/* * Copyright (c) 2017 Ronald S. Bultje * Copyright (c) 2017 Ashish Pratap Singh * Copyright (c) 2021 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Calculate VIF between two input videos. */ #include #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "framesync.h" #include "internal.h" #define NUM_DATA_BUFS 13 typedef struct VIFContext { const AVClass *class; FFFrameSync fs; const AVPixFmtDescriptor *desc; int width; int height; int nb_threads; float factor; float *data_buf[NUM_DATA_BUFS]; float **temp; float *ref_data; float *main_data; double vif_sum[4]; double vif_min[4]; double vif_max[4]; uint64_t nb_frames; } VIFContext; #define OFFSET(x) offsetof(VIFContext, x) static const AVOption vif_options[] = { { NULL } }; FRAMESYNC_DEFINE_CLASS(vif, VIFContext, fs); static const uint8_t vif_filter1d_width1[4] = { 17, 9, 5, 3 }; static const float vif_filter1d_table[4][17] = { { 0.00745626912, 0.0142655009, 0.0250313189, 0.0402820669, 0.0594526194, 0.0804751068, 0.0999041125, 0.113746084, 0.118773937, 0.113746084, 0.0999041125, 0.0804751068, 0.0594526194, 0.0402820669, 0.0250313189, 0.0142655009, 0.00745626912 }, { 0.0189780835, 0.0558981746, 0.120920904, 0.192116052, 0.224173605, 0.192116052, 0.120920904, 0.0558981746, 0.0189780835 }, { 0.054488685, 0.244201347, 0.402619958, 0.244201347, 0.054488685 }, { 0.166378498, 0.667243004, 0.166378498 } }; typedef struct ThreadData { const float *filter; const float *src; float *dst; int w, h; int src_stride; int dst_stride; int filter_width; float **temp; } ThreadData; static void vif_dec2(const float *src, float *dst, int w, int h, int src_stride, int dst_stride) { const int dst_px_stride = dst_stride / 2; for (int i = 0; i < h / 2; i++) { for (int j = 0; j < w / 2; j++) dst[i * dst_px_stride + j] = src[(i * 2) * src_stride + (j * 2)]; } } static void vif_statistic(const float *mu1_sq, const float *mu2_sq, const float *mu1_mu2, const float *xx_filt, const float *yy_filt, const float *xy_filt, float *num, float *den, int w, int h) { static const float sigma_nsq = 2; float mu1_sq_val, mu2_sq_val, mu1_mu2_val, xx_filt_val, yy_filt_val, xy_filt_val; float sigma1_sq, sigma2_sq, sigma12, g, sv_sq, eps = 1.0e-10f; float gain_limit = 100.f; float num_val, den_val; float accum_num = 0.0f; float accum_den = 0.0f; for (int i = 0; i < h; i++) { float accum_inner_num = 0.f; float accum_inner_den = 0.f; for (int j = 0; j < w; j++) { mu1_sq_val = mu1_sq[i * w + j]; mu2_sq_val = mu2_sq[i * w + j]; mu1_mu2_val = mu1_mu2[i * w + j]; xx_filt_val = xx_filt[i * w + j]; yy_filt_val = yy_filt[i * w + j]; xy_filt_val = xy_filt[i * w + j]; sigma1_sq = xx_filt_val - mu1_sq_val; sigma2_sq = yy_filt_val - mu2_sq_val; sigma12 = xy_filt_val - mu1_mu2_val; sigma1_sq = FFMAX(sigma1_sq, 0.0f); sigma2_sq = FFMAX(sigma2_sq, 0.0f); sigma12 = FFMAX(sigma12, 0.0f); g = sigma12 / (sigma1_sq + eps); sv_sq = sigma2_sq - g * sigma12; if (sigma1_sq < eps) { g = 0.0f; sv_sq = sigma2_sq; sigma1_sq = 0.0f; } if (sigma2_sq < eps) { g = 0.0f; sv_sq = 0.0f; } if (g < 0.0f) { sv_sq = sigma2_sq; g = 0.0f; } sv_sq = FFMAX(sv_sq, eps); g = FFMIN(g, gain_limit); num_val = log2f(1.0f + g * g * sigma1_sq / (sv_sq + sigma_nsq)); den_val = log2f(1.0f + sigma1_sq / sigma_nsq); if (isnan(den_val)) num_val = den_val = 1.f; accum_inner_num += num_val; accum_inner_den += den_val; } accum_num += accum_inner_num; accum_den += accum_inner_den; } num[0] = accum_num; den[0] = accum_den; } static void vif_xx_yy_xy(const float *x, const float *y, float *xx, float *yy, float *xy, int w, int h) { for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { float xval = x[j]; float yval = y[j]; float xxval = xval * xval; float yyval = yval * yval; float xyval = xval * yval; xx[j] = xxval; yy[j] = yyval; xy[j] = xyval; } xx += w; yy += w; xy += w; x += w; y += w; } } static int vif_filter1d(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const float *filter = td->filter; const float *src = td->src; float *dst = td->dst; int w = td->w; int h = td->h; int src_stride = td->src_stride; int dst_stride = td->dst_stride; int filt_w = td->filter_width; float *temp = td->temp[jobnr]; const int slice_start = (h * jobnr) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) { /** Vertical pass. */ for (int j = 0; j < w; j++) { float sum = 0.f; if (i >= filt_w / 2 && i < h - filt_w / 2 - 1) { for (int filt_i = 0; filt_i < filt_w; filt_i++) { const float filt_coeff = filter[filt_i]; float img_coeff; int ii = i - filt_w / 2 + filt_i; img_coeff = src[ii * src_stride + j]; sum += filt_coeff * img_coeff; } } else { for (int filt_i = 0; filt_i < filt_w; filt_i++) { const float filt_coeff = filter[filt_i]; int ii = i - filt_w / 2 + filt_i; float img_coeff; ii = ii < 0 ? -ii : (ii >= h ? 2 * h - ii - 1 : ii); img_coeff = src[ii * src_stride + j]; sum += filt_coeff * img_coeff; } } temp[j] = sum; } /** Horizontal pass. */ for (int j = 0; j < w; j++) { float sum = 0.f; if (j >= filt_w / 2 && j < w - filt_w / 2 - 1) { for (int filt_j = 0; filt_j < filt_w; filt_j++) { const float filt_coeff = filter[filt_j]; int jj = j - filt_w / 2 + filt_j; float img_coeff; img_coeff = temp[jj]; sum += filt_coeff * img_coeff; } } else { for (int filt_j = 0; filt_j < filt_w; filt_j++) { const float filt_coeff = filter[filt_j]; int jj = j - filt_w / 2 + filt_j; float img_coeff; jj = jj < 0 ? -jj : (jj >= w ? 2 * w - jj - 1 : jj); img_coeff = temp[jj]; sum += filt_coeff * img_coeff; } } dst[i * dst_stride + j] = sum; } } return 0; } static int compute_vif2(AVFilterContext *ctx, const float *ref, const float *main, int w, int h, int ref_stride, int main_stride, float *score, float *const data_buf[NUM_DATA_BUFS], float **temp, int gnb_threads) { ThreadData td; float *ref_scale = data_buf[0]; float *main_scale = data_buf[1]; float *ref_sq = data_buf[2]; float *main_sq = data_buf[3]; float *ref_main = data_buf[4]; float *mu1 = data_buf[5]; float *mu2 = data_buf[6]; float *mu1_sq = data_buf[7]; float *mu2_sq = data_buf[8]; float *mu1_mu2 = data_buf[9]; float *ref_sq_filt = data_buf[10]; float *main_sq_filt = data_buf[11]; float *ref_main_filt = data_buf[12]; const float *curr_ref_scale = ref; const float *curr_main_scale = main; int curr_ref_stride = ref_stride; int curr_main_stride = main_stride; float num = 0.f; float den = 0.f; for (int scale = 0; scale < 4; scale++) { const float *filter = vif_filter1d_table[scale]; int filter_width = vif_filter1d_width1[scale]; const int nb_threads = FFMIN(h, gnb_threads); int buf_valid_w = w; int buf_valid_h = h; td.filter = filter; td.filter_width = filter_width; if (scale > 0) { td.src = curr_ref_scale; td.dst = mu1; td.w = w; td.h = h; td.src_stride = curr_ref_stride; td.dst_stride = w; td.temp = temp; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); td.src = curr_main_scale; td.dst = mu2; td.src_stride = curr_main_stride; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); vif_dec2(mu1, ref_scale, buf_valid_w, buf_valid_h, w, w); vif_dec2(mu2, main_scale, buf_valid_w, buf_valid_h, w, w); w = buf_valid_w / 2; h = buf_valid_h / 2; buf_valid_w = w; buf_valid_h = h; curr_ref_scale = ref_scale; curr_main_scale = main_scale; curr_ref_stride = w; curr_main_stride = w; } td.src = curr_ref_scale; td.dst = mu1; td.w = w; td.h = h; td.src_stride = curr_ref_stride; td.dst_stride = w; td.temp = temp; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); td.src = curr_main_scale; td.dst = mu2; td.src_stride = curr_main_stride; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); vif_xx_yy_xy(mu1, mu2, mu1_sq, mu2_sq, mu1_mu2, w, h); vif_xx_yy_xy(curr_ref_scale, curr_main_scale, ref_sq, main_sq, ref_main, w, h); td.src = ref_sq; td.dst = ref_sq_filt; td.src_stride = w; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); td.src = main_sq; td.dst = main_sq_filt; td.src_stride = w; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); td.src = ref_main; td.dst = ref_main_filt; ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads); vif_statistic(mu1_sq, mu2_sq, mu1_mu2, ref_sq_filt, main_sq_filt, ref_main_filt, &num, &den, w, h); score[scale] = den <= FLT_EPSILON ? 1.f : num / den; } return 0; } #define offset_fn(type, bits) \ static void offset_##bits##bit(VIFContext *s, \ const AVFrame *ref, \ AVFrame *main, int stride)\ { \ int w = s->width; \ int h = s->height; \ \ int ref_stride = ref->linesize[0]; \ int main_stride = main->linesize[0]; \ \ const type *ref_ptr = (const type *) ref->data[0]; \ const type *main_ptr = (const type *) main->data[0]; \ \ const float factor = s->factor; \ \ float *ref_ptr_data = s->ref_data; \ float *main_ptr_data = s->main_data; \ \ for (int i = 0; i < h; i++) { \ for (int j = 0; j < w; j++) { \ ref_ptr_data[j] = ref_ptr[j] * factor - 128.f; \ main_ptr_data[j] = main_ptr[j] * factor - 128.f; \ } \ ref_ptr += ref_stride / sizeof(type); \ ref_ptr_data += w; \ main_ptr += main_stride / sizeof(type); \ main_ptr_data += w; \ } \ } offset_fn(uint8_t, 8) offset_fn(uint16_t, 16) static void set_meta(AVDictionary **metadata, const char *key, float d) { char value[257]; snprintf(value, sizeof(value), "%f", d); av_dict_set(metadata, key, value, 0); } static AVFrame *do_vif(AVFilterContext *ctx, AVFrame *main, const AVFrame *ref) { VIFContext *s = ctx->priv; AVDictionary **metadata = &main->metadata; float score[4]; s->factor = 1.f / (1 << (s->desc->comp[0].depth - 8)); if (s->desc->comp[0].depth <= 8) { offset_8bit(s, ref, main, s->width); } else { offset_16bit(s, ref, main, s->width); } compute_vif2(ctx, s->ref_data, s->main_data, s->width, s->height, s->width, s->width, score, s->data_buf, s->temp, s->nb_threads); set_meta(metadata, "lavfi.vif.scale.0", score[0]); set_meta(metadata, "lavfi.vif.scale.1", score[1]); set_meta(metadata, "lavfi.vif.scale.2", score[2]); set_meta(metadata, "lavfi.vif.scale.3", score[3]); for (int i = 0; i < 4; i++) { s->vif_min[i] = FFMIN(s->vif_min[i], score[i]); s->vif_max[i] = FFMAX(s->vif_max[i], score[i]); s->vif_sum[i] += score[i]; } s->nb_frames++; return main; } static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, #define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf PF(P9), PF(P10), PF(P12), PF(P14), PF(P16), AV_PIX_FMT_NONE }; static int config_input_ref(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; VIFContext *s = ctx->priv; if (ctx->inputs[0]->w != ctx->inputs[1]->w || ctx->inputs[0]->h != ctx->inputs[1]->h) { av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n"); return AVERROR(EINVAL); } s->desc = av_pix_fmt_desc_get(inlink->format); s->width = ctx->inputs[0]->w; s->height = ctx->inputs[0]->h; s->nb_threads = ff_filter_get_nb_threads(ctx); for (int i = 0; i < 4; i++) { s->vif_min[i] = DBL_MAX; s->vif_max[i] = -DBL_MAX; } for (int i = 0; i < NUM_DATA_BUFS; i++) { if (!(s->data_buf[i] = av_calloc(s->width, s->height * sizeof(float)))) return AVERROR(ENOMEM); } if (!(s->ref_data = av_calloc(s->width, s->height * sizeof(float)))) return AVERROR(ENOMEM); if (!(s->main_data = av_calloc(s->width, s->height * sizeof(float)))) return AVERROR(ENOMEM); if (!(s->temp = av_calloc(s->nb_threads, sizeof(s->temp[0])))) return AVERROR(ENOMEM); for (int i = 0; i < s->nb_threads; i++) { if (!(s->temp[i] = av_calloc(s->width, sizeof(float)))) return AVERROR(ENOMEM); } return 0; } static int process_frame(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; VIFContext *s = fs->opaque; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out_frame, *main_frame = NULL, *ref_frame = NULL; int ret; ret = ff_framesync_dualinput_get(fs, &main_frame, &ref_frame); if (ret < 0) return ret; if (ctx->is_disabled || !ref_frame) { out_frame = main_frame; } else { out_frame = do_vif(ctx, main_frame, ref_frame); } out_frame->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base); return ff_filter_frame(outlink, out_frame); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; VIFContext *s = ctx->priv; AVFilterLink *mainlink = ctx->inputs[0]; FFFrameSyncIn *in; int ret; outlink->w = mainlink->w; outlink->h = mainlink->h; outlink->time_base = mainlink->time_base; outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; outlink->frame_rate = mainlink->frame_rate; if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0) return ret; in = s->fs.in; in[0].time_base = mainlink->time_base; in[1].time_base = ctx->inputs[1]->time_base; in[0].sync = 2; in[0].before = EXT_STOP; in[0].after = EXT_STOP; in[1].sync = 1; in[1].before = EXT_STOP; in[1].after = EXT_STOP; s->fs.opaque = s; s->fs.on_event = process_frame; return ff_framesync_configure(&s->fs); } static int activate(AVFilterContext *ctx) { VIFContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { VIFContext *s = ctx->priv; if (s->nb_frames > 0) { for (int i = 0; i < 4; i++) av_log(ctx, AV_LOG_INFO, "VIF scale=%d average:%f min:%f: max:%f\n", i, s->vif_sum[i] / s->nb_frames, s->vif_min[i], s->vif_max[i]); } for (int i = 0; i < NUM_DATA_BUFS; i++) av_freep(&s->data_buf[i]); av_freep(&s->ref_data); av_freep(&s->main_data); for (int i = 0; i < s->nb_threads && s->temp; i++) av_freep(&s->temp[i]); av_freep(&s->temp); ff_framesync_uninit(&s->fs); } static const AVFilterPad vif_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, },{ .name = "reference", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_ref, }, }; static const AVFilterPad vif_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_vif = { .name = "vif", .description = NULL_IF_CONFIG_SMALL("Calculate the VIF between two video streams."), .preinit = vif_framesync_preinit, .uninit = uninit, .priv_size = sizeof(VIFContext), .priv_class = &vif_class, .activate = activate, FILTER_INPUTS(vif_inputs), FILTER_OUTPUTS(vif_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY, };