/* * MPEG-4 Parametric Stereo decoding functions * Copyright (c) 2010 Alex Converse * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Note: Rounding-to-nearest used unless otherwise stated * */ #include #include "libavutil/common.h" #include "libavutil/mathematics.h" #include "libavutil/mem_internal.h" #include "aacps.h" #if USE_FIXED #include "aacps_fixed_tablegen.h" #else #include "libavutil/internal.h" #include "aacps_tablegen.h" #endif /* USE_FIXED */ static const INTFLOAT g1_Q2[] = { Q31(0.0f), Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f), Q31(0.0f), Q31(0.30596630545168f), Q31(0.5f) }; static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist) { int i; for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { opd_hist[i] = 0; ipd_hist[i] = 0; } } /** Split one subband into 2 subsubbands with a symmetric real filter. * The filter must have its non-center even coefficients equal to zero. */ static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[7], int len, int reverse) { int i, j; for (i = 0; i < len; i++, in++) { INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase INT64FLOAT re_op = 0.0f; //real out of phase INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase INT64FLOAT im_op = 0.0f; //imag out of phase for (j = 0; j < 6; j += 2) { re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]); im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]); } #if USE_FIXED re_op = (re_op + 0x40000000) >> 31; im_op = (im_op + 0x40000000) >> 31; #endif /* USE_FIXED */ out[ reverse][i][0] = (INTFLOAT)(re_in + re_op); out[ reverse][i][1] = (INTFLOAT)(im_in + im_op); out[!reverse][i][0] = (INTFLOAT)(re_in - re_op); out[!reverse][i][1] = (INTFLOAT)(im_in - im_op); } } /** Split one subband into 6 subsubbands with a complex filter */ static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], TABLE_CONST INTFLOAT (*filter)[8][2], int len) { int i; int N = 8; LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]); for (i = 0; i < len; i++, in++) { dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N); out[0][i][0] = temp[6][0]; out[0][i][1] = temp[6][1]; out[1][i][0] = temp[7][0]; out[1][i][1] = temp[7][1]; out[2][i][0] = temp[0][0]; out[2][i][1] = temp[0][1]; out[3][i][0] = temp[1][0]; out[3][i][1] = temp[1][1]; out[4][i][0] = temp[2][0] + temp[5][0]; out[4][i][1] = temp[2][1] + temp[5][1]; out[5][i][0] = temp[3][0] + temp[4][0]; out[5][i][1] = temp[3][1] + temp[4][1]; } } static void hybrid4_8_12_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len) { int i; for (i = 0; i < len; i++, in++) { dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N); } } static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2], INTFLOAT in[5][44][2], INTFLOAT L[2][38][64], int is34, int len) { int i, j; for (i = 0; i < 5; i++) { for (j = 0; j < 38; j++) { in[i][j+6][0] = L[0][j][i]; in[i][j+6][1] = L[1][j][i]; } } if (is34) { hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len); hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len); hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len); hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len); hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len); dsp->hybrid_analysis_ileave(out + 27, L, 5, len); } else { hybrid6_cx(dsp, in[0], out, f20_0_8, len); hybrid2_re(in[1], out+6, g1_Q2, len, 1); hybrid2_re(in[2], out+8, g1_Q2, len, 0); dsp->hybrid_analysis_ileave(out + 7, L, 3, len); } //update in_buf for (i = 0; i < 5; i++) { memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); } } static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64], INTFLOAT in[91][32][2], int is34, int len) { int i, n; if (is34) { for (n = 0; n < len; n++) { memset(out[0][n], 0, 5*sizeof(out[0][n][0])); memset(out[1][n], 0, 5*sizeof(out[1][n][0])); for (i = 0; i < 12; i++) { out[0][n][0] += (UINTFLOAT)in[ i][n][0]; out[1][n][0] += (UINTFLOAT)in[ i][n][1]; } for (i = 0; i < 8; i++) { out[0][n][1] += (UINTFLOAT)in[12+i][n][0]; out[1][n][1] += (UINTFLOAT)in[12+i][n][1]; } for (i = 0; i < 4; i++) { out[0][n][2] += (UINTFLOAT)in[20+i][n][0]; out[1][n][2] += (UINTFLOAT)in[20+i][n][1]; out[0][n][3] += (UINTFLOAT)in[24+i][n][0]; out[1][n][3] += (UINTFLOAT)in[24+i][n][1]; out[0][n][4] += (UINTFLOAT)in[28+i][n][0]; out[1][n][4] += (UINTFLOAT)in[28+i][n][1]; } } dsp->hybrid_synthesis_deint(out, in + 27, 5, len); } else { for (n = 0; n < len; n++) { out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] + (UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0]; out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] + (UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1]; out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0]; out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1]; out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0]; out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1]; } dsp->hybrid_synthesis_deint(out, in + 7, 3, len); } } /// All-pass filter decay slope #define DECAY_SLOPE Q30(0.05f) /// Number of frequency bands that can be addressed by the parameter index, b(k) static const int NR_PAR_BANDS[] = { 20, 34 }; static const int NR_IPDOPD_BANDS[] = { 11, 17 }; /// Number of frequency bands that can be addressed by the sub subband index, k static const int NR_BANDS[] = { 71, 91 }; /// Start frequency band for the all-pass filter decay slope static const int DECAY_CUTOFF[] = { 10, 32 }; /// Number of all-pass filer bands static const int NR_ALLPASS_BANDS[] = { 30, 50 }; /// First stereo band using the short one sample delay static const int SHORT_DELAY_BAND[] = { 42, 62 }; /** Table 8.46 */ static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) { int b; if (full) b = 9; else { b = 4; par_mapped[10] = 0; } for (; b >= 0; b--) { par_mapped[2*b+1] = par_mapped[2*b] = par[b]; } } static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) { par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; par_mapped[ 6] = par[10]; par_mapped[ 7] = par[11]; par_mapped[ 8] = ( par[12] + par[13]) / 2; par_mapped[ 9] = ( par[14] + par[15]) / 2; par_mapped[10] = par[16]; if (full) { par_mapped[11] = par[17]; par_mapped[12] = par[18]; par_mapped[13] = par[19]; par_mapped[14] = ( par[20] + par[21]) / 2; par_mapped[15] = ( par[22] + par[23]) / 2; par_mapped[16] = ( par[24] + par[25]) / 2; par_mapped[17] = ( par[26] + par[27]) / 2; par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; par_mapped[19] = ( par[32] + par[33]) / 2; } } static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC]) { #if USE_FIXED par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \ 0x40000000) >> 31); par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \ 0x40000000) >> 31); par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \ 0x40000000) >> 31); par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \ 0x40000000) >> 31); #else par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; #endif /* USE_FIXED */ par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]); par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]); par[ 6] = par[10]; par[ 7] = par[11]; par[ 8] = AAC_HALF_SUM(par[12], par[13]); par[ 9] = AAC_HALF_SUM(par[14], par[15]); par[10] = par[16]; par[11] = par[17]; par[12] = par[18]; par[13] = par[19]; par[14] = AAC_HALF_SUM(par[20], par[21]); par[15] = AAC_HALF_SUM(par[22], par[23]); par[16] = AAC_HALF_SUM(par[24], par[25]); par[17] = AAC_HALF_SUM(par[26], par[27]); #if USE_FIXED par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2)); #else par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; #endif /* USE_FIXED */ par[19] = AAC_HALF_SUM(par[32], par[33]); } static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) { if (full) { par_mapped[33] = par[9]; par_mapped[32] = par[9]; par_mapped[31] = par[9]; par_mapped[30] = par[9]; par_mapped[29] = par[9]; par_mapped[28] = par[9]; par_mapped[27] = par[8]; par_mapped[26] = par[8]; par_mapped[25] = par[8]; par_mapped[24] = par[8]; par_mapped[23] = par[7]; par_mapped[22] = par[7]; par_mapped[21] = par[7]; par_mapped[20] = par[7]; par_mapped[19] = par[6]; par_mapped[18] = par[6]; par_mapped[17] = par[5]; par_mapped[16] = par[5]; } else { par_mapped[16] = 0; } par_mapped[15] = par[4]; par_mapped[14] = par[4]; par_mapped[13] = par[4]; par_mapped[12] = par[4]; par_mapped[11] = par[3]; par_mapped[10] = par[3]; par_mapped[ 9] = par[2]; par_mapped[ 8] = par[2]; par_mapped[ 7] = par[2]; par_mapped[ 6] = par[2]; par_mapped[ 5] = par[1]; par_mapped[ 4] = par[1]; par_mapped[ 3] = par[1]; par_mapped[ 2] = par[0]; par_mapped[ 1] = par[0]; par_mapped[ 0] = par[0]; } static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) { if (full) { par_mapped[33] = par[19]; par_mapped[32] = par[19]; par_mapped[31] = par[18]; par_mapped[30] = par[18]; par_mapped[29] = par[18]; par_mapped[28] = par[18]; par_mapped[27] = par[17]; par_mapped[26] = par[17]; par_mapped[25] = par[16]; par_mapped[24] = par[16]; par_mapped[23] = par[15]; par_mapped[22] = par[15]; par_mapped[21] = par[14]; par_mapped[20] = par[14]; par_mapped[19] = par[13]; par_mapped[18] = par[12]; par_mapped[17] = par[11]; } par_mapped[16] = par[10]; par_mapped[15] = par[ 9]; par_mapped[14] = par[ 9]; par_mapped[13] = par[ 8]; par_mapped[12] = par[ 8]; par_mapped[11] = par[ 7]; par_mapped[10] = par[ 6]; par_mapped[ 9] = par[ 5]; par_mapped[ 8] = par[ 5]; par_mapped[ 7] = par[ 4]; par_mapped[ 6] = par[ 4]; par_mapped[ 5] = par[ 3]; par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; par_mapped[ 3] = par[ 2]; par_mapped[ 2] = par[ 1]; par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; par_mapped[ 0] = par[ 0]; } static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC]) { par[33] = par[19]; par[32] = par[19]; par[31] = par[18]; par[30] = par[18]; par[29] = par[18]; par[28] = par[18]; par[27] = par[17]; par[26] = par[17]; par[25] = par[16]; par[24] = par[16]; par[23] = par[15]; par[22] = par[15]; par[21] = par[14]; par[20] = par[14]; par[19] = par[13]; par[18] = par[12]; par[17] = par[11]; par[16] = par[10]; par[15] = par[ 9]; par[14] = par[ 9]; par[13] = par[ 8]; par[12] = par[ 8]; par[11] = par[ 7]; par[10] = par[ 6]; par[ 9] = par[ 5]; par[ 8] = par[ 5]; par[ 7] = par[ 4]; par[ 6] = par[ 4]; par[ 5] = par[ 3]; par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]); par[ 3] = par[ 2]; par[ 2] = par[ 1]; par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]); } static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34) { LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]); LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]); INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg; INTFLOAT *power_smooth = ps->power_smooth; INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; #if !USE_FIXED const float transient_impact = 1.5f; const float a_smooth = 0.25f; ///< Smoothing coefficient #endif /* USE_FIXED */ const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; int i, k, m, n; int n0 = 0, nL = 32; const INTFLOAT peak_decay_factor = Q31(0.76592833836465f); memset(power, 0, 34 * sizeof(*power)); if (is34 != ps->common.is34bands_old) { memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); memset(ps->delay, 0, sizeof(ps->delay)); memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); } for (k = 0; k < NR_BANDS[is34]; k++) { int i = k_to_i[k]; ps->dsp.add_squares(power[i], s[k], nL - n0); } //Transient detection #if USE_FIXED for (i = 0; i < NR_PAR_BANDS[is34]; i++) { for (n = n0; n < nL; n++) { int decayed_peak; decayed_peak = (int)(((int64_t)peak_decay_factor * \ peak_decay_nrg[i] + 0x40000000) >> 31); peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2; peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \ peak_decay_diff_smooth[i]) >> 2; if (peak_decay_diff_smooth[i]) { transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16); } else transient_gain[i][n] = 1 << 16; } } #else for (i = 0; i < NR_PAR_BANDS[is34]; i++) { for (n = n0; n < nL; n++) { float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; float denom; peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); denom = transient_impact * peak_decay_diff_smooth[i]; transient_gain[i][n] = (denom > power_smooth[i]) ? power_smooth[i] / denom : 1.0f; } } #endif /* USE_FIXED */ //Decorrelation and transient reduction // PS_AP_LINKS - 1 // ----- // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] //H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] // m = 0 //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { int b = k_to_i[k]; #if USE_FIXED int g_decay_slope; if (k - DECAY_CUTOFF[is34] <= 0) { g_decay_slope = 1 << 30; } else if (k - DECAY_CUTOFF[is34] >= 20) { g_decay_slope = 0; } else { g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); } #else float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); #endif /* USE_FIXED */ memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); for (m = 0; m < PS_AP_LINKS; m++) { memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); } ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k], phi_fract[is34][k], (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k], transient_gain[b], g_decay_slope, nL - n0); } for (; k < SHORT_DELAY_BAND[is34]; k++) { int i = k_to_i[k]; memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); //H = delay 14 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14, transient_gain[i], nL - n0); } for (; k < NR_BANDS[is34]; k++) { int i = k_to_i[k]; memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); //H = delay 1 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1, transient_gain[i], nL - n0); } } static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t (*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full) { int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; int e; if (num_par == 20 || num_par == 11) { for (e = 0; e < num_env; e++) { map_idx_20_to_34(par_mapped[e], par[e], full); } } else if (num_par == 10 || num_par == 5) { for (e = 0; e < num_env; e++) { map_idx_10_to_34(par_mapped[e], par[e], full); } } else { *p_par_mapped = par; } } static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t (*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full) { int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; int e; if (num_par == 34 || num_par == 17) { for (e = 0; e < num_env; e++) { map_idx_34_to_20(par_mapped[e], par[e], full); } } else if (num_par == 10 || num_par == 5) { for (e = 0; e < num_env; e++) { map_idx_10_to_20(par_mapped[e], par[e], full); } } else { *p_par_mapped = par; } } static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34) { int e, b, k; PSCommonContext *const ps2 = &ps->common; INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; int8_t *opd_hist = ps->opd_hist; int8_t *ipd_hist = ps->ipd_hist; int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB; //Remapping if (ps2->num_env_old) { memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0])); memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0])); memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0])); memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0])); memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0])); memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0])); memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0])); memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0])); } if (is34) { remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); if (ps2->enable_ipdopd) { remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); } if (!ps2->is34bands_old) { map_val_20_to_34(H11[0][0]); map_val_20_to_34(H11[1][0]); map_val_20_to_34(H12[0][0]); map_val_20_to_34(H12[1][0]); map_val_20_to_34(H21[0][0]); map_val_20_to_34(H21[1][0]); map_val_20_to_34(H22[0][0]); map_val_20_to_34(H22[1][0]); ipdopd_reset(ipd_hist, opd_hist); } } else { remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); if (ps2->enable_ipdopd) { remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); } if (ps2->is34bands_old) { map_val_34_to_20(H11[0][0]); map_val_34_to_20(H11[1][0]); map_val_34_to_20(H12[0][0]); map_val_34_to_20(H12[1][0]); map_val_34_to_20(H21[0][0]); map_val_34_to_20(H21[1][0]); map_val_34_to_20(H22[0][0]); map_val_34_to_20(H22[1][0]); ipdopd_reset(ipd_hist, opd_hist); } } //Mixing for (e = 0; e < ps2->num_env; e++) { for (b = 0; b < NR_PAR_BANDS[is34]; b++) { INTFLOAT h11, h12, h21, h22; h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0]; h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1]; h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2]; h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3]; if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) { //The spec say says to only run this smoother when enable_ipdopd //is set but the reference decoder appears to run it constantly INTFLOAT h11i, h12i, h21i, h22i; INTFLOAT ipd_adj_re, ipd_adj_im; int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; INTFLOAT opd_re = pd_re_smooth[opd_idx]; INTFLOAT opd_im = pd_im_smooth[opd_idx]; INTFLOAT ipd_re = pd_re_smooth[ipd_idx]; INTFLOAT ipd_im = pd_im_smooth[ipd_idx]; opd_hist[b] = opd_idx & 0x3F; ipd_hist[b] = ipd_idx & 0x3F; ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im); ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im); h11i = AAC_MUL30(h11, opd_im); h11 = AAC_MUL30(h11, opd_re); h12i = AAC_MUL30(h12, ipd_adj_im); h12 = AAC_MUL30(h12, ipd_adj_re); h21i = AAC_MUL30(h21, opd_im); h21 = AAC_MUL30(h21, opd_re); h22i = AAC_MUL30(h22, ipd_adj_im); h22 = AAC_MUL30(h22, ipd_adj_re); H11[1][e+1][b] = h11i; H12[1][e+1][b] = h12i; H21[1][e+1][b] = h21i; H22[1][e+1][b] = h22i; } H11[0][e+1][b] = h11; H12[0][e+1][b] = h12; H21[0][e+1][b] = h21; H22[0][e+1][b] = h22; } for (k = 0; k < NR_BANDS[is34]; k++) { LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]); LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]); int start = ps2->border_position[e]; int stop = ps2->border_position[e+1]; INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1); #if USE_FIXED width = FFMIN(2U*width, INT_MAX); #endif b = k_to_i[k]; h[0][0] = H11[0][e][b]; h[0][1] = H12[0][e][b]; h[0][2] = H21[0][e][b]; h[0][3] = H22[0][e][b]; if (!PS_BASELINE && ps2->enable_ipdopd) { //Is this necessary? ps_04_new seems unchanged if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { h[1][0] = -H11[1][e][b]; h[1][1] = -H12[1][e][b]; h[1][2] = -H21[1][e][b]; h[1][3] = -H22[1][e][b]; } else { h[1][0] = H11[1][e][b]; h[1][1] = H12[1][e][b]; h[1][2] = H21[1][e][b]; h[1][3] = H22[1][e][b]; } } //Interpolation h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width); h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width); h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width); h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width); if (!PS_BASELINE && ps2->enable_ipdopd) { h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width); h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width); h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width); h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width); } if (stop - start) ps->dsp.stereo_interpolate[!PS_BASELINE && ps2->enable_ipdopd]( l[k] + 1 + start, r[k] + 1 + start, h, h_step, stop - start); } } } int AAC_RENAME(ff_ps_apply)(PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top) { INTFLOAT (*Lbuf)[32][2] = ps->Lbuf; INTFLOAT (*Rbuf)[32][2] = ps->Rbuf; const int len = 32; int is34 = ps->common.is34bands; top += NR_BANDS[is34] - 64; memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); if (top < NR_ALLPASS_BANDS[is34]) memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len); decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34); stereo_processing(ps, Lbuf, Rbuf, is34); hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len); hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len); return 0; } av_cold void AAC_RENAME(ff_ps_init)(void) { ps_tableinit(); ff_ps_init_common(); } av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps) { AAC_RENAME(ff_psdsp_init)(&ps->dsp); }