/* * Copyright (c) 2012 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * EBU R.128 implementation * @see http://tech.ebu.ch/loudness * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer" * @todo implement start/stop/reset through filter command injection */ #include #include #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/dict.h" #include "libavutil/ffmath.h" #include "libavutil/mem.h" #include "libavutil/xga_font_data.h" #include "libavutil/opt.h" #include "libavutil/timestamp.h" #include "libswresample/swresample.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "internal.h" #include "video.h" #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum) #define HIST_GRAIN 100 ///< defines histogram precision #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1) /** * A histogram is an array of HIST_SIZE hist_entry storing all the energies * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES * (at 0) to ABS_UP_THRES (at HIST_SIZE-1). * This fixed-size system avoids the need of a list of energies growing * infinitely over the time and is thus more scalable. */ struct hist_entry { unsigned count; ///< how many times the corresponding value occurred double energy; ///< E = 10^((L + 0.691) / 10) double loudness; ///< L = -0.691 + 10 * log10(E) }; struct integrator { double **cache; ///< window of filtered samples (N ms) int cache_pos; ///< focus on the last added bin in the cache array int cache_size; double *sum; ///< sum of the last N ms filtered samples (cache content) int filled; ///< 1 if the cache is completely filled, 0 otherwise double rel_threshold; ///< relative threshold double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold int nb_kept_powers; ///< number of sum above absolute threshold struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I }; struct rect { int x, y, w, h; }; typedef struct EBUR128Context { const AVClass *class; ///< AVClass context for log and options purpose /* peak metering */ int peak_mode; ///< enabled peak modes double true_peak; ///< global true peak double *true_peaks; ///< true peaks per channel double sample_peak; ///< global sample peak double *sample_peaks; ///< sample peaks per channel double *true_peaks_per_frame; ///< true peaks in a frame per channel #if CONFIG_SWRESAMPLE SwrContext *swr_ctx; ///< over-sampling context for true peak metering double *swr_buf; ///< resampled audio data for true peak metering int swr_linesize; #endif /* video */ int do_video; ///< 1 if video output enabled, 0 otherwise int w, h; ///< size of the video output struct rect text; ///< rectangle for the LU legend on the left struct rect graph; ///< rectangle for the main graph in the center struct rect gauge; ///< rectangle for the gauge on the right AVFrame *outpicref; ///< output picture reference, updated regularly int meter; ///< select a EBU mode between +9 and +18 int scale_range; ///< the range of LU values according to the meter int y_zero_lu; ///< the y value (pixel position) for 0 LU int y_opt_max; ///< the y value (pixel position) for 1 LU int y_opt_min; ///< the y value (pixel position) for -1 LU int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge /* audio */ int nb_channels; ///< number of channels in the input double *ch_weighting; ///< channel weighting mapping int sample_count; ///< sample count used for refresh frequency, reset at refresh int nb_samples; ///< number of samples to consume per single input frame int idx_insample; ///< current sample position of processed samples in single input frame AVFrame *insamples; ///< input samples reference, updated regularly /* Filter caches. * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */ double *x; ///< 3 input samples cache for each channel double *y; ///< 3 pre-filter samples cache for each channel double *z; ///< 3 RLB-filter samples cache for each channel double pre_b[3]; ///< pre-filter numerator coefficients double pre_a[3]; ///< pre-filter denominator coefficients double rlb_b[3]; ///< rlb-filter numerator coefficients double rlb_a[3]; ///< rlb-filter denominator coefficients struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I) struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA) /* I and LRA specific */ double integrated_loudness; ///< integrated loudness in LUFS (I) double loudness_range; ///< loudness range in LU (LRA) double lra_low, lra_high; ///< low and high LRA values /* misc */ int loglevel; ///< log level for frame logging int metadata; ///< whether or not to inject loudness results in frames int dual_mono; ///< whether or not to treat single channel input files as dual-mono double pan_law; ///< pan law value used to calculate dual-mono measurements int target; ///< target level in LUFS used to set relative zero LU in visualization int gauge_type; ///< whether gauge shows momentary or short int scale; ///< display scale type of statistics } EBUR128Context; enum { PEAK_MODE_NONE = 0, PEAK_MODE_SAMPLES_PEAKS = 1<<1, PEAK_MODE_TRUE_PEAKS = 1<<2, }; enum { GAUGE_TYPE_MOMENTARY = 0, GAUGE_TYPE_SHORTTERM = 1, }; enum { SCALE_TYPE_ABSOLUTE = 0, SCALE_TYPE_RELATIVE = 1, }; #define OFFSET(x) offsetof(EBUR128Context, x) #define A AV_OPT_FLAG_AUDIO_PARAM #define V AV_OPT_FLAG_VIDEO_PARAM #define F AV_OPT_FLAG_FILTERING_PARAM #define X AV_OPT_FLAG_EXPORT #define R AV_OPT_FLAG_READONLY static const AVOption ebur128_options[] = { { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F }, { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F }, { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F }, { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, .unit = "level" }, { "quiet", "logging disabled", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_QUIET}, INT_MIN, INT_MAX, A|V|F, .unit = "level" }, { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, .unit = "level" }, { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, .unit = "level" }, { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F }, { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, .unit = "mode" }, { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, .unit = "mode" }, { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, .unit = "mode" }, { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, .unit = "mode" }, { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F }, { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F }, { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F }, { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, .unit = "gaugetype" }, { "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" }, { "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" }, { "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" }, { "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" }, { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, .unit = "scaletype" }, { "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" }, { "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" }, { "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" }, { "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" }, { "integrated", "integrated loudness (LUFS)", OFFSET(integrated_loudness), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { "range", "loudness range (LU)", OFFSET(loudness_range), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { "lra_low", "LRA low (LUFS)", OFFSET(lra_low), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { "lra_high", "LRA high (LUFS)", OFFSET(lra_high), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { "sample_peak", "sample peak (dBFS)", OFFSET(sample_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { "true_peak", "true peak (dBFS)", OFFSET(true_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R }, { NULL }, }; AVFILTER_DEFINE_CLASS(ebur128); static const uint8_t graph_colors[] = { 0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible) 0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU 0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible) 0x33, 0x33, 0x96, // value below 1LU reached below -1LU 0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible) 0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU 0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible) 0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU 0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU 0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU 0x96, 0x33, 0x33, // value above 1LU reached above -1LU 0x33, 0x96, 0x33, // value below 1LU reached above -1LU 0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU 0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU 0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU 0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU }; static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y) { const int above_opt_max = y > ebur128->y_opt_max; const int below_opt_min = y < ebur128->y_opt_min; const int reached = y >= v; const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu; const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max; return graph_colors + 3*colorid; } static inline int lu_to_y(const EBUR128Context *ebur128, double v) { v += 2 * ebur128->meter; // make it in range [0;...] v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale v = ebur128->scale_range - v; // invert value (y=0 is on top) return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height } #define FONT8 0 #define FONT16 1 static const uint8_t font_colors[] = { 0xdd, 0xdd, 0x00, 0x00, 0x96, 0x96, }; static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...) { int i; char buf[128] = {0}; const uint8_t *font; int font_height; va_list vl; if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16; else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8; else return; va_start(vl, fmt); vsnprintf(buf, sizeof(buf), fmt, vl); va_end(vl); for (i = 0; buf[i]; i++) { int char_y, mask; uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3; for (char_y = 0; char_y < font_height; char_y++) { for (mask = 0x80; mask; mask >>= 1) { if (font[buf[i] * font_height + char_y] & mask) memcpy(p, color, 3); else memcpy(p, "\x00\x00\x00", 3); p += 3; } p += pic->linesize[0] - 8*3; } } } static void drawline(AVFrame *pic, int x, int y, int len, int step) { int i; uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3; for (i = 0; i < len; i++) { memcpy(p, "\x00\xff\x00", 3); p += step; } } static int config_video_output(AVFilterLink *outlink) { int i, x, y; uint8_t *p; AVFilterContext *ctx = outlink->src; EBUR128Context *ebur128 = ctx->priv; AVFrame *outpicref; /* check if there is enough space to represent everything decently */ if (ebur128->w < 640 || ebur128->h < 480) { av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, " "minimum size is 640x480\n", ebur128->w, ebur128->h); return AVERROR(EINVAL); } outlink->w = ebur128->w; outlink->h = ebur128->h; outlink->sample_aspect_ratio = (AVRational){1,1}; outlink->frame_rate = av_make_q(10, 1); outlink->time_base = av_inv_q(outlink->frame_rate); #define PAD 8 /* configure text area position and size */ ebur128->text.x = PAD; ebur128->text.y = 40; ebur128->text.w = 3 * 8; // 3 characters ebur128->text.h = ebur128->h - PAD - ebur128->text.y; /* configure gauge position and size */ ebur128->gauge.w = 20; ebur128->gauge.h = ebur128->text.h; ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w; ebur128->gauge.y = ebur128->text.y; /* configure graph position and size */ ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD; ebur128->graph.y = ebur128->gauge.y; ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD; ebur128->graph.h = ebur128->gauge.h; /* graph and gauge share the LU-to-pixel code */ av_assert0(ebur128->graph.h == ebur128->gauge.h); /* prepare the initial picref buffer */ av_frame_free(&ebur128->outpicref); ebur128->outpicref = outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpicref) return AVERROR(ENOMEM); outpicref->sample_aspect_ratio = (AVRational){1,1}; /* init y references values (to draw LU lines) */ ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref)); if (!ebur128->y_line_ref) return AVERROR(ENOMEM); /* black background */ for (int y = 0; y < ebur128->h; y++) memset(outpicref->data[0] + y * outpicref->linesize[0], 0, ebur128->w * 3); /* draw LU legends */ drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU"); for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) { y = lu_to_y(ebur128, i); x = PAD + (i < 10 && i > -10) * 8; ebur128->y_line_ref[y] = i; y -= 4; // -4 to center vertically drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3, "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i)); } /* draw graph */ ebur128->y_zero_lu = lu_to_y(ebur128, 0); ebur128->y_opt_max = lu_to_y(ebur128, 1); ebur128->y_opt_min = lu_to_y(ebur128, -1); p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0] + ebur128->graph.x * 3; for (y = 0; y < ebur128->graph.h; y++) { const uint8_t *c = get_graph_color(ebur128, INT_MAX, y); for (x = 0; x < ebur128->graph.w; x++) memcpy(p + x*3, c, 3); p += outpicref->linesize[0]; } /* draw fancy rectangles around the graph and the gauge */ #define DRAW_RECT(r) do { \ drawline(outpicref, r.x, r.y - 1, r.w, 3); \ drawline(outpicref, r.x, r.y + r.h, r.w, 3); \ drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \ drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \ } while (0) DRAW_RECT(ebur128->graph); DRAW_RECT(ebur128->gauge); return 0; } static int config_audio_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; EBUR128Context *ebur128 = ctx->priv; /* Unofficial reversed parametrization of PRE * and RLB from 48kHz */ double f0 = 1681.974450955533; double G = 3.999843853973347; double Q = 0.7071752369554196; double K = tan(M_PI * f0 / (double)inlink->sample_rate); double Vh = pow(10.0, G / 20.0); double Vb = pow(Vh, 0.4996667741545416); double a0 = 1.0 + K / Q + K * K; ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0; ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0; ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0; ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0; ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0; f0 = 38.13547087602444; Q = 0.5003270373238773; K = tan(M_PI * f0 / (double)inlink->sample_rate); ebur128->rlb_b[0] = 1.0; ebur128->rlb_b[1] = -2.0; ebur128->rlb_b[2] = 1.0; ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K); ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K); /* Force 100ms framing in case of metadata injection: the frames must have * a granularity of the window overlap to be accurately exploited. * As for the true peaks mode, it just simplifies the resampling buffer * allocation and the lookup in it (since sample buffers differ in size, it * can be more complex to integrate in the one-sample loop of * filter_frame()). */ if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) ebur128->nb_samples = FFMAX(inlink->sample_rate / 10, 1); return 0; } static int config_audio_output(AVFilterLink *outlink) { int i; AVFilterContext *ctx = outlink->src; EBUR128Context *ebur128 = ctx->priv; const int nb_channels = outlink->ch_layout.nb_channels; #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \ AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \ AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \ AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT) ebur128->nb_channels = nb_channels; ebur128->x = av_calloc(nb_channels, 3 * sizeof(*ebur128->x)); ebur128->y = av_calloc(nb_channels, 3 * sizeof(*ebur128->y)); ebur128->z = av_calloc(nb_channels, 3 * sizeof(*ebur128->z)); ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting)); if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z) return AVERROR(ENOMEM); #define I400_BINS(x) ((x) * 4 / 10) #define I3000_BINS(x) ((x) * 3) ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum)); ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum)); ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache)); ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache)); if (!ebur128->i400.sum || !ebur128->i3000.sum || !ebur128->i400.cache || !ebur128->i3000.cache) return AVERROR(ENOMEM); for (i = 0; i < nb_channels; i++) { /* channel weighting */ const enum AVChannel chl = av_channel_layout_channel_from_index(&outlink->ch_layout, i); if (chl == AV_CHAN_LOW_FREQUENCY || chl == AV_CHAN_LOW_FREQUENCY_2) { ebur128->ch_weighting[i] = 0; } else if (chl < 64 && (1ULL << chl) & BACK_MASK) { ebur128->ch_weighting[i] = 1.41; } else { ebur128->ch_weighting[i] = 1.0; } if (!ebur128->ch_weighting[i]) continue; /* bins buffer for the two integration window (400ms and 3s) */ ebur128->i400.cache_size = I400_BINS(outlink->sample_rate); ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate); ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0])); ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0])); if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i]) return AVERROR(ENOMEM); } #if CONFIG_SWRESAMPLE if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) { int ret; ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double)); ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks)); ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame)); ebur128->swr_ctx = swr_alloc(); if (!ebur128->swr_buf || !ebur128->true_peaks || !ebur128->true_peaks_per_frame || !ebur128->swr_ctx) return AVERROR(ENOMEM); av_opt_set_chlayout(ebur128->swr_ctx, "in_chlayout", &outlink->ch_layout, 0); av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0); av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0); av_opt_set_chlayout(ebur128->swr_ctx, "out_chlayout", &outlink->ch_layout, 0); av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0); av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0); ret = swr_init(ebur128->swr_ctx); if (ret < 0) return ret; } #endif if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) { ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks)); if (!ebur128->sample_peaks) return AVERROR(ENOMEM); } return 0; } #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.)) #define LOUDNESS(energy) (-0.691 + 10 * log10(energy)) #define DBFS(energy) (20 * log10(energy)) static struct hist_entry *get_histogram(void) { int i; struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h)); if (!h) return NULL; for (i = 0; i < HIST_SIZE; i++) { h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES; h[i].energy = ENERGY(h[i].loudness); } return h; } static av_cold int init(AVFilterContext *ctx) { EBUR128Context *ebur128 = ctx->priv; AVFilterPad pad; int ret; if (ebur128->loglevel != AV_LOG_INFO && ebur128->loglevel != AV_LOG_QUIET && ebur128->loglevel != AV_LOG_VERBOSE) { if (ebur128->do_video || ebur128->metadata) ebur128->loglevel = AV_LOG_VERBOSE; else ebur128->loglevel = AV_LOG_INFO; } if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) { av_log(ctx, AV_LOG_ERROR, "True-peak mode requires libswresample to be performed\n"); return AVERROR(EINVAL); } // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9) // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18) ebur128->scale_range = 3 * ebur128->meter; ebur128->i400.histogram = get_histogram(); ebur128->i3000.histogram = get_histogram(); if (!ebur128->i400.histogram || !ebur128->i3000.histogram) return AVERROR(ENOMEM); ebur128->integrated_loudness = ABS_THRES; ebur128->loudness_range = 0; /* insert output pads */ if (ebur128->do_video) { pad = (AVFilterPad){ .name = "out0", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_video_output, }; ret = ff_append_outpad(ctx, &pad); if (ret < 0) return ret; } pad = (AVFilterPad){ .name = ebur128->do_video ? "out1" : "out0", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_audio_output, }; ret = ff_append_outpad(ctx, &pad); if (ret < 0) return ret; /* summary */ av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter); return 0; } #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN) /* loudness and power should be set such as loudness = -0.691 + * 10*log10(power), we just avoid doing that calculus two times */ static int gate_update(struct integrator *integ, double power, double loudness, int gate_thres) { int ipower; double relative_threshold; int gate_hist_pos; /* update powers histograms by incrementing current power count */ ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1); integ->histogram[ipower].count++; /* compute relative threshold and get its position in the histogram */ integ->sum_kept_powers += power; integ->nb_kept_powers++; relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers; if (!relative_threshold) relative_threshold = 1e-12; integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres; gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1); return gate_hist_pos; } static int filter_frame(AVFilterLink *inlink, AVFrame *insamples) { int i, ch, idx_insample, ret; AVFilterContext *ctx = inlink->dst; EBUR128Context *ebur128 = ctx->priv; const int nb_channels = ebur128->nb_channels; const int nb_samples = insamples->nb_samples; const double *samples = (double *)insamples->data[0]; AVFrame *pic; #if CONFIG_SWRESAMPLE if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS && ebur128->idx_insample == 0) { const double *swr_samples = ebur128->swr_buf; int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200, (const uint8_t **)insamples->data, nb_samples); if (ret < 0) return ret; for (ch = 0; ch < nb_channels; ch++) ebur128->true_peaks_per_frame[ch] = 0.0; for (idx_insample = 0; idx_insample < ret; idx_insample++) { for (ch = 0; ch < nb_channels; ch++) { ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples)); ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch], fabs(*swr_samples)); swr_samples++; } } } #endif for (idx_insample = ebur128->idx_insample; idx_insample < nb_samples; idx_insample++) { const int bin_id_400 = ebur128->i400.cache_pos; const int bin_id_3000 = ebur128->i3000.cache_pos; #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \ ebur128->i##time.cache_pos++; \ if (ebur128->i##time.cache_pos == \ ebur128->i##time.cache_size) { \ ebur128->i##time.filled = 1; \ ebur128->i##time.cache_pos = 0; \ } \ } while (0) MOVE_TO_NEXT_CACHED_ENTRY(400); MOVE_TO_NEXT_CACHED_ENTRY(3000); for (ch = 0; ch < nb_channels; ch++) { double bin; if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(samples[idx_insample * nb_channels + ch])); ebur128->x[ch * 3] = samples[idx_insample * nb_channels + ch]; // set X[i] if (!ebur128->ch_weighting[ch]) continue; /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */ #define FILTER(Y, X, NUM, DEN) do { \ double *dst = ebur128->Y + ch*3; \ double *src = ebur128->X + ch*3; \ dst[2] = dst[1]; \ dst[1] = dst[0]; \ dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \ - dst[1]*DEN[1] - dst[2]*DEN[2]; \ } while (0) // TODO: merge both filters in one? FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1]; ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ]; FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter bin = ebur128->z[ch * 3] * ebur128->z[ch * 3]; /* add the new value, and limit the sum to the cache size (400ms or 3s) * by removing the oldest one */ ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400]; ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000]; /* override old cache entry with the new value */ ebur128->i400.cache [ch][bin_id_400 ] = bin; ebur128->i3000.cache[ch][bin_id_3000] = bin; } #define FIND_PEAK(global, sp, ptype) do { \ int ch; \ double maxpeak; \ maxpeak = 0.0; \ if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ for (ch = 0; ch < ebur128->nb_channels; ch++) \ maxpeak = FFMAX(maxpeak, sp[ch]); \ global = DBFS(maxpeak); \ } \ } while (0) FIND_PEAK(ebur128->sample_peak, ebur128->sample_peaks, SAMPLES); FIND_PEAK(ebur128->true_peak, ebur128->true_peaks, TRUE); /* For integrated loudness, gating blocks are 400ms long with 75% * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms * (4800 samples at 48kHz). */ if (++ebur128->sample_count == inlink->sample_rate / 10) { double loudness_400, loudness_3000; double power_400 = 1e-12, power_3000 = 1e-12; AVFilterLink *outlink = ctx->outputs[0]; const int64_t pts = insamples->pts + av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate }, ctx->outputs[ebur128->do_video]->time_base); ebur128->sample_count = 0; #define COMPUTE_LOUDNESS(m, time) do { \ if (ebur128->i##time.filled) { \ /* weighting sum of the last