/* * RV40 decoder * Copyright (c) 2007 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * RV40 decoder */ #include "libavutil/imgutils.h" #include "avcodec.h" #include "mpegutils.h" #include "mpegvideo.h" #include "golomb.h" #include "rv34.h" #include "rv40vlc2.h" #include "rv40data.h" static VLC aic_top_vlc; static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM]; static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS]; static const int16_t mode2_offs[] = { 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542, 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814 }; /** * Initialize all tables. */ static av_cold void rv40_init_tables(void) { int i; static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2]; static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2]; static VLC_TYPE aic_mode2_table[11814][2]; static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2]; static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2]; aic_top_vlc.table = aic_table; aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS; init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE, rv40_aic_top_vlc_bits, 1, 1, rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC); for(i = 0; i < AIC_MODE1_NUM; i++){ // Every tenth VLC table is empty if((i % 10) == 9) continue; aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS]; aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS; init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE, aic_mode1_vlc_bits[i], 1, 1, aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i = 0; i < AIC_MODE2_NUM; i++){ aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]]; aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i]; init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE, aic_mode2_vlc_bits[i], 1, 1, aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); } for(i = 0; i < NUM_PTYPE_VLCS; i++){ ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS]; ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS; ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE, ptype_vlc_bits[i], 1, 1, ptype_vlc_codes[i], 1, 1, ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i = 0; i < NUM_BTYPE_VLCS; i++){ btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS]; btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS; ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE, btype_vlc_bits[i], 1, 1, btype_vlc_codes[i], 1, 1, btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC); } } /** * Get stored dimension from bitstream. * * If the width/height is the standard one then it's coded as a 3-bit index. * Otherwise it is coded as escaped 8-bit portions. */ static int get_dimension(GetBitContext *gb, const int *dim) { int t = get_bits(gb, 3); int val = dim[t]; if(val < 0) val = dim[get_bits1(gb) - val]; if(!val){ do{ if (get_bits_left(gb) < 8) return AVERROR_INVALIDDATA; t = get_bits(gb, 8); val += t << 2; }while(t == 0xFF); } return val; } /** * Get encoded picture size - usually this is called from rv40_parse_slice_header. */ static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h) { *w = get_dimension(gb, rv40_standard_widths); *h = get_dimension(gb, rv40_standard_heights); } static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si) { int mb_bits; int w = r->s.width, h = r->s.height; int mb_size; int ret; memset(si, 0, sizeof(SliceInfo)); if(get_bits1(gb)) return AVERROR_INVALIDDATA; si->type = get_bits(gb, 2); if(si->type == 1) si->type = 0; si->quant = get_bits(gb, 5); if(get_bits(gb, 2)) return AVERROR_INVALIDDATA; si->vlc_set = get_bits(gb, 2); skip_bits1(gb); si->pts = get_bits(gb, 13); if(!si->type || !get_bits1(gb)) rv40_parse_picture_size(gb, &w, &h); if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0) return ret; si->width = w; si->height = h; mb_size = ((w + 15) >> 4) * ((h + 15) >> 4); mb_bits = ff_rv34_get_start_offset(gb, mb_size); si->start = get_bits(gb, mb_bits); return 0; } /** * Decode 4x4 intra types array. */ static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst) { MpegEncContext *s = &r->s; int i, j, k, v; int A, B, C; int pattern; int8_t *ptr; for(i = 0; i < 4; i++, dst += r->intra_types_stride){ if(!i && s->first_slice_line){ pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1); dst[0] = (pattern >> 2) & 2; dst[1] = (pattern >> 1) & 2; dst[2] = pattern & 2; dst[3] = (pattern << 1) & 2; continue; } ptr = dst; for(j = 0; j < 4; j++){ /* Coefficients are read using VLC chosen by the prediction pattern * The first one (used for retrieving a pair of coefficients) is * constructed from the top, top right and left coefficients * The second one (used for retrieving only one coefficient) is * top + 10 * left. */ A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row B = ptr[-r->intra_types_stride]; C = ptr[-1]; pattern = A + B * (1 << 4) + C * (1 << 8); for(k = 0; k < MODE2_PATTERNS_NUM; k++) if(pattern == rv40_aic_table_index[k]) break; if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2); *ptr++ = v/9; *ptr++ = v%9; j++; }else{ if(B != -1 && C != -1) v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1); else{ // tricky decoding v = 0; switch(C){ case -1: // code 0 -> 1, 1 -> 0 if(B < 2) v = get_bits1(gb) ^ 1; break; case 0: case 2: // code 0 -> 2, 1 -> 0 v = (get_bits1(gb) ^ 1) << 1; break; } } *ptr++ = v; } } } return 0; } /** * Decode macroblock information. */ static int rv40_decode_mb_info(RV34DecContext *r) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int q, i; int prev_type = 0; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; if(!r->s.mb_skip_run) { r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1; if(r->s.mb_skip_run > (unsigned)s->mb_num) return -1; } if(--r->s.mb_skip_run) return RV34_MB_SKIP; if(r->avail_cache[6-4]){ int blocks[RV34_MB_TYPES] = {0}; int count = 0; if(r->avail_cache[6-1]) blocks[r->mb_type[mb_pos - 1]]++; blocks[r->mb_type[mb_pos - s->mb_stride]]++; if(r->avail_cache[6-2]) blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++; if(r->avail_cache[6-5]) blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++; for(i = 0; i < RV34_MB_TYPES; i++){ if(blocks[i] > count){ count = blocks[i]; prev_type = i; if(count>1) break; } } } else if (r->avail_cache[6-1]) prev_type = r->mb_type[mb_pos - 1]; if(s->pict_type == AV_PICTURE_TYPE_P){ prev_type = block_num_to_ptype_vlc_num[prev_type]; q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1); if(q < PBTYPE_ESCAPE) return q; q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1); av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n"); }else{ prev_type = block_num_to_btype_vlc_num[prev_type]; q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1); if(q < PBTYPE_ESCAPE) return q; q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1); av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n"); } return 0; } enum RV40BlockPos{ POS_CUR, POS_TOP, POS_LEFT, POS_BOTTOM, }; #define MASK_CUR 0x0001 #define MASK_RIGHT 0x0008 #define MASK_BOTTOM 0x0010 #define MASK_TOP 0x1000 #define MASK_Y_TOP_ROW 0x000F #define MASK_Y_LAST_ROW 0xF000 #define MASK_Y_LEFT_COL 0x1111 #define MASK_Y_RIGHT_COL 0x8888 #define MASK_C_TOP_ROW 0x0003 #define MASK_C_LAST_ROW 0x000C #define MASK_C_LEFT_COL 0x0005 #define MASK_C_RIGHT_COL 0x000A static const int neighbour_offs_x[4] = { 0, 0, -1, 0 }; static const int neighbour_offs_y[4] = { 0, -1, 0, 1 }; static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp, uint8_t *src, int stride, int dmode, int lim_q1, int lim_p1, int alpha, int beta, int beta2, int chroma, int edge, int dir) { int filter_p1, filter_q1; int strong; int lims; strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2, edge, &filter_p1, &filter_q1); lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1; if (strong) { rdsp->rv40_strong_loop_filter[dir](src, stride, alpha, lims, dmode, chroma); } else if (filter_p1 & filter_q1) { rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta, lims, lim_q1, lim_p1); } else if (filter_p1 | filter_q1) { rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1, alpha, beta, lims >> 1, lim_q1 >> 1, lim_p1 >> 1); } } /** * RV40 loop filtering function */ static void rv40_loop_filter(RV34DecContext *r, int row) { MpegEncContext *s = &r->s; int mb_pos, mb_x; int i, j, k; uint8_t *Y, *C; int alpha, beta, betaY, betaC; int q; int mbtype[4]; ///< current macroblock and its neighbours types /** * flags indicating that macroblock can be filtered with strong filter * it is set only for intra coded MB and MB with DCs coded separately */ int mb_strong[4]; int clip[4]; ///< MB filter clipping value calculated from filtering strength /** * coded block patterns for luma part of current macroblock and its neighbours * Format: * LSB corresponds to the top left block, * each nibble represents one row of subblocks. */ int cbp[4]; /** * coded block patterns for chroma part of current macroblock and its neighbours * Format is the same as for luma with two subblocks in a row. */ int uvcbp[4][2]; /** * This mask represents the pattern of luma subblocks that should be filtered * in addition to the coded ones because they lie at the edge of * 8x8 block with different enough motion vectors */ unsigned mvmasks[4]; mb_pos = row * s->mb_stride; for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){ int mbtype = s->current_picture_ptr->mb_type[mb_pos]; if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype)) r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF; if(IS_INTRA(mbtype)) r->cbp_chroma[mb_pos] = 0xFF; } mb_pos = row * s->mb_stride; for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){ int y_h_deblock, y_v_deblock; int c_v_deblock[2], c_h_deblock[2]; int clip_left; int avail[4]; unsigned y_to_deblock; int c_to_deblock[2]; q = s->current_picture_ptr->qscale_table[mb_pos]; alpha = rv40_alpha_tab[q]; beta = rv40_beta_tab [q]; betaY = betaC = beta * 3; if(s->width * s->height <= 176*144) betaY += beta; avail[0] = 1; avail[1] = row; avail[2] = mb_x; avail[3] = row < s->mb_height - 1; for(i = 0; i < 4; i++){ if(avail[i]){ int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride; mvmasks[i] = r->deblock_coefs[pos]; mbtype [i] = s->current_picture_ptr->mb_type[pos]; cbp [i] = r->cbp_luma[pos]; uvcbp[i][0] = r->cbp_chroma[pos] & 0xF; uvcbp[i][1] = r->cbp_chroma[pos] >> 4; }else{ mvmasks[i] = 0; mbtype [i] = mbtype[0]; cbp [i] = 0; uvcbp[i][0] = uvcbp[i][1] = 0; } mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]); clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q]; } y_to_deblock = mvmasks[POS_CUR] | (mvmasks[POS_BOTTOM] << 16); /* This pattern contains bits signalling that horizontal edges of * the current block can be filtered. * That happens when either of adjacent subblocks is coded or lies on * the edge of 8x8 blocks with motion vectors differing by more than * 3/4 pel in any component (any edge orientation for some reason). */ y_h_deblock = y_to_deblock | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW) | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12); /* This pattern contains bits signalling that vertical edges of * the current block can be filtered. * That happens when either of adjacent subblocks is coded or lies on * the edge of 8x8 blocks with motion vectors differing by more than * 3/4 pel in any component (any edge orientation for some reason). */ y_v_deblock = y_to_deblock | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL) | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3); if(!mb_x) y_v_deblock &= ~MASK_Y_LEFT_COL; if(!row) y_h_deblock &= ~MASK_Y_TOP_ROW; if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM])) y_h_deblock &= ~(MASK_Y_TOP_ROW << 16); /* Calculating chroma patterns is similar and easier since there is * no motion vector pattern for them. */ for(i = 0; i < 2; i++){ c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i]; c_v_deblock[i] = c_to_deblock[i] | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL) | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1); c_h_deblock[i] = c_to_deblock[i] | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2) | (uvcbp[POS_CUR][i] << 2); if(!mb_x) c_v_deblock[i] &= ~MASK_C_LEFT_COL; if(!row) c_h_deblock[i] &= ~MASK_C_TOP_ROW; if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM])) c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4); } for(j = 0; j < 16; j += 4){ Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize; for(i = 0; i < 4; i++, Y += 4){ int ij = i + j; int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0; int dither = j ? ij : i*4; // if bottom block is coded then we can filter its top edge // (or bottom edge of this block, which is the same) if(y_h_deblock & (MASK_BOTTOM << ij)){ rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize, s->linesize, dither, y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0, clip_cur, alpha, beta, betaY, 0, 0, 0); } // filter left block edge in ordinary mode (with low filtering strength) if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){ if(!i) clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0; else clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0; rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither, clip_cur, clip_left, alpha, beta, betaY, 0, 0, 1); } // filter top edge of the current macroblock when filtering strength is high if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){ rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither, clip_cur, mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0, alpha, beta, betaY, 0, 1, 0); } // filter left block edge in edge mode (with high filtering strength) if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){ clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0; rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither, clip_cur, clip_left, alpha, beta, betaY, 0, 1, 1); } } } for(k = 0; k < 2; k++){ for(j = 0; j < 2; j++){ C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize; for(i = 0; i < 2; i++, C += 4){ int ij = i + j*2; int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0; if(c_h_deblock[k] & (MASK_CUR << (ij+2))){ int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0; rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8, clip_bot, clip_cur, alpha, beta, betaC, 1, 0, 0); } if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){ if(!i) clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0; else clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0; rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8, clip_cur, clip_left, alpha, beta, betaC, 1, 0, 1); } if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){ int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0; rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8, clip_cur, clip_top, alpha, beta, betaC, 1, 1, 0); } if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){ clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0; rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8, clip_cur, clip_left, alpha, beta, betaC, 1, 1, 1); } } } } } } /** * Initialize decoder. */ static av_cold int rv40_decode_init(AVCodecContext *avctx) { RV34DecContext *r = avctx->priv_data; int ret; r->rv30 = 0; if ((ret = ff_rv34_decode_init(avctx)) < 0) return ret; if(!aic_top_vlc.bits) rv40_init_tables(); r->parse_slice_header = rv40_parse_slice_header; r->decode_intra_types = rv40_decode_intra_types; r->decode_mb_info = rv40_decode_mb_info; r->loop_filter = rv40_loop_filter; r->luma_dc_quant_i = rv40_luma_dc_quant[0]; r->luma_dc_quant_p = rv40_luma_dc_quant[1]; return 0; } AVCodec ff_rv40_decoder = { .name = "rv40", .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_RV40, .priv_data_size = sizeof(RV34DecContext), .init = rv40_decode_init, .close = ff_rv34_decode_end, .decode = ff_rv34_decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_FRAME_THREADS, .flush = ff_mpeg_flush, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE }, .init_thread_copy = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context), };