/* * Copyright (c) 2018 Sergey Lavrushkin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Filter implementing image super-resolution using deep convolutional networks. * https://arxiv.org/abs/1501.00092 * https://arxiv.org/abs/1609.05158 */ #include "avfilter.h" #include "formats.h" #include "internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavformat/avio.h" #include "libswscale/swscale.h" #include "dnn_filter_common.h" typedef struct SRContext { const AVClass *class; DnnContext dnnctx; int scale_factor; struct SwsContext *sws_uv_scale; int sws_uv_height; struct SwsContext *sws_pre_scale; } SRContext; #define OFFSET(x) offsetof(SRContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM static const AVOption sr_options[] = { { "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, #endif { "scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS }, { "model", "path to model file specifying network architecture and its parameters", OFFSET(dnnctx.model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "input", "input name of the model", OFFSET(dnnctx.model_inputname), AV_OPT_TYPE_STRING, { .str = "x" }, 0, 0, FLAGS }, { "output", "output name of the model", OFFSET(dnnctx.model_outputnames_string), AV_OPT_TYPE_STRING, { .str = "y" }, 0, 0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(sr); static av_cold int init(AVFilterContext *context) { SRContext *sr_context = context->priv; return ff_dnn_init(&sr_context->dnnctx, DFT_PROCESS_FRAME, context); } static int query_formats(AVFilterContext *context) { const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE}; return ff_set_common_formats_from_list(context, pixel_formats); } static int config_output(AVFilterLink *outlink) { AVFilterContext *context = outlink->src; SRContext *ctx = context->priv; DNNReturnType result; AVFilterLink *inlink = context->inputs[0]; int out_width, out_height; // have a try run in case that the dnn model resize the frame result = ff_dnn_get_output(&ctx->dnnctx, inlink->w, inlink->h, &out_width, &out_height); if (result != DNN_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "could not get output from the model\n"); return AVERROR(EIO); } if (inlink->w != out_width || inlink->h != out_height) { //espcn outlink->w = out_width; outlink->h = out_height; if (inlink->format != AV_PIX_FMT_GRAY8){ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); int sws_src_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); int sws_dst_h = AV_CEIL_RSHIFT(outlink->h, desc->log2_chroma_h); int sws_dst_w = AV_CEIL_RSHIFT(outlink->w, desc->log2_chroma_w); ctx->sws_uv_scale = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8, sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL); ctx->sws_uv_height = sws_src_h; } } else { //srcnn outlink->w = out_width * ctx->scale_factor; outlink->h = out_height * ctx->scale_factor; ctx->sws_pre_scale = sws_getContext(inlink->w, inlink->h, inlink->format, outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL); } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { DNNAsyncStatusType async_state = 0; AVFilterContext *context = inlink->dst; SRContext *ctx = context->priv; AVFilterLink *outlink = context->outputs[0]; AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); DNNReturnType dnn_result; if (!out){ av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); if (ctx->sws_pre_scale) { sws_scale(ctx->sws_pre_scale, (const uint8_t **)in->data, in->linesize, 0, in->height, out->data, out->linesize); dnn_result = ff_dnn_execute_model(&ctx->dnnctx, out, out); } else { dnn_result = ff_dnn_execute_model(&ctx->dnnctx, in, out); } if (dnn_result != DNN_SUCCESS){ av_log(ctx, AV_LOG_ERROR, "failed to execute loaded model\n"); av_frame_free(&in); av_frame_free(&out); return AVERROR(EIO); } do { async_state = ff_dnn_get_result(&ctx->dnnctx, &in, &out); } while (async_state == DAST_NOT_READY); if (async_state != DAST_SUCCESS) return AVERROR(EINVAL); if (ctx->sws_uv_scale) { sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 1), in->linesize + 1, 0, ctx->sws_uv_height, out->data + 1, out->linesize + 1); sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 2), in->linesize + 2, 0, ctx->sws_uv_height, out->data + 2, out->linesize + 2); } av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *context) { SRContext *sr_context = context->priv; ff_dnn_uninit(&sr_context->dnnctx); sws_freeContext(sr_context->sws_uv_scale); sws_freeContext(sr_context->sws_pre_scale); } static const AVFilterPad sr_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, }; static const AVFilterPad sr_outputs[] = { { .name = "default", .config_props = config_output, .type = AVMEDIA_TYPE_VIDEO, }, }; const AVFilter ff_vf_sr = { .name = "sr", .description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."), .priv_size = sizeof(SRContext), .init = init, .uninit = uninit, FILTER_INPUTS(sr_inputs), FILTER_OUTPUTS(sr_outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &sr_class, };