/* * Copyright (c) 2019 Eugene Lyapustin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * 360 video conversion filter. * Principle of operation: * * (for each pixel in output frame) * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j) * 2) Apply 360 operations (rotation, mirror) to (x, y, z) * 3) Calculate pixel position (u, v) in input frame * 4) Calculate interpolation window and weight for each pixel * * (for each frame) * 5) Remap input frame to output frame using precalculated data */ #include #include "libavutil/avassert.h" #include "libavutil/mem.h" #include "libavutil/pixdesc.h" #include "libavutil/opt.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "v360.h" typedef struct ThreadData { AVFrame *in; AVFrame *out; } ThreadData; #define OFFSET(x) offsetof(V360Context, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption v360_options[] = { { "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "in" }, { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" }, { "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" }, { "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "in" }, { "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "in" }, { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "in" }, { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "in" }, { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, {"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, { "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" }, { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" }, { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" }, { "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "in" }, { "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "in" }, { "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "in" }, { "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "in" }, { "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "in" }, {"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "in" }, { "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "in" }, { "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "in" }, {"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "in" }, {"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "in" }, {"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "in" }, { "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "in" }, { "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" }, { "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" }, { "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "in" }, { "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "in" }, {"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "in" }, {"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "in" }, { "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "out" }, { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" }, { "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" }, { "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "out" }, { "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "out" }, { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "out" }, { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "out" }, { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, {"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, { "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" }, { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" }, { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" }, { "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "out" }, { "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "out" }, { "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "out" }, { "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "out" }, { "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "out" }, {"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "out" }, { "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "out" }, { "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "out" }, {"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "out" }, {"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, .unit = "out" }, {"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "out" }, {"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "out" }, { "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "out" }, { "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" }, { "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" }, { "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "out" }, { "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "out" }, {"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "out" }, {"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "out" }, { "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, .unit = "interp" }, { "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" }, { "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" }, { "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, { "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, { "lagrange9", "lagrange9 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LAGRANGE9}, 0, 0, FLAGS, .unit = "interp" }, { "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" }, { "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" }, { "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" }, { "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" }, { "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" }, { "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" }, { "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" }, { "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" }, { "mitchell", "mitchell interpolation", 0, AV_OPT_TYPE_CONST, {.i64=MITCHELL}, 0, 0, FLAGS, .unit = "interp" }, { "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "w"}, { "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "h"}, { "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" }, {"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" }, { "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, .unit = "stereo" }, { "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, .unit = "stereo" }, { "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, .unit = "stereo" }, { "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_forder"}, {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_forder"}, { "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_frot"}, { "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_frot"}, { "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "in_pad"}, { "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "out_pad"}, { "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fin_pad"}, { "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fout_pad"}, { "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "yaw"}, { "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "pitch"}, { "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "roll"}, { "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0,TFLAGS, .unit = "rorder"}, { "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "h_fov"}, { "v_fov", "output vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "v_fov"}, { "d_fov", "output diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "d_fov"}, { "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "h_flip"}, { "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "v_flip"}, { "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "d_flip"}, { "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "ih_flip"}, { "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "iv_flip"}, { "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "in_transpose"}, { "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "out_transpose"}, { "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "ih_fov"}, { "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "iv_fov"}, { "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "id_fov"}, { "h_offset", "output horizontal off-axis offset",OFFSET(h_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "h_offset"}, { "v_offset", "output vertical off-axis offset", OFFSET(v_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "v_offset"}, {"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "alpha"}, { "reset_rot", "reset rotation", OFFSET(reset_rot), AV_OPT_TYPE_BOOL, {.i64=0}, -1, 1,TFLAGS, .unit = "reset_rot"}, { NULL } }; AVFILTER_DEFINE_CLASS(v360); static int query_formats(AVFilterContext *ctx) { V360Context *s = ctx->priv; static const enum AVPixelFormat pix_fmts[] = { // YUVA444 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, // YUVA422 AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, // YUVA420 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, // YUVJ AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, // YUV444 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, // YUV440 AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV440P12, // YUV422 AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16, // YUV420 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, // YUV411 AV_PIX_FMT_YUV411P, // YUV410 AV_PIX_FMT_YUV410P, // GBR AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, // GBRA AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, // GRAY AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; static const enum AVPixelFormat alpha_pix_fmts[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; return ff_set_common_formats_from_list(ctx, s->alpha ? alpha_pix_fmts : pix_fmts); } #define DEFINE_REMAP1_LINE(bits, div) \ static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \ ptrdiff_t in_linesize, \ const int16_t *const u, const int16_t *const v, \ const int16_t *const ker) \ { \ const uint##bits##_t *const s = (const uint##bits##_t *const)src; \ uint##bits##_t *d = (uint##bits##_t *)dst; \ \ in_linesize /= div; \ \ for (int x = 0; x < width; x++) \ d[x] = s[v[x] * in_linesize + u[x]]; \ } DEFINE_REMAP1_LINE( 8, 1) DEFINE_REMAP1_LINE(16, 2) /** * Generate remapping function with a given window size and pixel depth. * * @param ws size of interpolation window * @param bits number of bits per pixel */ #define DEFINE_REMAP(ws, bits) \ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ ThreadData *td = arg; \ const V360Context *s = ctx->priv; \ const SliceXYRemap *r = &s->slice_remap[jobnr]; \ const AVFrame *in = td->in; \ AVFrame *out = td->out; \ \ av_assert1(s->nb_planes <= AV_VIDEO_MAX_PLANES); \ \ for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \ for (int plane = 0; plane < s->nb_planes; plane++) { \ const unsigned map = s->map[plane]; \ const int in_linesize = in->linesize[plane]; \ const int out_linesize = out->linesize[plane]; \ const int uv_linesize = s->uv_linesize[plane]; \ const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \ const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \ const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \ const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \ const uint8_t *const src = in->data[plane] + \ in_offset_h * in_linesize + in_offset_w * (bits >> 3); \ uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \ const uint8_t *mask = plane == 3 ? r->mask : NULL; \ const int width = s->pr_width[plane]; \ const int height = s->pr_height[plane]; \ \ const int slice_start = (height * jobnr ) / nb_jobs; \ const int slice_end = (height * (jobnr + 1)) / nb_jobs; \ \ for (int y = slice_start; y < slice_end && !mask; y++) { \ const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \ const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \ const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \ \ s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \ } \ \ for (int y = slice_start; y < slice_end && mask; y++) { \ memcpy(dst + y * out_linesize, mask + \ (y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \ } \ } \ } \ \ return 0; \ } DEFINE_REMAP(1, 8) DEFINE_REMAP(2, 8) DEFINE_REMAP(3, 8) DEFINE_REMAP(4, 8) DEFINE_REMAP(1, 16) DEFINE_REMAP(2, 16) DEFINE_REMAP(3, 16) DEFINE_REMAP(4, 16) #define DEFINE_REMAP_LINE(ws, bits, div) \ static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \ ptrdiff_t in_linesize, \ const int16_t *const u, const int16_t *const v, \ const int16_t *const ker) \ { \ const uint##bits##_t *const s = (const uint##bits##_t *const)src; \ uint##bits##_t *d = (uint##bits##_t *)dst; \ \ in_linesize /= div; \ \ for (int x = 0; x < width; x++) { \ const int16_t *const uu = u + x * ws * ws; \ const int16_t *const vv = v + x * ws * ws; \ const int16_t *const kker = ker + x * ws * ws; \ int tmp = 0; \ \ for (int i = 0; i < ws; i++) { \ const int iws = i * ws; \ for (int j = 0; j < ws; j++) { \ tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \ } \ } \ \ d[x] = av_clip_uint##bits(tmp >> 14); \ } \ } DEFINE_REMAP_LINE(2, 8, 1) DEFINE_REMAP_LINE(3, 8, 1) DEFINE_REMAP_LINE(4, 8, 1) DEFINE_REMAP_LINE(2, 16, 2) DEFINE_REMAP_LINE(3, 16, 2) DEFINE_REMAP_LINE(4, 16, 2) void ff_v360_init(V360Context *s, int depth) { switch (s->interp) { case NEAREST: s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c; break; case BILINEAR: s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c; break; case LAGRANGE9: s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c; break; case BICUBIC: case LANCZOS: case SPLINE16: case GAUSSIAN: case MITCHELL: s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c; break; } #if ARCH_X86 ff_v360_init_x86(s, depth); #endif } /** * Save nearest pixel coordinates for remapping. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void nearest_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { const int i = lrintf(dv) + 1; const int j = lrintf(du) + 1; u[0] = rmap->u[i][j]; v[0] = rmap->v[i][j]; } /** * Calculate kernel for bilinear interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void bilinear_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { u[i * 2 + j] = rmap->u[i + 1][j + 1]; v[i * 2 + j] = rmap->v[i + 1][j + 1]; } } ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f); ker[1] = lrintf( du * (1.f - dv) * 16385.f); ker[2] = lrintf((1.f - du) * dv * 16385.f); ker[3] = lrintf( du * dv * 16385.f); } /** * Calculate 1-dimensional lagrange coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static inline void calculate_lagrange_coeffs(float t, float *coeffs) { coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f; coeffs[1] = -t * (t - 2.f); coeffs[2] = t * (t - 1.f) * 0.5f; } /** * Calculate kernel for lagrange interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void lagrange_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[3]; float dv_coeffs[3]; calculate_lagrange_coeffs(du, du_coeffs); calculate_lagrange_coeffs(dv, dv_coeffs); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { u[i * 3 + j] = rmap->u[i + 1][j + 1]; v[i * 3 + j] = rmap->v[i + 1][j + 1]; ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Calculate 1-dimensional cubic coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static inline void calculate_bicubic_coeffs(float t, float *coeffs) { const float tt = t * t; const float ttt = t * t * t; coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f; coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f; coeffs[2] = t + tt / 2.f - ttt / 2.f; coeffs[3] = - t / 6.f + ttt / 6.f; } /** * Calculate kernel for bicubic interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void bicubic_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[4]; float dv_coeffs[4]; calculate_bicubic_coeffs(du, du_coeffs); calculate_bicubic_coeffs(dv, dv_coeffs); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { u[i * 4 + j] = rmap->u[i][j]; v[i * 4 + j] = rmap->v[i][j]; ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Calculate 1-dimensional lanczos coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static inline void calculate_lanczos_coeffs(float t, float *coeffs) { float sum = 0.f; for (int i = 0; i < 4; i++) { const float x = M_PI * (t - i + 1); if (x == 0.f) { coeffs[i] = 1.f; } else { coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f); } sum += coeffs[i]; } for (int i = 0; i < 4; i++) { coeffs[i] /= sum; } } /** * Calculate kernel for lanczos interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void lanczos_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[4]; float dv_coeffs[4]; calculate_lanczos_coeffs(du, du_coeffs); calculate_lanczos_coeffs(dv, dv_coeffs); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { u[i * 4 + j] = rmap->u[i][j]; v[i * 4 + j] = rmap->v[i][j]; ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Calculate 1-dimensional spline16 coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static void calculate_spline16_coeffs(float t, float *coeffs) { coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t; coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f; coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t; coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t; } /** * Calculate kernel for spline16 interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void spline16_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[4]; float dv_coeffs[4]; calculate_spline16_coeffs(du, du_coeffs); calculate_spline16_coeffs(dv, dv_coeffs); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { u[i * 4 + j] = rmap->u[i][j]; v[i * 4 + j] = rmap->v[i][j]; ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Calculate 1-dimensional gaussian coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static void calculate_gaussian_coeffs(float t, float *coeffs) { float sum = 0.f; for (int i = 0; i < 4; i++) { const float x = t - (i - 1); if (x == 0.f) { coeffs[i] = 1.f; } else { coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f); } sum += coeffs[i]; } for (int i = 0; i < 4; i++) { coeffs[i] /= sum; } } /** * Calculate kernel for gaussian interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void gaussian_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[4]; float dv_coeffs[4]; calculate_gaussian_coeffs(du, du_coeffs); calculate_gaussian_coeffs(dv, dv_coeffs); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { u[i * 4 + j] = rmap->u[i][j]; v[i * 4 + j] = rmap->v[i][j]; ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Calculate 1-dimensional cubic_bc_spline coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static void calculate_cubic_bc_coeffs(float t, float *coeffs, float b, float c) { float sum = 0.f; float p0 = (6.f - 2.f * b) / 6.f, p2 = (-18.f + 12.f * b + 6.f * c) / 6.f, p3 = (12.f - 9.f * b - 6.f * c) / 6.f, q0 = (8.f * b + 24.f * c) / 6.f, q1 = (-12.f * b - 48.f * c) / 6.f, q2 = (6.f * b + 30.f * c) / 6.f, q3 = (-b - 6.f * c) / 6.f; for (int i = 0; i < 4; i++) { const float x = fabsf(t - i + 1.f); if (x < 1.f) { coeffs[i] = (p0 + x * x * (p2 + x * p3)) * (p0 + x * x * (p2 + x * p3 / 2.f) / 4.f); } else if (x < 2.f) { coeffs[i] = (q0 + x * (q1 + x * (q2 + x * q3))) * (q0 + x * (q1 + x * (q2 + x / 2.f * q3) / 2.f) / 2.f); } else { coeffs[i] = 0.f; } sum += coeffs[i]; } for (int i = 0; i < 4; i++) { coeffs[i] /= sum; } } /** * Calculate kernel for mitchell interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param rmap calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void mitchell_kernel(float du, float dv, const XYRemap *rmap, int16_t *u, int16_t *v, int16_t *ker) { float du_coeffs[4]; float dv_coeffs[4]; calculate_cubic_bc_coeffs(du, du_coeffs, 1.f / 3.f, 1.f / 3.f); calculate_cubic_bc_coeffs(dv, dv_coeffs, 1.f / 3.f, 1.f / 3.f); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { u[i * 4 + j] = rmap->u[i][j]; v[i * 4 + j] = rmap->v[i][j]; ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f); } } } /** * Modulo operation with only positive remainders. * * @param a dividend * @param b divisor * * @return positive remainder of (a / b) */ static inline int mod(int a, int b) { const int res = a % b; if (res < 0) { return res + b; } else { return res; } } /** * Reflect y operation. * * @param y input vertical position * @param h input height */ static inline int reflecty(int y, int h) { if (y < 0) { y = -y; } else if (y >= h) { y = 2 * h - 1 - y; } return av_clip(y, 0, h - 1); } /** * Reflect x operation for equirect. * * @param x input horizontal position * @param y input vertical position * @param w input width * @param h input height */ static inline int ereflectx(int x, int y, int w, int h) { if (y < 0 || y >= h) x += w / 2; return mod(x, w); } /** * Reflect x operation. * * @param x input horizontal position * @param y input vertical position * @param w input width * @param h input height */ static inline int reflectx(int x, int y, int w, int h) { if (y < 0 || y >= h) return w - 1 - x; return mod(x, w); } /** * Convert char to corresponding direction. * Used for cubemap options. */ static int get_direction(char c) { switch (c) { case 'r': return RIGHT; case 'l': return LEFT; case 'u': return UP; case 'd': return DOWN; case 'f': return FRONT; case 'b': return BACK; default: return -1; } } /** * Convert char to corresponding rotation angle. * Used for cubemap options. */ static int get_rotation(char c) { switch (c) { case '0': return ROT_0; case '1': return ROT_90; case '2': return ROT_180; case '3': return ROT_270; default: return -1; } } /** * Convert char to corresponding rotation order. */ static int get_rorder(char c) { switch (c) { case 'Y': case 'y': return YAW; case 'P': case 'p': return PITCH; case 'R': case 'r': return ROLL; default: return -1; } } /** * Prepare data for processing cubemap input format. * * @param ctx filter context * * @return error code */ static int prepare_cube_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; for (int face = 0; face < NB_FACES; face++) { const char c = s->in_forder[face]; int direction; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete in_forder option. Direction for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } direction = get_direction(c); if (direction == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect direction symbol '%c' in in_forder option.\n", c); return AVERROR(EINVAL); } s->in_cubemap_face_order[direction] = face; } for (int face = 0; face < NB_FACES; face++) { const char c = s->in_frot[face]; int rotation; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } rotation = get_rotation(c); if (rotation == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect rotation symbol '%c' in in_frot option.\n", c); return AVERROR(EINVAL); } s->in_cubemap_face_rotation[face] = rotation; } return 0; } /** * Prepare data for processing cubemap output format. * * @param ctx filter context * * @return error code */ static int prepare_cube_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; for (int face = 0; face < NB_FACES; face++) { const char c = s->out_forder[face]; int direction; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete out_forder option. Direction for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } direction = get_direction(c); if (direction == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect direction symbol '%c' in out_forder option.\n", c); return AVERROR(EINVAL); } s->out_cubemap_direction_order[face] = direction; } for (int face = 0; face < NB_FACES; face++) { const char c = s->out_frot[face]; int rotation; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } rotation = get_rotation(c); if (rotation == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect rotation symbol '%c' in out_frot option.\n", c); return AVERROR(EINVAL); } s->out_cubemap_face_rotation[face] = rotation; } return 0; } static inline void rotate_cube_face(float *uf, float *vf, int rotation) { float tmp; switch (rotation) { case ROT_0: break; case ROT_90: tmp = *uf; *uf = -*vf; *vf = tmp; break; case ROT_180: *uf = -*uf; *vf = -*vf; break; case ROT_270: tmp = -*uf; *uf = *vf; *vf = tmp; break; default: av_assert0(0); } } static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation) { float tmp; switch (rotation) { case ROT_0: break; case ROT_90: tmp = -*uf; *uf = *vf; *vf = tmp; break; case ROT_180: *uf = -*uf; *vf = -*vf; break; case ROT_270: tmp = *uf; *uf = -*vf; *vf = tmp; break; default: av_assert0(0); } } /** * Offset vector. * * @param vec vector */ static void offset_vector(float *vec, float h_offset, float v_offset) { vec[0] += h_offset; vec[1] += v_offset; } /** * Normalize vector. * * @param vec vector */ static void normalize_vector(float *vec) { const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]); vec[0] /= norm; vec[1] /= norm; vec[2] /= norm; } /** * Calculate 3D coordinates on sphere for corresponding cubemap position. * Common operation for every cubemap. * * @param s filter private context * @param uf horizontal cubemap coordinate [0, 1) * @param vf vertical cubemap coordinate [0, 1) * @param face face of cubemap * @param vec coordinates on sphere * @param scalew scale for uf * @param scaleh scale for vf */ static void cube_to_xyz(const V360Context *s, float uf, float vf, int face, float *vec, float scalew, float scaleh) { const int direction = s->out_cubemap_direction_order[face]; float l_x, l_y, l_z; uf /= scalew; vf /= scaleh; rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]); switch (direction) { case RIGHT: l_x = 1.f; l_y = vf; l_z = -uf; break; case LEFT: l_x = -1.f; l_y = vf; l_z = uf; break; case UP: l_x = uf; l_y = -1.f; l_z = vf; break; case DOWN: l_x = uf; l_y = 1.f; l_z = -vf; break; case FRONT: l_x = uf; l_y = vf; l_z = 1.f; break; case BACK: l_x = -uf; l_y = vf; l_z = -1.f; break; default: av_assert0(0); } vec[0] = l_x; vec[1] = l_y; vec[2] = l_z; } /** * Calculate cubemap position for corresponding 3D coordinates on sphere. * Common operation for every cubemap. * * @param s filter private context * @param vec coordinated on sphere * @param uf horizontal cubemap coordinate [0, 1) * @param vf vertical cubemap coordinate [0, 1) * @param direction direction of view */ static void xyz_to_cube(const V360Context *s, const float *vec, float *uf, float *vf, int *direction) { const float phi = atan2f(vec[0], vec[2]); const float theta = asinf(vec[1]); float phi_norm, theta_threshold; int face; if (phi >= -M_PI_4 && phi < M_PI_4) { *direction = FRONT; phi_norm = phi; } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) { *direction = LEFT; phi_norm = phi + M_PI_2; } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) { *direction = RIGHT; phi_norm = phi - M_PI_2; } else { *direction = BACK; phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI); } theta_threshold = atanf(cosf(phi_norm)); if (theta > theta_threshold) { *direction = DOWN; } else if (theta < -theta_threshold) { *direction = UP; } switch (*direction) { case RIGHT: *uf = -vec[2] / vec[0]; *vf = vec[1] / vec[0]; break; case LEFT: *uf = -vec[2] / vec[0]; *vf = -vec[1] / vec[0]; break; case UP: *uf = -vec[0] / vec[1]; *vf = -vec[2] / vec[1]; break; case DOWN: *uf = vec[0] / vec[1]; *vf = -vec[2] / vec[1]; break; case FRONT: *uf = vec[0] / vec[2]; *vf = vec[1] / vec[2]; break; case BACK: *uf = vec[0] / vec[2]; *vf = -vec[1] / vec[2]; break; default: av_assert0(0); } face = s->in_cubemap_face_order[*direction]; rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]); } /** * Find position on another cube face in case of overflow/underflow. * Used for calculation of interpolation window. * * @param s filter private context * @param uf horizontal cubemap coordinate * @param vf vertical cubemap coordinate * @param direction direction of view * @param new_uf new horizontal cubemap coordinate * @param new_vf new vertical cubemap coordinate * @param face face position on cubemap */ static void process_cube_coordinates(const V360Context *s, float uf, float vf, int direction, float *new_uf, float *new_vf, int *face) { /* * Cubemap orientation * * width * <-------> * +-------+ * | | U * | up | h -------> * +-------+-------+-------+-------+ ^ e | * | | | | | | i V | * | left | front | right | back | | g | * +-------+-------+-------+-------+ v h v * | | t * | down | * +-------+ */ *face = s->in_cubemap_face_order[direction]; rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]); if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) { // There are no pixels to use in this case *new_uf = uf; *new_vf = vf; } else if (uf < -1.f) { uf += 2.f; switch (direction) { case RIGHT: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case LEFT: direction = BACK; *new_uf = uf; *new_vf = vf; break; case UP: direction = LEFT; *new_uf = vf; *new_vf = -uf; break; case DOWN: direction = LEFT; *new_uf = -vf; *new_vf = uf; break; case FRONT: direction = LEFT; *new_uf = uf; *new_vf = vf; break; case BACK: direction = RIGHT; *new_uf = uf; *new_vf = vf; break; default: av_assert0(0); } } else if (uf >= 1.f) { uf -= 2.f; switch (direction) { case RIGHT: direction = BACK; *new_uf = uf; *new_vf = vf; break; case LEFT: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case UP: direction = RIGHT; *new_uf = -vf; *new_vf = uf; break; case DOWN: direction = RIGHT; *new_uf = vf; *new_vf = -uf; break; case FRONT: direction = RIGHT; *new_uf = uf; *new_vf = vf; break; case BACK: direction = LEFT; *new_uf = uf; *new_vf = vf; break; default: av_assert0(0); } } else if (vf < -1.f) { vf += 2.f; switch (direction) { case RIGHT: direction = UP; *new_uf = vf; *new_vf = -uf; break; case LEFT: direction = UP; *new_uf = -vf; *new_vf = uf; break; case UP: direction = BACK; *new_uf = -uf; *new_vf = -vf; break; case DOWN: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case FRONT: direction = UP; *new_uf = uf; *new_vf = vf; break; case BACK: direction = UP; *new_uf = -uf; *new_vf = -vf; break; default: av_assert0(0); } } else if (vf >= 1.f) { vf -= 2.f; switch (direction) { case RIGHT: direction = DOWN; *new_uf = -vf; *new_vf = uf; break; case LEFT: direction = DOWN; *new_uf = vf; *new_vf = -uf; break; case UP: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case DOWN: direction = BACK; *new_uf = -uf; *new_vf = -vf; break; case FRONT: direction = DOWN; *new_uf = uf; *new_vf = vf; break; case BACK: direction = DOWN; *new_uf = -uf; *new_vf = -vf; break; default: av_assert0(0); } } else { // Inside cube face *new_uf = uf; *new_vf = vf; } *face = s->in_cubemap_face_order[direction]; rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]); } static av_always_inline float scale(float x, float s) { return (0.5f * x + 0.5f) * (s - 1.f); } static av_always_inline float rescale(int x, float s) { return (2.f * x + 1.f) / s - 1.f; } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int cube3x2_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad; const float ew = width / 3.f; const float eh = height / 2.f; const int u_face = floorf(i / ew); const int v_face = floorf(j / eh); const int face = u_face + 3 * v_face; const int u_shift = ceilf(ew * u_face); const int v_shift = ceilf(eh * v_face); const int ewi = ceilf(ew * (u_face + 1)) - u_shift; const int ehi = ceilf(eh * (v_face + 1)) - v_shift; const float uf = rescale(i - u_shift, ewi); const float vf = rescale(j - v_shift, ehi); cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); return 1; } /** * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_cube3x2(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad; const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad; const float ew = width / 3.f; const float eh = height / 2.f; float uf, vf; int ui, vi; int ewi, ehi; int direction, face; int u_face, v_face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= scalew; vf *= scaleh; face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face); ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face); uf = 0.5f * ewi * (uf + 1.f) - 0.5f; vf = 0.5f * ehi * (vf + 1.f) - 0.5f; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { int new_ui = ui + j - 1; int new_vi = vi + i - 1; int u_shift, v_shift; int new_ewi, new_ehi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; u_shift = ceilf(ew * u_face); v_shift = ceilf(eh * v_face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= scalew; vf /= scaleh; process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= scalew; vf *= scaleh; u_face = face % 3; v_face = face / 3; u_shift = ceilf(ew * u_face); v_shift = ceilf(eh * v_face); new_ewi = ceilf(ew * (u_face + 1)) - u_shift; new_ehi = ceilf(eh * (v_face + 1)) - v_shift; new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); } us[i][j] = u_shift + new_ui; vs[i][j] = v_shift + new_vi; } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int cube1x6_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad; const float ew = width; const float eh = height / 6.f; const int face = floorf(j / eh); const int v_shift = ceilf(eh * face); const int ehi = ceilf(eh * (face + 1)) - v_shift; const float uf = rescale(i, ew); const float vf = rescale(j - v_shift, ehi); cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int cube6x1_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f) : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad; const float ew = width / 6.f; const float eh = height; const int face = floorf(i / ew); const int u_shift = ceilf(ew * face); const int ewi = ceilf(ew * (face + 1)) - u_shift; const float uf = rescale(i - u_shift, ewi); const float vf = rescale(j, eh); cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh); return 1; } /** * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_cube1x6(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad; const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad; const float eh = height / 6.f; const int ewi = width; float uf, vf; int ui, vi; int ehi; int direction, face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= scalew; vf *= scaleh; face = s->in_cubemap_face_order[direction]; ehi = ceilf(eh * (face + 1)) - ceilf(eh * face); uf = 0.5f * ewi * (uf + 1.f) - 0.5f; vf = 0.5f * ehi * (vf + 1.f) - 0.5f; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { int new_ui = ui + j - 1; int new_vi = vi + i - 1; int v_shift; int new_ehi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; v_shift = ceilf(eh * face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= scalew; vf /= scaleh; process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= scalew; vf *= scaleh; v_shift = ceilf(eh * face); new_ehi = ceilf(eh * (face + 1)) - v_shift; new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1); new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); } us[i][j] = new_ui; vs[i][j] = v_shift + new_vi; } } return 1; } /** * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_cube6x1(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f) : 1.f - s->in_pad; const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad; const float ew = width / 6.f; const int ehi = height; float uf, vf; int ui, vi; int ewi; int direction, face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= scalew; vf *= scaleh; face = s->in_cubemap_face_order[direction]; ewi = ceilf(ew * (face + 1)) - ceilf(ew * face); uf = 0.5f * ewi * (uf + 1.f) - 0.5f; vf = 0.5f * ehi * (vf + 1.f) - 0.5f; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { int new_ui = ui + j - 1; int new_vi = vi + i - 1; int u_shift; int new_ewi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; u_shift = ceilf(ew * face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= scalew; vf /= scaleh; process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= scalew; vf *= scaleh; u_shift = ceilf(ew * face); new_ewi = ceilf(ew * (face + 1)) - u_shift; new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1); } us[i][j] = u_shift + new_ui; vs[i][j] = new_vi; } } return 1; } /** * Prepare data for processing equirectangular output format. * * @param ctx filter context * * @return error code */ static int prepare_equirect_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = s->h_fov * M_PI / 360.f; s->flat_range[1] = s->v_fov * M_PI / 360.f; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int equirect_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float phi = rescale(i, width) * s->flat_range[0]; const float theta = rescale(j, height) * s->flat_range[1]; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = sin_theta; vec[2] = cos_theta * cos_phi; return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int hequirect_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float phi = rescale(i, width) * M_PI_2; const float theta = rescale(j, height) * M_PI_2; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = sin_theta; vec[2] = cos_theta * cos_phi; return 1; } /** * Prepare data for processing stereographic output format. * * @param ctx filter context * * @return error code */ static int prepare_stereographic_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f); s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f); return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in stereographic format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int stereographic_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width) * s->flat_range[0]; const float y = rescale(j, height) * s->flat_range[1]; const float r = hypotf(x, y); const float theta = atanf(r) * 2.f; const float sin_theta = sinf(theta); vec[0] = x / r * sin_theta; vec[1] = y / r * sin_theta; vec[2] = cosf(theta); return 1; } /** * Prepare data for processing stereographic input format. * * @param ctx filter context * * @return error code */ static int prepare_stereographic_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f); s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f); return 0; } /** * Calculate frame position in stereographic format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_stereographic(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = acosf(vec[2]); const float r = tanf(theta * 0.5f); const float c = r / hypotf(vec[0], vec[1]); const float x = vec[0] * c / s->iflat_range[0]; const float y = vec[1] * c / s->iflat_range[1]; const float uf = scale(x, width); const float vf = scale(y, height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; *du = visible ? uf - ui : 0.f; *dv = visible ? vf - vi : 0.f; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Prepare data for processing equisolid output format. * * @param ctx filter context * * @return error code */ static int prepare_equisolid_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f); s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f); return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in equisolid format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int equisolid_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width) * s->flat_range[0]; const float y = rescale(j, height) * s->flat_range[1]; const float r = hypotf(x, y); const float theta = asinf(r) * 2.f; const float sin_theta = sinf(theta); vec[0] = x / r * sin_theta; vec[1] = y / r * sin_theta; vec[2] = cosf(theta); return 1; } /** * Prepare data for processing equisolid input format. * * @param ctx filter context * * @return error code */ static int prepare_equisolid_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f); s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f); return 0; } /** * Calculate frame position in equisolid format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_equisolid(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = acosf(vec[2]); const float r = sinf(theta * 0.5f); const float c = r / hypotf(vec[0], vec[1]); const float x = vec[0] * c / s->iflat_range[0]; const float y = vec[1] * c / s->iflat_range[1]; const float uf = scale(x, width); const float vf = scale(y, height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; *du = visible ? uf - ui : 0.f; *dv = visible ? vf - vi : 0.f; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Prepare data for processing orthographic output format. * * @param ctx filter context * * @return error code */ static int prepare_orthographic_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f); s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f); return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in orthographic format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int orthographic_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width) * s->flat_range[0]; const float y = rescale(j, height) * s->flat_range[1]; const float r = hypotf(x, y); const float theta = asinf(r); vec[2] = cosf(theta); if (vec[2] > 0) { vec[0] = x; vec[1] = y; return 1; } else { vec[0] = 0.f; vec[1] = 0.f; vec[2] = 1.f; return 0; } } /** * Prepare data for processing orthographic input format. * * @param ctx filter context * * @return error code */ static int prepare_orthographic_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f); s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f); return 0; } /** * Calculate frame position in orthographic format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_orthographic(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = acosf(vec[2]); const float r = sinf(theta); const float c = r / hypotf(vec[0], vec[1]); const float x = vec[0] * c / s->iflat_range[0]; const float y = vec[1] * c / s->iflat_range[1]; const float uf = scale(x, width); const float vf = scale(y, height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; *du = visible ? uf - ui : 0.f; *dv = visible ? vf - vi : 0.f; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Prepare data for processing equirectangular input format. * * @param ctx filter context * * @return error code */ static int prepare_equirect_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = s->ih_fov * M_PI / 360.f; s->iflat_range[1] = s->iv_fov * M_PI / 360.f; return 0; } /** * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_equirect(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; const float theta = asinf(vec[1]) / s->iflat_range[1]; const float uf = scale(phi, width); const float vf = scale(theta, height); const int ui = floorf(uf); const int vi = floorf(vf); int visible; *du = uf - ui; *dv = vf - vi; visible = vi >= 0 && vi < height && ui >= 0 && ui < width; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height); vs[i][j] = reflecty(vi + i - 1, height); } } return visible; } /** * Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_hequirect(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]) / M_PI_2; const float theta = asinf(vec[1]) / M_PI_2; const float uf = scale(phi, width); const float vf = scale(theta, height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = phi >= -M_PI_2 && phi <= M_PI_2; *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return visible; } /** * Prepare data for processing flat input format. * * @param ctx filter context * * @return error code */ static int prepare_flat_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f); s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f); return 0; } /** * Calculate frame position in flat format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_flat(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = acosf(vec[2]); const float r = tanf(theta); const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height); const float zf = vec[2]; const float h = hypotf(vec[0], vec[1]); const float c = h <= 1e-6f ? 1.f : rr / h; float uf = vec[0] * c / s->iflat_range[0]; float vf = vec[1] * c / s->iflat_range[1]; int visible, ui, vi; uf = zf >= 0.f ? scale(uf, width) : 0.f; vf = zf >= 0.f ? scale(vf, height) : 0.f; ui = floorf(uf); vi = floorf(vf); visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f; *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Calculate frame position in mercator format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_mercator(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]) / M_PI; const float theta = av_clipf(logf((1.f + vec[1]) / (1.f - vec[1])) / (2.f * M_PI), -1.f, 1.f); const float uf = scale(phi, width); const float vf = scale(theta, height); const int ui = floorf(uf); const int vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in mercator format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int mercator_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float phi = rescale(i, width) * M_PI + M_PI_2; const float y = rescale(j, height) * M_PI; const float div = expf(2.f * y) + 1.f; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = 2.f * expf(y) / div; const float cos_theta = (expf(2.f * y) - 1.f) / div; vec[0] = -sin_theta * cos_phi; vec[1] = cos_theta; vec[2] = sin_theta * sin_phi; return 1; } /** * Calculate frame position in ball format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_ball(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float l = hypotf(vec[0], vec[1]); const float r = sqrtf(1.f - vec[2]) / M_SQRT2; const float d = l > 0.f ? l : 1.f; const float uf = scale(r * vec[0] / d, width); const float vf = scale(r * vec[1] / d, height); const int ui = floorf(uf); const int vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in ball format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int ball_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width); const float y = rescale(j, height); const float l = hypotf(x, y); if (l <= 1.f) { const float z = 2.f * l * sqrtf(1.f - l * l); vec[0] = z * x / (l > 0.f ? l : 1.f); vec[1] = z * y / (l > 0.f ? l : 1.f); vec[2] = 1.f - 2.f * l * l; } else { vec[0] = 0.f; vec[1] = 1.f; vec[2] = 0.f; return 0; } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in hammer format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int hammer_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width); const float y = rescale(j, height); const float xx = x * x; const float yy = y * y; const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f); const float a = M_SQRT2 * x * z; const float b = 2.f * z * z - 1.f; const float aa = a * a; const float bb = b * b; const float w = sqrtf(1.f - 2.f * yy * z * z); vec[0] = w * 2.f * a * b / (aa + bb); vec[1] = M_SQRT2 * y * z; vec[2] = w * (bb - aa) / (aa + bb); return 1; } /** * Calculate frame position in hammer format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_hammer(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = atan2f(vec[0], vec[2]); const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f)); const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z; const float y = vec[1] / z; const float uf = (x + 1.f) * width / 2.f; const float vf = (y + 1.f) * height / 2.f; const int ui = floorf(uf); const int vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int sinusoidal_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float theta = rescale(j, height) * M_PI_2; const float phi = rescale(i, width) * M_PI / cosf(theta); const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = sin_theta; vec[2] = cos_theta * cos_phi; return 1; } /** * Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_sinusoidal(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float theta = asinf(vec[1]); const float phi = atan2f(vec[0], vec[2]) * cosf(theta); const float uf = scale(phi / M_PI, width); const float vf = scale(theta / M_PI_2, height); const int ui = floorf(uf); const int vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } /** * Prepare data for processing equi-angular cubemap input format. * * @param ctx filter context * * @return error code */ static int prepare_eac_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->in_cubemap_face_order[RIGHT] = TOP_RIGHT; s->in_cubemap_face_order[LEFT] = TOP_LEFT; s->in_cubemap_face_order[UP] = BOTTOM_RIGHT; s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT; s->in_cubemap_face_order[FRONT] = TOP_MIDDLE; s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE; s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0; s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0; s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; return 0; } /** * Prepare data for processing equi-angular cubemap output format. * * @param ctx filter context * * @return error code */ static int prepare_eac_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->out_cubemap_direction_order[TOP_LEFT] = LEFT; s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT; s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT; s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN; s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK; s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP; s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0; s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0; s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int eac_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float pixel_pad = 2; const float u_pad = pixel_pad / width; const float v_pad = pixel_pad / height; int u_face, v_face, face; float l_x, l_y, l_z; float uf = (i + 0.5f) / width; float vf = (j + 0.5f) / height; // EAC has 2-pixel padding on faces except between faces on the same row // Padding pixels seems not to be stretched with tangent as regular pixels // Formulas below approximate original padding as close as I could get experimentally // Horizontal padding uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad); if (uf < 0.f) { u_face = 0; uf -= 0.5f; } else if (uf >= 3.f) { u_face = 2; uf -= 2.5f; } else { u_face = floorf(uf); uf = fmodf(uf, 1.f) - 0.5f; } // Vertical padding v_face = floorf(vf * 2.f); vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f; if (uf >= -0.5f && uf < 0.5f) { uf = tanf(M_PI_2 * uf); } else { uf = 2.f * uf; } if (vf >= -0.5f && vf < 0.5f) { vf = tanf(M_PI_2 * vf); } else { vf = 2.f * vf; } face = u_face + 3 * v_face; switch (face) { case TOP_LEFT: l_x = -1.f; l_y = vf; l_z = uf; break; case TOP_MIDDLE: l_x = uf; l_y = vf; l_z = 1.f; break; case TOP_RIGHT: l_x = 1.f; l_y = vf; l_z = -uf; break; case BOTTOM_LEFT: l_x = -vf; l_y = 1.f; l_z = -uf; break; case BOTTOM_MIDDLE: l_x = -vf; l_y = -uf; l_z = -1.f; break; case BOTTOM_RIGHT: l_x = -vf; l_y = -1.f; l_z = uf; break; default: av_assert0(0); } vec[0] = l_x; vec[1] = l_y; vec[2] = l_z; return 1; } /** * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_eac(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float pixel_pad = 2; const float u_pad = pixel_pad / width; const float v_pad = pixel_pad / height; float uf, vf; int ui, vi; int direction, face; int u_face, v_face; xyz_to_cube(s, vec, &uf, &vf, &direction); face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; uf = M_2_PI * atanf(uf) + 0.5f; vf = M_2_PI * atanf(vf) + 0.5f; // These formulas are inversed from eac_to_xyz ones uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad; vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face; uf *= width; vf *= height; uf -= 0.5f; vf -= 0.5f; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } /** * Prepare data for processing flat output format. * * @param ctx filter context * * @return error code */ static int prepare_flat_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f); s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f); return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in flat format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int flat_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float l_x = s->flat_range[0] * rescale(i, width); const float l_y = s->flat_range[1] * rescale(j, height); vec[0] = l_x; vec[1] = l_y; vec[2] = 1.f; return 1; } /** * Prepare data for processing fisheye output format. * * @param ctx filter context * * @return error code */ static int prepare_fisheye_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = s->h_fov / 180.f; s->flat_range[1] = s->v_fov / 180.f; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in fisheye format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int fisheye_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = s->flat_range[0] * rescale(i, width); const float vf = s->flat_range[1] * rescale(j, height); const float phi = atan2f(vf, uf); const float theta = M_PI_2 * (1.f - hypotf(uf, vf)); const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * cos_phi; vec[1] = cos_theta * sin_phi; vec[2] = sin_theta; return 1; } /** * Prepare data for processing fisheye input format. * * @param ctx filter context * * @return error code */ static int prepare_fisheye_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = s->ih_fov / 180.f; s->iflat_range[1] = s->iv_fov / 180.f; return 0; } /** * Calculate frame position in fisheye format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_fisheye(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float h = hypotf(vec[0], vec[1]); const float lh = h > 0.f ? h : 1.f; const float phi = atan2f(h, vec[2]) / M_PI; float uf = vec[0] / lh * phi / s->iflat_range[0]; float vf = vec[1] / lh * phi / s->iflat_range[1]; const int visible = -0.5f < uf && uf < 0.5f && -0.5f < vf && vf < 0.5f; int ui, vi; uf = scale(uf * 2.f, width); vf = scale(vf * 2.f, height); ui = floorf(uf); vi = floorf(vf); *du = visible ? uf - ui : 0.f; *dv = visible ? vf - vi : 0.f; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Calculate 3D coordinates on sphere for corresponding frame position in pannini format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int pannini_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = rescale(i, width); const float vf = rescale(j, height); const float d = s->h_fov; const float k = uf * uf / ((d + 1.f) * (d + 1.f)); const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f); const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f); const float S = (d + 1.f) / (d + clon); const float lon = atan2f(uf, S * clon); const float lat = atan2f(vf, S); vec[0] = sinf(lon) * cosf(lat); vec[1] = sinf(lat); vec[2] = cosf(lon) * cosf(lat); return 1; } /** * Calculate frame position in pannini format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_pannini(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]); const float theta = asinf(vec[1]); const float d = s->ih_fov; const float S = (d + 1.f) / (d + cosf(phi)); const float x = S * sinf(phi); const float y = S * tanf(theta); const float uf = scale(x, width); const float vf = scale(y, height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && vec[2] >= 0.f; *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Prepare data for processing cylindrical output format. * * @param ctx filter context * * @return error code */ static int prepare_cylindrical_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = M_PI * s->h_fov / 360.f; s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f); return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int cylindrical_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = s->flat_range[0] * rescale(i, width); const float vf = s->flat_range[1] * rescale(j, height); const float phi = uf; const float theta = atanf(vf); const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = sin_theta; vec[2] = cos_theta * cos_phi; return 1; } /** * Prepare data for processing cylindrical input format. * * @param ctx filter context * * @return error code */ static int prepare_cylindrical_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = M_PI * s->ih_fov / 360.f; s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f); return 0; } /** * Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_cylindrical(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; const float theta = asinf(vec[1]); const float uf = scale(phi, width); const float vf = scale(tanf(theta) / s->iflat_range[1], height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && theta <= M_PI * s->iv_fov / 180.f && theta >= -M_PI * s->iv_fov / 180.f; *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Prepare data for processing cylindrical equal area output format. * * @param ctx filter context * * @return error code */ static int prepare_cylindricalea_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->flat_range[0] = s->h_fov * M_PI / 360.f; s->flat_range[1] = s->v_fov / 180.f; return 0; } /** * Prepare data for processing cylindrical equal area input format. * * @param ctx filter context * * @return error code */ static int prepare_cylindricalea_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = M_PI * s->ih_fov / 360.f; s->iflat_range[1] = s->iv_fov / 180.f; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in cylindrical equal area format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int cylindricalea_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = s->flat_range[0] * rescale(i, width); const float vf = s->flat_range[1] * rescale(j, height); const float phi = uf; const float theta = asinf(vf); const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = sin_theta; vec[2] = cos_theta * cos_phi; return 1; } /** * Calculate frame position in cylindrical equal area format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_cylindricalea(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; const float theta = asinf(vec[1]); const float uf = scale(phi, width); const float vf = scale(sinf(theta) / s->iflat_range[1], height); const int ui = floorf(uf); const int vi = floorf(vf); const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && theta <= M_PI * s->iv_fov / 180.f && theta >= -M_PI * s->iv_fov / 180.f; *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; } } return visible; } /** * Calculate 3D coordinates on sphere for corresponding frame position in perspective format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int perspective_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = rescale(i, width); const float vf = rescale(j, height); const float rh = hypotf(uf, vf); const float sinzz = 1.f - rh * rh; const float h = 1.f + s->v_fov; const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h); const float sinz2 = sinz * sinz; if (sinz2 <= 1.f) { const float cosz = sqrtf(1.f - sinz2); const float theta = asinf(cosz); const float phi = atan2f(uf, vf); const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = cos_theta * cos_phi; vec[2] = sin_theta; } else { vec[0] = 0.f; vec[1] = 1.f; vec[2] = 0.f; return 0; } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int tetrahedron_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float uf = ((float)i + 0.5f) / width; const float vf = ((float)j + 0.5f) / height; vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f; vec[1] = 1.f - vf * 2.f; vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f; return 1; } /** * Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_tetrahedron(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float d0 = vec[0] * 1.f + vec[1] * 1.f + vec[2] *-1.f; const float d1 = vec[0] *-1.f + vec[1] *-1.f + vec[2] *-1.f; const float d2 = vec[0] * 1.f + vec[1] *-1.f + vec[2] * 1.f; const float d3 = vec[0] *-1.f + vec[1] * 1.f + vec[2] * 1.f; const float d = FFMAX(d0, FFMAX3(d1, d2, d3)); float uf, vf, x, y, z; int ui, vi; x = vec[0] / d; y = vec[1] / d; z = -vec[2] / d; vf = 0.5f - y * 0.5f; if ((x + y >= 0.f && y + z >= 0.f && -z - x <= 0.f) || (x + y <= 0.f && -y + z >= 0.f && z - x >= 0.f)) { uf = 0.25f * x + 0.25f; } else { uf = 0.75f - 0.25f * x; } uf *= width; vf *= height; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height); vs[i][j] = reflecty(vi + i - 1, height); } } return 1; } /** * Prepare data for processing double fisheye input format. * * @param ctx filter context * * @return error code */ static int prepare_dfisheye_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->iflat_range[0] = s->ih_fov / 360.f; s->iflat_range[1] = s->iv_fov / 360.f; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int dfisheye_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float ew = width * 0.5f; const float eh = height; const int ei = i >= ew ? i - ew : i; const float m = i >= ew ? 1.f : -1.f; const float uf = s->flat_range[0] * rescale(ei, ew); const float vf = s->flat_range[1] * rescale(j, eh); const float h = hypotf(uf, vf); const float lh = h > 0.f ? h : 1.f; const float theta = m * M_PI_2 * (1.f - h); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * m * uf / lh; vec[1] = cos_theta * vf / lh; vec[2] = sin_theta; return 1; } /** * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_dfisheye(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float ew = width * 0.5f; const float eh = height; const float h = hypotf(vec[0], vec[1]); const float lh = h > 0.f ? h : 1.f; const float theta = acosf(fabsf(vec[2])) / M_PI; float uf = scale(theta * (vec[0] / lh) / s->iflat_range[0], ew); float vf = scale(theta * (vec[1] / lh) / s->iflat_range[1], eh); int ui, vi; int u_shift; if (vec[2] >= 0.f) { u_shift = ceilf(ew); } else { u_shift = 0; uf = ew - uf - 1.f; } ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); vs[i][j] = av_clip( vi + i - 1, 0, height - 1); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int barrel_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float scale = 0.99f; float l_x, l_y, l_z; if (i < 4 * width / 5) { const float theta_range = M_PI_4; const int ew = 4 * width / 5; const int eh = height; const float phi = rescale(i, ew) * M_PI / scale; const float theta = rescale(j, eh) * theta_range / scale; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); l_x = cos_theta * sin_phi; l_y = sin_theta; l_z = cos_theta * cos_phi; } else { const int ew = width / 5; const int eh = height / 2; float uf, vf; if (j < eh) { // UP uf = rescale(i - 4 * ew, ew); vf = rescale(j, eh); uf /= scale; vf /= scale; l_x = uf; l_y = -1.f; l_z = vf; } else { // DOWN uf = rescale(i - 4 * ew, ew); vf = rescale(j - eh, eh); uf /= scale; vf /= scale; l_x = uf; l_y = 1.f; l_z = -vf; } } vec[0] = l_x; vec[1] = l_y; vec[2] = l_z; return 1; } /** * Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_barrel(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float scale = 0.99f; const float phi = atan2f(vec[0], vec[2]); const float theta = asinf(vec[1]); const float theta_range = M_PI_4; int ew, eh; int u_shift, v_shift; float uf, vf; int ui, vi; if (theta > -theta_range && theta < theta_range) { ew = 4 * width / 5; eh = height; u_shift = 0; v_shift = 0; uf = (phi / M_PI * scale + 1.f) * ew / 2.f; vf = (theta / theta_range * scale + 1.f) * eh / 2.f; } else { ew = width / 5; eh = height / 2; u_shift = 4 * ew; if (theta < 0.f) { // UP uf = -vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = 0; } else { // DOWN uf = vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = eh; } uf = 0.5f * ew * (uf * scale + 1.f); vf = 0.5f * eh * (vf * scale + 1.f); } ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1); } } return 1; } /** * Calculate frame position in barrel split facebook's format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_barrelsplit(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], vec[2]); const float theta = asinf(vec[1]); const float theta_range = M_PI_4; int ew, eh; int u_shift, v_shift; float uf, vf; int ui, vi; if (theta >= -theta_range && theta <= theta_range) { const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width * 2.f / 3.f) : 1.f - s->in_pad; const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad; ew = width / 3 * 2; eh = height / 2; u_shift = 0; v_shift = phi >= M_PI_2 || phi < -M_PI_2 ? eh : 0; uf = fmodf(phi, M_PI_2) / M_PI_2; vf = theta / M_PI_4; if (v_shift) uf = uf >= 0.f ? fmodf(uf - 1.f, 1.f) : fmodf(uf + 1.f, 1.f); uf = (uf * scalew + 1.f) * width / 3.f; vf = (vf * scaleh + 1.f) * height / 4.f; } else { const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad; const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 4.f) : 1.f - s->in_pad; ew = width / 3; eh = height / 4; u_shift = 2 * ew; uf = vec[0] / vec[1] * scalew; vf = vec[2] / vec[1] * scaleh; if (theta <= 0.f && theta >= -M_PI_2 && phi <= M_PI_2 && phi >= -M_PI_2) { // front top uf *= -1.0f; vf = -(vf + 1.f) * scaleh + 1.f; v_shift = 0; } else if (theta >= 0.f && theta <= M_PI_2 && phi <= M_PI_2 && phi >= -M_PI_2) { // front bottom vf = -(vf - 1.f) * scaleh; v_shift = height * 0.25f; } else if (theta <= 0.f && theta >= -M_PI_2) { // back top vf = (vf - 1.f) * scaleh + 1.f; v_shift = height * 0.5f; } else { // back bottom uf *= -1.0f; vf = (vf + 1.f) * scaleh; v_shift = height * 0.75f; } uf = 0.5f * width / 3.f * (uf + 1.f); vf *= height * 0.25f; } ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1); vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in barrel split facebook's format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int barrelsplit_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = (i + 0.5f) / width; const float y = (j + 0.5f) / height; float l_x, l_y, l_z; int ret; if (x < 2.f / 3.f) { const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width * 2.f / 3.f) : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad; const float back = floorf(y * 2.f); const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI; const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); l_x = cos_theta * sin_phi; l_y = sin_theta; l_z = cos_theta * cos_phi; ret = 1; } else { const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad; const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad; const float facef = floorf(y * 4.f); const int face = facef; const float dir_vert = (face == 1 || face == 3) ? 1.0f : -1.0f; float uf, vf; uf = x * 3.f - 2.f; switch (face) { case 0: // front top case 1: // front bottom uf = 1.f - uf; vf = (0.5f - 2.f * y) / scaleh + facef; break; case 2: // back top case 3: // back bottom vf = (y * 2.f - 1.5f) / scaleh + 3.f - facef; break; default: av_assert0(0); } l_x = (0.5f - uf) / scalew; l_y = 0.5f * dir_vert; l_z = (vf - 0.5f) * dir_vert / scaleh; ret = (l_x * l_x * scalew * scalew + l_z * l_z * scaleh * scaleh) < 0.5f * 0.5f; } vec[0] = l_x; vec[1] = l_y; vec[2] = l_z; return ret; } /** * Calculate 3D coordinates on sphere for corresponding frame position in tspyramid format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int tspyramid_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = (i + 0.5f) / width; const float y = (j + 0.5f) / height; if (x < 0.5f) { vec[0] = x * 4.f - 1.f; vec[1] = (y * 2.f - 1.f); vec[2] = 1.f; } else if (x >= 0.6875f && x < 0.8125f && y >= 0.375f && y < 0.625f) { vec[0] = -(x - 0.6875f) * 16.f + 1.f; vec[1] = (y - 0.375f) * 8.f - 1.f; vec[2] = -1.f; } else if (0.5f <= x && x < 0.6875f && ((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) || (0.375f <= y && y < 0.625f) || (0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) { vec[0] = 1.f; vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f; vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f; } else if (0.8125f <= x && x < 1.f && ((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) || (0.375f <= y && y < 0.625f) || (0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) { vec[0] = -1.f; vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f; vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f; } else if (0.f <= y && y < 0.375f && ((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) || (0.6875f <= x && x < 0.8125f) || (0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) { vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f; vec[1] = -1.f; vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f; } else { vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f; vec[1] = 1.f; vec[2] = -2.f * (1.f - y) / 0.375f + 1.f; } return 1; } /** * Calculate frame position in tspyramid format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_tspyramid(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { float uf, vf; int ui, vi; int face; xyz_to_cube(s, vec, &uf, &vf, &face); uf = (uf + 1.f) * 0.5f; vf = (vf + 1.f) * 0.5f; switch (face) { case UP: uf = 0.1875f * vf - 0.375f * uf * vf - 0.125f * uf + 0.8125f; vf = 0.375f - 0.375f * vf; break; case FRONT: uf = 0.5f * uf; break; case DOWN: uf = 1.f - 0.1875f * vf - 0.5f * uf + 0.375f * uf * vf; vf = 1.f - 0.375f * vf; break; case LEFT: vf = 0.25f * vf + 0.75f * uf * vf - 0.375f * uf + 0.375f; uf = 0.1875f * uf + 0.8125f; break; case RIGHT: vf = 0.375f * uf - 0.75f * uf * vf + vf; uf = 0.1875f * uf + 0.5f; break; case BACK: uf = 0.125f * uf + 0.6875f; vf = 0.25f * vf + 0.375f; break; } uf *= width; vf *= height; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height); vs[i][j] = reflecty(vi + i - 1, height); } } return 1; } /** * Calculate 3D coordinates on sphere for corresponding frame position in octahedron format. * * @param s filter private context * @param i horizontal position on frame [0, width) * @param j vertical position on frame [0, height) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static int octahedron_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float x = rescale(i, width); const float y = rescale(j, height); const float ax = fabsf(x); const float ay = fabsf(y); vec[2] = 1.f - (ax + ay); if (ax + ay > 1.f) { vec[0] = (1.f - ay) * FFSIGN(x); vec[1] = (1.f - ax) * FFSIGN(y); } else { vec[0] = x; vec[1] = y; } return 1; } /** * Calculate frame position in octahedron format for corresponding 3D coordinates on sphere. * * @param s filter private context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static int xyz_to_octahedron(const V360Context *s, const float *vec, int width, int height, int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) { float uf, vf, zf; int ui, vi; float div = fabsf(vec[0]) + fabsf(vec[1]) + fabsf(vec[2]); uf = vec[0] / div; vf = vec[1] / div; zf = vec[2]; if (zf < 0.f) { zf = vf; vf = (1.f - fabsf(uf)) * FFSIGN(zf); uf = (1.f - fabsf(zf)) * FFSIGN(uf); } uf = scale(uf, width); vf = scale(vf, height); ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { us[i][j] = av_clip(ui + j - 1, 0, width - 1); vs[i][j] = av_clip(vi + i - 1, 0, height - 1); } } return 1; } static void multiply_quaternion(float c[4], const float a[4], const float b[4]) { c[0] = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3]; c[1] = a[1] * b[0] + a[0] * b[1] + a[2] * b[3] - a[3] * b[2]; c[2] = a[2] * b[0] + a[0] * b[2] + a[3] * b[1] - a[1] * b[3]; c[3] = a[3] * b[0] + a[0] * b[3] + a[1] * b[2] - a[2] * b[1]; } static void conjugate_quaternion(float d[4], const float q[4]) { d[0] = q[0]; d[1] = -q[1]; d[2] = -q[2]; d[3] = -q[3]; } /** * Calculate rotation quaternion for yaw/pitch/roll angles. */ static inline void calculate_rotation(float yaw, float pitch, float roll, float rot_quaternion[2][4], const int rotation_order[3]) { const float yaw_rad = yaw * M_PI / 180.f; const float pitch_rad = pitch * M_PI / 180.f; const float roll_rad = roll * M_PI / 180.f; const float sin_yaw = sinf(yaw_rad * 0.5f); const float cos_yaw = cosf(yaw_rad * 0.5f); const float sin_pitch = sinf(pitch_rad * 0.5f); const float cos_pitch = cosf(pitch_rad * 0.5f); const float sin_roll = sinf(roll_rad * 0.5f); const float cos_roll = cosf(roll_rad * 0.5f); float m[3][4]; float tmp[2][4]; m[0][0] = cos_yaw; m[0][1] = 0.f; m[0][2] = sin_yaw; m[0][3] = 0.f; m[1][0] = cos_pitch; m[1][1] = sin_pitch; m[1][2] = 0.f; m[1][3] = 0.f; m[2][0] = cos_roll; m[2][1] = 0.f; m[2][2] = 0.f; m[2][3] = sin_roll; multiply_quaternion(tmp[0], rot_quaternion[0], m[rotation_order[0]]); multiply_quaternion(tmp[1], tmp[0], m[rotation_order[1]]); multiply_quaternion(rot_quaternion[0], tmp[1], m[rotation_order[2]]); conjugate_quaternion(rot_quaternion[1], rot_quaternion[0]); } /** * Rotate vector with given rotation quaternion. * * @param rot_quaternion rotation quaternion * @param vec vector */ static inline void rotate(const float rot_quaternion[2][4], float *vec) { float qv[4], temp[4], rqv[4]; qv[0] = 0.f; qv[1] = vec[0]; qv[2] = vec[1]; qv[3] = vec[2]; multiply_quaternion(temp, rot_quaternion[0], qv); multiply_quaternion(rqv, temp, rot_quaternion[1]); vec[0] = rqv[1]; vec[1] = rqv[2]; vec[2] = rqv[3]; } static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip, float *modifier) { modifier[0] = h_flip ? -1.f : 1.f; modifier[1] = v_flip ? -1.f : 1.f; modifier[2] = d_flip ? -1.f : 1.f; } static inline void mirror(const float *modifier, float *vec) { vec[0] *= modifier[0]; vec[1] *= modifier[1]; vec[2] *= modifier[2]; } static inline void input_flip(int16_t u[4][4], int16_t v[4][4], int w, int h, int hflip, int vflip) { if (hflip) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) u[i][j] = w - 1 - u[i][j]; } } if (vflip) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) v[i][j] = h - 1 - v[i][j]; } } } static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p) { const int pr_height = s->pr_height[p]; for (int n = 0; n < s->nb_threads; n++) { SliceXYRemap *r = &s->slice_remap[n]; const int slice_start = (pr_height * n ) / s->nb_threads; const int slice_end = (pr_height * (n + 1)) / s->nb_threads; const int height = slice_end - slice_start; if (!r->u[p]) r->u[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv); if (!r->v[p]) r->v[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv); if (!r->u[p] || !r->v[p]) return AVERROR(ENOMEM); if (sizeof_ker) { if (!r->ker[p]) r->ker[p] = av_calloc(s->uv_linesize[p] * height, sizeof_ker); if (!r->ker[p]) return AVERROR(ENOMEM); } if (sizeof_mask && !p) { if (!r->mask) r->mask = av_calloc(s->pr_width[p] * height, sizeof_mask); if (!r->mask) return AVERROR(ENOMEM); } } return 0; } static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov) { switch (format) { case EQUIRECTANGULAR: *h_fov = d_fov; *v_fov = d_fov * 0.5f; break; case ORTHOGRAPHIC: { const float d = 0.5f * hypotf(w, h); const float l = sinf(d_fov * M_PI / 360.f) / d; *h_fov = asinf(w * 0.5f * l) * 360.f / M_PI; *v_fov = asinf(h * 0.5f * l) * 360.f / M_PI; if (d_fov > 180.f) { *h_fov = 180.f - *h_fov; *v_fov = 180.f - *v_fov; } } break; case EQUISOLID: { const float d = 0.5f * hypotf(w, h); const float l = d / (sinf(d_fov * M_PI / 720.f)); *h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI; *v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI; } break; case STEREOGRAPHIC: { const float d = 0.5f * hypotf(w, h); const float l = d / (tanf(d_fov * M_PI / 720.f)); *h_fov = 2.f * atan2f(w * 0.5f, l) * 360.f / M_PI; *v_fov = 2.f * atan2f(h * 0.5f, l) * 360.f / M_PI; } break; case DUAL_FISHEYE: { const float d = hypotf(w * 0.5f, h); *h_fov = 0.5f * w / d * d_fov; *v_fov = h / d * d_fov; } break; case FISHEYE: { const float d = hypotf(w, h); *h_fov = w / d * d_fov; *v_fov = h / d * d_fov; } break; case FLAT: default: { const float da = tanf(0.5f * FFMIN(d_fov, 359.f) * M_PI / 180.f); const float d = hypotf(w, h); *h_fov = atan2f(da * w, d) * 360.f / M_PI; *v_fov = atan2f(da * h, d) * 360.f / M_PI; if (*h_fov < 0.f) *h_fov += 360.f; if (*v_fov < 0.f) *v_fov += 360.f; } break; } } static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc) { outw[1] = outw[2] = AV_CEIL_RSHIFT(w, desc->log2_chroma_w); outw[0] = outw[3] = w; outh[1] = outh[2] = AV_CEIL_RSHIFT(h, desc->log2_chroma_h); outh[0] = outh[3] = h; } // Calculate remap data static int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { V360Context *s = ctx->priv; SliceXYRemap *r = &s->slice_remap[jobnr]; for (int p = 0; p < s->nb_allocated; p++) { const int max_value = s->max_value; const int width = s->pr_width[p]; const int uv_linesize = s->uv_linesize[p]; const int height = s->pr_height[p]; const int in_width = s->inplanewidth[p]; const int in_height = s->inplaneheight[p]; const int slice_start = (height * jobnr ) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const int elements = s->elements; float du, dv; float vec[3]; XYRemap rmap; for (int j = slice_start; j < slice_end; j++) { for (int i = 0; i < width; i++) { int16_t *u = r->u[p] + ((j - slice_start) * uv_linesize + i) * elements; int16_t *v = r->v[p] + ((j - slice_start) * uv_linesize + i) * elements; int16_t *ker = r->ker[p] + ((j - slice_start) * uv_linesize + i) * elements; uint8_t *mask8 = p ? NULL : r->mask + ((j - slice_start) * s->pr_width[0] + i); uint16_t *mask16 = p ? NULL : (uint16_t *)r->mask + ((j - slice_start) * s->pr_width[0] + i); int in_mask, out_mask; if (s->out_transpose) out_mask = s->out_transform(s, j, i, height, width, vec); else out_mask = s->out_transform(s, i, j, width, height, vec); offset_vector(vec, s->h_offset, s->v_offset); normalize_vector(vec); av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2])); rotate(s->rot_quaternion, vec); av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2])); normalize_vector(vec); mirror(s->output_mirror_modifier, vec); if (s->in_transpose) in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv); else in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv); input_flip(rmap.u, rmap.v, in_width, in_height, s->ih_flip, s->iv_flip); av_assert1(!isnan(du) && !isnan(dv)); s->calculate_kernel(du, dv, &rmap, u, v, ker); if (!p && r->mask) { if (s->mask_size == 1) { mask8[0] = 255 * (out_mask & in_mask); } else { mask16[0] = max_value * (out_mask & in_mask); } } } } } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; V360Context *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int depth = desc->comp[0].depth; const int sizeof_mask = s->mask_size = (depth + 7) >> 3; float default_h_fov = 360.f; float default_v_fov = 180.f; float default_ih_fov = 360.f; float default_iv_fov = 180.f; int sizeof_uv; int sizeof_ker; int err; int h, w; int in_offset_h, in_offset_w; int out_offset_h, out_offset_w; float hf, wf; int (*prepare_out)(AVFilterContext *ctx); int have_alpha; s->max_value = (1 << depth) - 1; switch (s->interp) { case NEAREST: s->calculate_kernel = nearest_kernel; s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice; s->elements = 1; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = 0; break; case BILINEAR: s->calculate_kernel = bilinear_kernel; s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice; s->elements = 2 * 2; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case LAGRANGE9: s->calculate_kernel = lagrange_kernel; s->remap_slice = depth <= 8 ? remap3_8bit_slice : remap3_16bit_slice; s->elements = 3 * 3; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case BICUBIC: s->calculate_kernel = bicubic_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; s->elements = 4 * 4; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case LANCZOS: s->calculate_kernel = lanczos_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; s->elements = 4 * 4; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case SPLINE16: s->calculate_kernel = spline16_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; s->elements = 4 * 4; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case GAUSSIAN: s->calculate_kernel = gaussian_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; s->elements = 4 * 4; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; case MITCHELL: s->calculate_kernel = mitchell_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; s->elements = 4 * 4; sizeof_uv = sizeof(int16_t) * s->elements; sizeof_ker = sizeof(int16_t) * s->elements; break; default: av_assert0(0); } ff_v360_init(s, depth); for (int order = 0; order < NB_RORDERS; order++) { const char c = s->rorder[order]; int rorder; if (c == '\0') { av_log(ctx, AV_LOG_WARNING, "Incomplete rorder option. Direction for all 3 rotation orders should be specified. Switching to default rorder.\n"); s->rotation_order[0] = YAW; s->rotation_order[1] = PITCH; s->rotation_order[2] = ROLL; break; } rorder = get_rorder(c); if (rorder == -1) { av_log(ctx, AV_LOG_WARNING, "Incorrect rotation order symbol '%c' in rorder option. Switching to default rorder.\n", c); s->rotation_order[0] = YAW; s->rotation_order[1] = PITCH; s->rotation_order[2] = ROLL; break; } s->rotation_order[order] = rorder; } switch (s->in_stereo) { case STEREO_2D: w = inlink->w; h = inlink->h; in_offset_w = in_offset_h = 0; break; case STEREO_SBS: w = inlink->w / 2; h = inlink->h; in_offset_w = w; in_offset_h = 0; break; case STEREO_TB: w = inlink->w; h = inlink->h / 2; in_offset_w = 0; in_offset_h = h; break; default: av_assert0(0); } set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc); set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc); s->in_width = s->inplanewidth[0]; s->in_height = s->inplaneheight[0]; switch (s->in) { case CYLINDRICAL: case FLAT: default_ih_fov = 90.f; default_iv_fov = 45.f; break; case EQUISOLID: case ORTHOGRAPHIC: case STEREOGRAPHIC: case DUAL_FISHEYE: case FISHEYE: default_ih_fov = 180.f; default_iv_fov = 180.f; default: break; } if (s->ih_fov == 0.f) s->ih_fov = default_ih_fov; if (s->iv_fov == 0.f) s->iv_fov = default_iv_fov; if (s->id_fov > 0.f) fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov); if (s->in_transpose) FFSWAP(int, s->in_width, s->in_height); switch (s->in) { case EQUIRECTANGULAR: s->in_transform = xyz_to_equirect; err = prepare_equirect_in(ctx); wf = w; hf = h; break; case CUBEMAP_3_2: s->in_transform = xyz_to_cube3x2; err = prepare_cube_in(ctx); wf = w / 3.f * 4.f; hf = h; break; case CUBEMAP_1_6: s->in_transform = xyz_to_cube1x6; err = prepare_cube_in(ctx); wf = w * 4.f; hf = h / 3.f; break; case CUBEMAP_6_1: s->in_transform = xyz_to_cube6x1; err = prepare_cube_in(ctx); wf = w / 3.f * 2.f; hf = h * 2.f; break; case EQUIANGULAR: s->in_transform = xyz_to_eac; err = prepare_eac_in(ctx); wf = w; hf = h / 9.f * 8.f; break; case FLAT: s->in_transform = xyz_to_flat; err = prepare_flat_in(ctx); wf = w; hf = h; break; case PERSPECTIVE: av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n"); return AVERROR(EINVAL); case DUAL_FISHEYE: s->in_transform = xyz_to_dfisheye; err = prepare_dfisheye_in(ctx); wf = w; hf = h; break; case BARREL: s->in_transform = xyz_to_barrel; err = 0; wf = w / 5.f * 4.f; hf = h; break; case STEREOGRAPHIC: s->in_transform = xyz_to_stereographic; err = prepare_stereographic_in(ctx); wf = w; hf = h / 2.f; break; case MERCATOR: s->in_transform = xyz_to_mercator; err = 0; wf = w; hf = h / 2.f; break; case BALL: s->in_transform = xyz_to_ball; err = 0; wf = w; hf = h / 2.f; break; case HAMMER: s->in_transform = xyz_to_hammer; err = 0; wf = w; hf = h; break; case SINUSOIDAL: s->in_transform = xyz_to_sinusoidal; err = 0; wf = w; hf = h; break; case FISHEYE: s->in_transform = xyz_to_fisheye; err = prepare_fisheye_in(ctx); wf = w * 2; hf = h; break; case PANNINI: s->in_transform = xyz_to_pannini; err = 0; wf = w; hf = h; break; case CYLINDRICAL: s->in_transform = xyz_to_cylindrical; err = prepare_cylindrical_in(ctx); wf = w; hf = h * 2.f; break; case CYLINDRICALEA: s->in_transform = xyz_to_cylindricalea; err = prepare_cylindricalea_in(ctx); wf = w; hf = h; break; case TETRAHEDRON: s->in_transform = xyz_to_tetrahedron; err = 0; wf = w; hf = h; break; case BARREL_SPLIT: s->in_transform = xyz_to_barrelsplit; err = 0; wf = w * 4.f / 3.f; hf = h; break; case TSPYRAMID: s->in_transform = xyz_to_tspyramid; err = 0; wf = w; hf = h; break; case HEQUIRECTANGULAR: s->in_transform = xyz_to_hequirect; err = 0; wf = w * 2.f; hf = h; break; case EQUISOLID: s->in_transform = xyz_to_equisolid; err = prepare_equisolid_in(ctx); wf = w; hf = h / 2.f; break; case ORTHOGRAPHIC: s->in_transform = xyz_to_orthographic; err = prepare_orthographic_in(ctx); wf = w; hf = h / 2.f; break; case OCTAHEDRON: s->in_transform = xyz_to_octahedron; err = 0; wf = w; hf = h / 2.f; break; default: av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n"); return AVERROR_BUG; } if (err != 0) { return err; } switch (s->out) { case EQUIRECTANGULAR: s->out_transform = equirect_to_xyz; prepare_out = prepare_equirect_out; w = lrintf(wf); h = lrintf(hf); break; case CUBEMAP_3_2: s->out_transform = cube3x2_to_xyz; prepare_out = prepare_cube_out; w = lrintf(wf / 4.f * 3.f); h = lrintf(hf); break; case CUBEMAP_1_6: s->out_transform = cube1x6_to_xyz; prepare_out = prepare_cube_out; w = lrintf(wf / 4.f); h = lrintf(hf * 3.f); break; case CUBEMAP_6_1: s->out_transform = cube6x1_to_xyz; prepare_out = prepare_cube_out; w = lrintf(wf / 2.f * 3.f); h = lrintf(hf / 2.f); break; case EQUIANGULAR: s->out_transform = eac_to_xyz; prepare_out = prepare_eac_out; w = lrintf(wf); h = lrintf(hf / 8.f * 9.f); break; case FLAT: s->out_transform = flat_to_xyz; prepare_out = prepare_flat_out; w = lrintf(wf); h = lrintf(hf); break; case DUAL_FISHEYE: s->out_transform = dfisheye_to_xyz; prepare_out = prepare_fisheye_out; w = lrintf(wf); h = lrintf(hf); break; case BARREL: s->out_transform = barrel_to_xyz; prepare_out = NULL; w = lrintf(wf / 4.f * 5.f); h = lrintf(hf); break; case STEREOGRAPHIC: s->out_transform = stereographic_to_xyz; prepare_out = prepare_stereographic_out; w = lrintf(wf); h = lrintf(hf * 2.f); break; case MERCATOR: s->out_transform = mercator_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf * 2.f); break; case BALL: s->out_transform = ball_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf * 2.f); break; case HAMMER: s->out_transform = hammer_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf); break; case SINUSOIDAL: s->out_transform = sinusoidal_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf); break; case FISHEYE: s->out_transform = fisheye_to_xyz; prepare_out = prepare_fisheye_out; w = lrintf(wf * 0.5f); h = lrintf(hf); break; case PANNINI: s->out_transform = pannini_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf); break; case CYLINDRICAL: s->out_transform = cylindrical_to_xyz; prepare_out = prepare_cylindrical_out; w = lrintf(wf); h = lrintf(hf * 0.5f); break; case CYLINDRICALEA: s->out_transform = cylindricalea_to_xyz; prepare_out = prepare_cylindricalea_out; w = lrintf(wf); h = lrintf(hf); break; case PERSPECTIVE: s->out_transform = perspective_to_xyz; prepare_out = NULL; w = lrintf(wf / 2.f); h = lrintf(hf); break; case TETRAHEDRON: s->out_transform = tetrahedron_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf); break; case BARREL_SPLIT: s->out_transform = barrelsplit_to_xyz; prepare_out = NULL; w = lrintf(wf / 4.f * 3.f); h = lrintf(hf); break; case TSPYRAMID: s->out_transform = tspyramid_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf); break; case HEQUIRECTANGULAR: s->out_transform = hequirect_to_xyz; prepare_out = NULL; w = lrintf(wf / 2.f); h = lrintf(hf); break; case EQUISOLID: s->out_transform = equisolid_to_xyz; prepare_out = prepare_equisolid_out; w = lrintf(wf); h = lrintf(hf * 2.f); break; case ORTHOGRAPHIC: s->out_transform = orthographic_to_xyz; prepare_out = prepare_orthographic_out; w = lrintf(wf); h = lrintf(hf * 2.f); break; case OCTAHEDRON: s->out_transform = octahedron_to_xyz; prepare_out = NULL; w = lrintf(wf); h = lrintf(hf * 2.f); break; default: av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n"); return AVERROR_BUG; } // Override resolution with user values if specified if (s->width > 0 && s->height <= 0 && s->h_fov > 0.f && s->v_fov > 0.f && s->out == FLAT && s->d_fov == 0.f) { w = s->width; h = w / tanf(s->h_fov * M_PI / 360.f) * tanf(s->v_fov * M_PI / 360.f); } else if (s->width <= 0 && s->height > 0 && s->h_fov > 0.f && s->v_fov > 0.f && s->out == FLAT && s->d_fov == 0.f) { h = s->height; w = h / tanf(s->v_fov * M_PI / 360.f) * tanf(s->h_fov * M_PI / 360.f); } else if (s->width > 0 && s->height > 0) { w = s->width; h = s->height; } else if (s->width > 0 || s->height > 0) { av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n"); return AVERROR(EINVAL); } else { if (s->out_transpose) FFSWAP(int, w, h); if (s->in_transpose) FFSWAP(int, w, h); } s->width = w; s->height = h; switch (s->out) { case CYLINDRICAL: case FLAT: default_h_fov = 90.f; default_v_fov = 45.f; break; case EQUISOLID: case ORTHOGRAPHIC: case STEREOGRAPHIC: case DUAL_FISHEYE: case FISHEYE: default_h_fov = 180.f; default_v_fov = 180.f; break; default: break; } if (s->h_fov == 0.f) s->h_fov = default_h_fov; if (s->v_fov == 0.f) s->v_fov = default_v_fov; if (s->d_fov > 0.f) fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov); if (prepare_out) { err = prepare_out(ctx); if (err != 0) return err; } set_dimensions(s->pr_width, s->pr_height, w, h, desc); switch (s->out_stereo) { case STEREO_2D: out_offset_w = out_offset_h = 0; break; case STEREO_SBS: out_offset_w = w; out_offset_h = 0; w *= 2; break; case STEREO_TB: out_offset_w = 0; out_offset_h = h; h *= 2; break; default: av_assert0(0); } set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc); set_dimensions(s->planewidth, s->planeheight, w, h, desc); for (int i = 0; i < 4; i++) s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8); outlink->h = h; outlink->w = w; s->nb_threads = FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)); s->nb_planes = av_pix_fmt_count_planes(inlink->format); have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA); if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) { s->nb_allocated = 1; s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0; } else { s->nb_allocated = 2; s->map[0] = s->map[3] = 0; s->map[1] = s->map[2] = 1; } if (!s->slice_remap) s->slice_remap = av_calloc(s->nb_threads, sizeof(*s->slice_remap)); if (!s->slice_remap) return AVERROR(ENOMEM); for (int i = 0; i < s->nb_allocated; i++) { err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i); if (err < 0) return err; } calculate_rotation(s->yaw, s->pitch, s->roll, s->rot_quaternion, s->rotation_order); set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier); ff_filter_execute(ctx, v360_slice, NULL, NULL, s->nb_threads); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; V360Context *s = ctx->priv; AVFrame *out; ThreadData td; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); td.in = in; td.out = out; ff_filter_execute(ctx, s->remap_slice, &td, NULL, s->nb_threads); av_frame_free(&in); return ff_filter_frame(outlink, out); } static void reset_rot(V360Context *s) { s->rot_quaternion[0][0] = 1.f; s->rot_quaternion[0][1] = s->rot_quaternion[0][2] = s->rot_quaternion[0][3] = 0.f; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { V360Context *s = ctx->priv; int ret; if (s->reset_rot <= 0) s->yaw = s->pitch = s->roll = 0.f; if (s->reset_rot < 0) s->reset_rot = 0; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; if (s->reset_rot) reset_rot(s); return config_output(ctx->outputs[0]); } static av_cold int init(AVFilterContext *ctx) { V360Context *s = ctx->priv; reset_rot(s); return 0; } static av_cold void uninit(AVFilterContext *ctx) { V360Context *s = ctx->priv; for (int n = 0; n < s->nb_threads && s->slice_remap; n++) { SliceXYRemap *r = &s->slice_remap[n]; for (int p = 0; p < s->nb_allocated; p++) { av_freep(&r->u[p]); av_freep(&r->v[p]); av_freep(&r->ker[p]); } av_freep(&r->mask); } av_freep(&s->slice_remap); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_v360 = { .name = "v360", .description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."), .priv_size = sizeof(V360Context), .init = init, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &v360_class, .flags = AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, };