (ret != 0) av_log(h, AV_LOG_ERROR, "pthread_join(): %s\n", strerror(ret)); pthread_mutex_destroy(&s->mutex); pthread_cond_destroy(&s->cond); } #endif closesocket(s->udp_fd); av_fifo_freep2(&s->fifo); ff_ip_reset_filters(&s->filters); return 0; } const URLProtocol ff_udp_protocol = { .name = "udp", .url_open = udp_open, .url_read = udp_read, .url_write = udp_write, .url_close = udp_close, .url_get_file_handle = udp_get_file_handle, .priv_data_size = sizeof(UDPContext), .priv_data_class = &udp_class, .flags = URL_PROTOCOL_FLAG_NETWORK, }; const URLProtocol ff_udplite_protocol = { .name = "udplite", .url_open = udplite_open, .url_read = udp_read, .url_write = udp_write, .url_close = udp_close, .url_get_file_handle = udp_get_file_handle, .priv_data_size = sizeof(UDPContext), .priv_data_class = &udplite_context_class, .flags = URL_PROTOCOL_FLAG_NETWORK, };