/* * Copyright (C) 2007 by Andrew Zabolotny (author of lensfun, from which this filter derives from) * Copyright (C) 2018 Stephen Seo * * This file is part of FFmpeg. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ /** * @file * Lensfun filter, applies lens correction with parameters from the lensfun database * * @see https://lensfun.sourceforge.net/ */ #include <float.h> #include <math.h> #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libswscale/swscale.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include <lensfun.h> #define LANCZOS_RESOLUTION 256 enum Mode { VIGNETTING = 0x1, GEOMETRY_DISTORTION = 0x2, SUBPIXEL_DISTORTION = 0x4 }; enum InterpolationType { NEAREST, LINEAR, LANCZOS }; typedef struct VignettingThreadData { int width, height; uint8_t *data_in; int linesize_in; int pixel_composition; lfModifier *modifier; } VignettingThreadData; typedef struct DistortionCorrectionThreadData { int width, height; const float *distortion_coords; const uint8_t *data_in; uint8_t *data_out; int linesize_in, linesize_out; const float *interpolation; int mode; int interpolation_type; } DistortionCorrectionThreadData; typedef struct LensfunContext { const AVClass *class; const char *make, *model, *lens_model; int mode; float focal_length; float aperture; float focus_distance; float scale; int target_geometry; int reverse; int interpolation_type; float *distortion_coords; float *interpolation; lfLens *lens; lfCamera *camera; lfModifier *modifier; } LensfunContext; #define OFFSET(x) offsetof(LensfunContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption lensfun_options[] = { { "make", "set camera maker", OFFSET(make), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "model", "set camera model", OFFSET(model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "lens_model", "set lens model", OFFSET(lens_model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=GEOMETRY_DISTORTION}, 0, VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION, FLAGS, "mode" }, { "vignetting", "fix lens vignetting", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING}, 0, 0, FLAGS, "mode" }, { "geometry", "correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION}, 0, 0, FLAGS, "mode" }, { "subpixel", "fix chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" }, { "vig_geo", "fix lens vignetting and correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION}, 0, 0, FLAGS, "mode" }, { "vig_subpixel", "fix lens vignetting and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" }, { "distortion", "correct geometry distortion and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" }, { "all", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" }, { "focal_length", "focal length of video (zoom; constant for the duration of the use of this filter)", OFFSET(focal_length), AV_OPT_TYPE_FLOAT, {.dbl=18}, 0.0, DBL_MAX, FLAGS }, { "aperture", "aperture (constant for the duration of the use of this filter)", OFFSET(aperture), AV_OPT_TYPE_FLOAT, {.dbl=3.5}, 0.0, DBL_MAX, FLAGS }, { "focus_distance", "focus distance (constant for the duration of the use of this filter)", OFFSET(focus_distance), AV_OPT_TYPE_FLOAT, {.dbl=1000.0f}, 0.0, DBL_MAX, FLAGS }, { "scale", "scale factor applied after corrections (0.0 means automatic scaling)", OFFSET(scale), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, DBL_MAX, FLAGS }, { "target_geometry", "target geometry of the lens correction (only when geometry correction is enabled)", OFFSET(target_geometry), AV_OPT_TYPE_INT, {.i64=LF_RECTILINEAR}, 0, INT_MAX, FLAGS, "lens_geometry" }, { "rectilinear", "rectilinear lens (default)", 0, AV_OPT_TYPE_CONST, {.i64=LF_RECTILINEAR}, 0, 0, FLAGS, "lens_geometry" }, { "fisheye", "fisheye lens", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE}, 0, 0, FLAGS, "lens_geometry" }, { "panoramic", "panoramic (cylindrical)", 0, AV_OPT_TYPE_CONST, {.i64=LF_PANORAMIC}, 0, 0, FLAGS, "lens_geometry" }, { "equirectangular", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=LF_EQUIRECTANGULAR}, 0, 0, FLAGS, "lens_geometry" }, { "fisheye_orthographic", "orthographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_ORTHOGRAPHIC}, 0, 0, FLAGS, "lens_geometry" }, { "fisheye_stereographic", "stereographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_STEREOGRAPHIC}, 0, 0, FLAGS, "lens_geometry" }, { "fisheye_equisolid", "equisolid fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_EQUISOLID}, 0, 0, FLAGS, "lens_geometry" }, { "fisheye_thoby", "fisheye as measured by thoby", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_THOBY}, 0, 0, FLAGS, "lens_geometry" }, { "reverse", "Does reverse correction (regular image to lens distorted)", OFFSET(reverse), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "interpolation", "Type of interpolation", OFFSET(interpolation_type), AV_OPT_TYPE_INT, {.i64=LINEAR}, 0, LANCZOS, FLAGS, "interpolation" }, { "nearest", NULL, 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interpolation" }, { "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "interpolation" }, { "lanczos", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interpolation" }, { NULL } }; AVFILTER_DEFINE_CLASS(lensfun); static av_cold int init(AVFilterContext *ctx) { LensfunContext *lensfun = ctx->priv; lfDatabase *db; const lfCamera **cameras; const lfLens **lenses; db = lf_db_create(); if (lf_db_load(db) != LF_NO_ERROR) { lf_db_destroy(db); av_log(ctx, AV_LOG_FATAL, "Failed to load lensfun database\n"); return AVERROR_INVALIDDATA; } if (!lensfun->make || !lensfun->model) { const lfCamera *const *cameras = lf_db_get_cameras(db); av_log(ctx, AV_LOG_FATAL, "Option \"make\" or option \"model\" not specified\n"); av_log(ctx, AV_LOG_INFO, "Available values for \"make\" and \"model\":\n"); for (int i = 0; cameras && cameras[i]; i++) av_log(ctx, AV_LOG_INFO, "\t%s\t%s\n", cameras[i]->Maker, cameras[i]->Model); lf_db_destroy(db); return AVERROR(EINVAL); } else if (!lensfun->lens_model) { const lfLens *const *lenses = lf_db_get_lenses(db); av_log(ctx, AV_LOG_FATAL, "Option \"lens_model\" not specified\n"); av_log(ctx, AV_LOG_INFO, "Available values for \"lens_model\":\n"); for (int i = 0; lenses && lenses[i]; i++) av_log(ctx, AV_LOG_INFO, "\t%s\t(make %s)\n", lenses[i]->Model, lenses[i]->Maker); lf_db_destroy(db); return AVERROR(EINVAL); } lensfun->lens = lf_lens_create(); lensfun->camera = lf_camera_create(); cameras = lf_db_find_cameras(db, lensfun->make, lensfun->model); if (cameras && *cameras) { lf_camera_copy(lensfun->camera, *cameras); av_log(ctx, AV_LOG_INFO, "Using camera %s\n", lensfun->camera->Model); } else { lf_free(cameras); lf_db_destroy(db); av_log(ctx, AV_LOG_FATAL, "Failed to find camera in lensfun database\n"); return AVERROR_INVALIDDATA; } lf_free(cameras); lenses = lf_db_find_lenses(db, lensfun->camera, NULL, lensfun->lens_model, 0); if (lenses && *lenses) { lf_lens_copy(lensfun->lens, *lenses); av_log(ctx, AV_LOG_INFO, "Using lens %s\n", lensfun->lens->Model); } else { lf_free(lenses); lf_db_destroy(db); av_log(ctx, AV_LOG_FATAL, "Failed to find lens in lensfun database\n"); return AVERROR_INVALIDDATA; } lf_free(lenses); lf_db_destroy(db); return 0; } static float lanczos_kernel(float x) { if (x == 0.0f) { return 1.0f; } else if (x > -2.0f && x < 2.0f) { return (2.0f * sin(M_PI * x) * sin(M_PI / 2.0f * x)) / (M_PI * M_PI * x * x); } else { return 0.0f; } } static int config_props(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; LensfunContext *lensfun = ctx->priv; int index; float a; if (!lensfun->modifier) { if (lensfun->camera && lensfun->lens) { lensfun->modifier = lf_modifier_create(lensfun->lens, lensfun->focal_length, lensfun->camera->CropFactor, inlink->w, inlink->h, LF_PF_U8, lensfun->reverse); if (lensfun->mode & VIGNETTING) lf_modifier_enable_vignetting_correction(lensfun->modifier, lensfun->aperture, lensfun->focus_distance); if (lensfun->mode & GEOMETRY_DISTORTION) { lf_modifier_enable_distortion_correction(lensfun->modifier); lf_modifier_enable_projection_transform(lensfun->modifier, lensfun->target_geometry); lf_modifier_enable_scaling(lensfun->modifier, lensfun->scale); } if (lensfun->mode & SUBPIXEL_DISTORTION) lf_modifier_enable_tca_correction(lensfun->modifier); } else { // lensfun->camera and lensfun->lens should have been initialized return AVERROR_BUG; } } if (!lensfun->distortion_coords) { if (lensfun->mode & SUBPIXEL_DISTORTION) { lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2 * 3); if (!lensfun->distortion_coords) return AVERROR(ENOMEM); if (lensfun->mode & GEOMETRY_DISTORTION) { // apply both geometry and subpixel distortion lf_modifier_apply_subpixel_geometry_distortion(lensfun->modifier, 0, 0, inlink->w, inlink->h, lensfun->distortion_coords); } else { // apply only subpixel distortion lf_modifier_apply_subpixel_distortion(lensfun->modifier, 0, 0, inlink->w, inlink->h, lensfun->distortion_coords); } } else if (lensfun->mode & GEOMETRY_DISTORTION) { lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2); if (!lensfun->distortion_coords) return AVERROR(ENOMEM); // apply only geometry distortion lf_modifier_apply_geometry_distortion(lensfun->modifier, 0, 0, inlink->w, inlink->h, lensfun->distortion_coords); } } if (!lensfun->interpolation) if (lensfun->interpolation_type == LANCZOS) { lensfun->interpolation = av_malloc_array(LANCZOS_RESOLUTION, sizeof(float) * 4); if (!lensfun->interpolation) return AVERROR(ENOMEM); for (index = 0; index < 4 * LANCZOS_RESOLUTION; ++index) { if (index == 0) { lensfun->interpolation[index] = 1.0f; } else { a = sqrtf((float)index / LANCZOS_RESOLUTION); lensfun->interpolation[index] = lanczos_kernel(a); } } } return 0; } static int vignetting_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { const VignettingThreadData *thread_data = arg; const int slice_start = thread_data->height * jobnr / nb_jobs; const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs; lf_modifier_apply_color_modification(thread_data->modifier, thread_data->data_in + slice_start * thread_data->linesize_in, 0, slice_start, thread_data->width, slice_end - slice_start, thread_data->pixel_composition, thread_data->linesize_in); return 0; } static float square(float x) { return x * x; } static int distortion_correction_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { const DistortionCorrectionThreadData *thread_data = arg; const int slice_start = thread_data->height * jobnr / nb_jobs; const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs; int x, y, i, j, rgb_index; float interpolated, new_x, new_y, d, norm; int new_x_int, new_y_int; for (y = slice_start; y < slice_end; ++y) for (x = 0; x < thread_data->width; ++x) for (rgb_index = 0; rgb_index < 3; ++rgb_index) { if (thread_data->mode & SUBPIXEL_DISTORTION) { // subpixel (and possibly geometry) distortion correction was applied, correct distortion switch(thread_data->interpolation_type) { case NEAREST: new_x_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2] + 0.5f; new_y_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1] + 0.5f; if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in]; } break; case LINEAR: interpolated = 0.0f; new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2]; new_x_int = new_x; new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1]; new_y_int = new_y; if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y) + thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y) + thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int) + thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int); } break; case LANCZOS: interpolated = 0.0f; norm = 0.0f; new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2]; new_x_int = new_x; new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1]; new_y_int = new_y; for (j = 0; j < 4; ++j) for (i = 0; i < 4; ++i) { if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height) continue; d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2)); if (d >= 4.0f) continue; d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)]; norm += d; interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d; } if (norm == 0.0f) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { interpolated /= norm; thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated; } break; } } else if (thread_data->mode & GEOMETRY_DISTORTION) { // geometry distortion correction was applied, correct distortion switch(thread_data->interpolation_type) { case NEAREST: new_x_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2] + 0.5f; new_y_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1] + 0.5f; if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in]; } break; case LINEAR: interpolated = 0.0f; new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2]; new_x_int = new_x; new_y = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1]; new_y_int = new_y; if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y) + thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y) + thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int) + thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int); } break; case LANCZOS: interpolated = 0.0f; norm = 0.0f; new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2]; new_x_int = new_x; new_y = thread_data->distortion_coords[x * 2 + 1 + y * thread_data->width * 2]; new_y_int = new_y; for (j = 0; j < 4; ++j) for (i = 0; i < 4; ++i) { if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height) continue; d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2)); if (d >= 4.0f) continue; d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)]; norm += d; interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d; } if (norm == 0.0f) { thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0; } else { interpolated /= norm; thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated; } break; } } else { // no distortion correction was applied thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[x * 3 + rgb_index + y * thread_data->linesize_in]; } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LensfunContext *lensfun = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; VignettingThreadData vignetting_thread_data; DistortionCorrectionThreadData distortion_correction_thread_data; if (lensfun->mode & VIGNETTING) { av_frame_make_writable(in); vignetting_thread_data = (VignettingThreadData) { .width = inlink->w, .height = inlink->h, .data_in = in->data[0], .linesize_in = in->linesize[0], .pixel_composition = LF_CR_3(RED, GREEN, BLUE), .modifier = lensfun->modifier }; ff_filter_execute(ctx, vignetting_filter_slice, &vignetting_thread_data, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); } if (lensfun->mode & (GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION)) { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); distortion_correction_thread_data = (DistortionCorrectionThreadData) { .width = inlink->w, .height = inlink->h, .distortion_coords = lensfun->distortion_coords, .data_in = in->data[0], .data_out = out->data[0], .linesize_in = in->linesize[0], .linesize_out = out->linesize[0], .interpolation = lensfun->interpolation, .mode = lensfun->mode, .interpolation_type = lensfun->interpolation_type }; ff_filter_execute(ctx, distortion_correction_filter_slice, &distortion_correction_thread_data, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); av_frame_free(&in); return ff_filter_frame(outlink, out); } else { return ff_filter_frame(outlink, in); } } static av_cold void uninit(AVFilterContext *ctx) { LensfunContext *lensfun = ctx->priv; if (lensfun->camera) lf_camera_destroy(lensfun->camera); if (lensfun->lens) lf_lens_destroy(lensfun->lens); if (lensfun->modifier) lf_modifier_destroy(lensfun->modifier); av_freep(&lensfun->distortion_coords); av_freep(&lensfun->interpolation); } static const AVFilterPad lensfun_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_props, .filter_frame = filter_frame, }, }; static const AVFilterPad lensfun_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, }; const AVFilter ff_vf_lensfun = { .name = "lensfun", .description = NULL_IF_CONFIG_SMALL("Apply correction to an image based on info derived from the lensfun database."), .priv_size = sizeof(LensfunContext), .init = init, .uninit = uninit, FILTER_INPUTS(lensfun_inputs), FILTER_OUTPUTS(lensfun_outputs), FILTER_SINGLE_PIXFMT(AV_PIX_FMT_RGB24), .priv_class = &lensfun_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };