/* * Copyright (c) 2012-2013 Clément Bœsch * Copyright (c) 2013 Rudolf Polzer * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini). */ #include "config_components.h" #include #include #include "libavutil/mem.h" #include "libavutil/tx.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/cpu.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "libavutil/xga_font_data.h" #include "audio.h" #include "formats.h" #include "video.h" #include "avfilter.h" #include "filters.h" #include "internal.h" #include "window_func.h" enum DisplayMode { COMBINED, SEPARATE, NB_MODES }; enum DataMode { D_MAGNITUDE, D_PHASE, D_UPHASE, NB_DMODES }; enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES }; enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES }; enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, LREPLACE, NB_SLIDES }; enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS }; #define DEFAULT_LENGTH 300 typedef struct ShowSpectrumContext { const AVClass *class; int w, h; char *rate_str; AVRational auto_frame_rate; AVRational frame_rate; AVFrame *outpicref; AVFrame *in_frame; int nb_display_channels; int orientation; int channel_width; int channel_height; int sliding; ///< 1 if sliding mode, 0 otherwise int mode; ///< channel display mode int color_mode; ///< display color scheme int scale; int fscale; float saturation; ///< color saturation multiplier float rotation; ///< color rotation int start, stop; ///< zoom mode int data; int xpos; ///< x position (current column) AVTXContext **fft; ///< Fast Fourier Transform context AVTXContext **ifft; ///< Inverse Fast Fourier Transform context av_tx_fn tx_fn; av_tx_fn itx_fn; int fft_size; ///< number of coeffs (FFT window size) AVComplexFloat **fft_in; ///< input FFT coeffs AVComplexFloat **fft_data; ///< bins holder for each (displayed) channels AVComplexFloat **fft_scratch;///< scratch buffers float *window_func_lut; ///< Window function LUT float **magnitudes; float **phases; int win_func; int win_size; int buf_size; double win_scale; float overlap; float gain; int hop_size; float *combine_buffer; ///< color combining buffer (4 * h items) float **color_buffer; ///< color buffer (4 * h * ch items) int64_t pts; int64_t old_pts; int64_t in_pts; int old_len; int single_pic; int legend; int start_x, start_y; float drange, limit; float dmin, dmax; uint64_t samples; int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); int eof; float opacity_factor; AVFrame **frames; unsigned int nb_frames; unsigned int frames_size; } ShowSpectrumContext; #define OFFSET(x) offsetof(ShowSpectrumContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption showspectrum_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS }, { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, .unit = "slide" }, { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, .unit = "slide" }, { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, .unit = "slide" }, { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, .unit = "slide" }, { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, .unit = "slide" }, { "lreplace", "replace from right to left", 0, AV_OPT_TYPE_CONST, {.i64=LREPLACE}, 0, 0, FLAGS, .unit = "slide" }, { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, .unit = "mode" }, { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "mode" }, { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "mode" }, { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, .unit = "color" }, { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, .unit = "color" }, { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, .unit = "color" }, { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, .unit = "color" }, { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, .unit = "color" }, { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, .unit = "color" }, { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, .unit = "color" }, { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, .unit = "color" }, { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, .unit = "color" }, { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, .unit = "color" }, { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, .unit = "color" }, { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, .unit = "color" }, { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, .unit = "color" }, { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, .unit = "color" }, { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, .unit = "color" }, { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, .unit = "color" }, { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, .unit = "scale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, .unit = "scale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, .unit = "scale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, .unit = "scale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, .unit = "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, .unit = "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, .unit = "scale" }, { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, .unit = "fscale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, .unit = "fscale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING), { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, .unit = "orientation" }, { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, .unit = "orientation" }, { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, .unit = "orientation" }, { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS }, { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS }, { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, .unit = "data" }, { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, .unit = "data" }, { "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, .unit = "data" }, { "uphase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_UPHASE}, 0, 0, FLAGS, .unit = "data" }, { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS }, { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { "fps", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS }, { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS }, { "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS }, { "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showspectrum); static const struct ColorTable { float a, y, u, v; } color_table[][8] = { [INTENSITY] = { { 0, 0, 0, 0 }, { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 }, { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 }, { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 }, { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 }, { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 }, { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 }, { 1, 1, 0, 0 }}, [RAINBOW] = { { 0, 0, 0, 0 }, { 0.13, 44/256., (189-128)/256., (138-128)/256. }, { 0.25, 29/256., (186-128)/256., (119-128)/256. }, { 0.38, 119/256., (194-128)/256., (53-128)/256. }, { 0.60, 111/256., (73-128)/256., (59-128)/256. }, { 0.73, 205/256., (19-128)/256., (149-128)/256. }, { 0.86, 135/256., (83-128)/256., (200-128)/256. }, { 1, 73/256., (95-128)/256., (225-128)/256. }}, [MORELAND] = { { 0, 44/256., (181-128)/256., (112-128)/256. }, { 0.13, 126/256., (177-128)/256., (106-128)/256. }, { 0.25, 164/256., (163-128)/256., (109-128)/256. }, { 0.38, 200/256., (140-128)/256., (120-128)/256. }, { 0.60, 201/256., (117-128)/256., (141-128)/256. }, { 0.73, 177/256., (103-128)/256., (165-128)/256. }, { 0.86, 136/256., (100-128)/256., (183-128)/256. }, { 1, 68/256., (117-128)/256., (203-128)/256. }}, [NEBULAE] = { { 0, 10/256., (134-128)/256., (132-128)/256. }, { 0.23, 21/256., (137-128)/256., (130-128)/256. }, { 0.45, 35/256., (134-128)/256., (134-128)/256. }, { 0.57, 51/256., (130-128)/256., (139-128)/256. }, { 0.67, 104/256., (116-128)/256., (162-128)/256. }, { 0.77, 120/256., (105-128)/256., (188-128)/256. }, { 0.87, 140/256., (105-128)/256., (188-128)/256. }, { 1, 1, 0, 0 }}, [FIRE] = { { 0, 0, 0, 0 }, { 0.23, 44/256., (132-128)/256., (127-128)/256. }, { 0.45, 62/256., (116-128)/256., (140-128)/256. }, { 0.57, 75/256., (105-128)/256., (152-128)/256. }, { 0.67, 95/256., (91-128)/256., (166-128)/256. }, { 0.77, 126/256., (74-128)/256., (172-128)/256. }, { 0.87, 164/256., (73-128)/256., (162-128)/256. }, { 1, 1, 0, 0 }}, [FIERY] = { { 0, 0, 0, 0 }, { 0.23, 36/256., (116-128)/256., (163-128)/256. }, { 0.45, 52/256., (102-128)/256., (200-128)/256. }, { 0.57, 116/256., (84-128)/256., (196-128)/256. }, { 0.67, 157/256., (67-128)/256., (181-128)/256. }, { 0.77, 193/256., (40-128)/256., (155-128)/256. }, { 0.87, 221/256., (101-128)/256., (134-128)/256. }, { 1, 1, 0, 0 }}, [FRUIT] = { { 0, 0, 0, 0 }, { 0.20, 29/256., (136-128)/256., (119-128)/256. }, { 0.30, 60/256., (119-128)/256., (90-128)/256. }, { 0.40, 85/256., (91-128)/256., (85-128)/256. }, { 0.50, 116/256., (70-128)/256., (105-128)/256. }, { 0.60, 151/256., (50-128)/256., (146-128)/256. }, { 0.70, 191/256., (63-128)/256., (178-128)/256. }, { 1, 98/256., (80-128)/256., (221-128)/256. }}, [COOL] = { { 0, 0, 0, 0 }, { .15, 0, .5, -.5 }, { 1, 1, -.5, .5 }}, [MAGMA] = { { 0, 0, 0, 0 }, { 0.10, 23/256., (175-128)/256., (120-128)/256. }, { 0.23, 43/256., (158-128)/256., (144-128)/256. }, { 0.35, 85/256., (138-128)/256., (179-128)/256. }, { 0.48, 96/256., (128-128)/256., (189-128)/256. }, { 0.64, 128/256., (103-128)/256., (214-128)/256. }, { 0.92, 205/256., (80-128)/256., (152-128)/256. }, { 1, 1, 0, 0 }}, [GREEN] = { { 0, 0, 0, 0 }, { .75, .5, 0, -.5 }, { 1, 1, 0, 0 }}, [VIRIDIS] = { { 0, 0, 0, 0 }, { 0.10, 0x39/255., (0x9D -128)/255., (0x8F -128)/255. }, { 0.23, 0x5C/255., (0x9A -128)/255., (0x68 -128)/255. }, { 0.35, 0x69/255., (0x93 -128)/255., (0x57 -128)/255. }, { 0.48, 0x76/255., (0x88 -128)/255., (0x4B -128)/255. }, { 0.64, 0x8A/255., (0x72 -128)/255., (0x4F -128)/255. }, { 0.80, 0xA3/255., (0x50 -128)/255., (0x66 -128)/255. }, { 1, 0xCC/255., (0x2F -128)/255., (0x87 -128)/255. }}, [PLASMA] = { { 0, 0, 0, 0 }, { 0.10, 0x27/255., (0xC2 -128)/255., (0x82 -128)/255. }, { 0.58, 0x5B/255., (0x9A -128)/255., (0xAE -128)/255. }, { 0.70, 0x89/255., (0x44 -128)/255., (0xAB -128)/255. }, { 0.80, 0xB4/255., (0x2B -128)/255., (0x9E -128)/255. }, { 0.91, 0xD2/255., (0x38 -128)/255., (0x92 -128)/255. }, { 1, 1, 0, 0. }}, [CIVIDIS] = { { 0, 0, 0, 0 }, { 0.20, 0x28/255., (0x98 -128)/255., (0x6F -128)/255. }, { 0.50, 0x48/255., (0x95 -128)/255., (0x74 -128)/255. }, { 0.63, 0x69/255., (0x84 -128)/255., (0x7F -128)/255. }, { 0.76, 0x89/255., (0x75 -128)/255., (0x84 -128)/255. }, { 0.90, 0xCE/255., (0x35 -128)/255., (0x95 -128)/255. }, { 1, 1, 0, 0. }}, [TERRAIN] = { { 0, 0, 0, 0 }, { 0.15, 0, .5, 0 }, { 0.60, 1, -.5, -.5 }, { 0.85, 1, -.5, .5 }, { 1, 1, 0, 0 }}, }; static av_cold void uninit(AVFilterContext *ctx) { ShowSpectrumContext *s = ctx->priv; int i; av_freep(&s->combine_buffer); if (s->fft) { for (i = 0; i < s->nb_display_channels; i++) av_tx_uninit(&s->fft[i]); } av_freep(&s->fft); if (s->ifft) { for (i = 0; i < s->nb_display_channels; i++) av_tx_uninit(&s->ifft[i]); } av_freep(&s->ifft); if (s->fft_data) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); if (s->fft_in) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_in[i]); } av_freep(&s->fft_in); if (s->fft_scratch) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_scratch[i]); } av_freep(&s->fft_scratch); if (s->color_buffer) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->color_buffer[i]); } av_freep(&s->color_buffer); av_freep(&s->window_func_lut); if (s->magnitudes) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->magnitudes[i]); } av_freep(&s->magnitudes); av_frame_free(&s->outpicref); av_frame_free(&s->in_frame); if (s->phases) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->phases[i]); } av_freep(&s->phases); while (s->nb_frames > 0) { av_frame_free(&s->frames[s->nb_frames - 1]); s->nb_frames--; } av_freep(&s->frames); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0) return ret; layouts = ff_all_channel_counts(); if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0) return ret; return 0; } static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const float *window_func_lut = s->window_func_lut; AVFrame *fin = arg; const int ch = jobnr; int n; /* fill FFT input with the number of samples available */ const float *p = (float *)fin->extended_data[ch]; float *in_frame = (float *)s->in_frame->extended_data[ch]; memmove(in_frame, in_frame + s->hop_size, (s->fft_size - s->hop_size) * sizeof(float)); memcpy(in_frame + s->fft_size - s->hop_size, p, fin->nb_samples * sizeof(float)); for (int i = fin->nb_samples; i < s->hop_size; i++) in_frame[i + s->fft_size - s->hop_size] = 0.f; if (s->stop) { float theta, phi, psi, a, b, S, c; AVComplexFloat *f = s->fft_in[ch]; AVComplexFloat *g = s->fft_data[ch]; AVComplexFloat *h = s->fft_scratch[ch]; int L = s->buf_size; int N = s->win_size; int M = s->win_size / 2; for (n = 0; n < s->win_size; n++) { s->fft_data[ch][n].re = in_frame[n] * window_func_lut[n]; s->fft_data[ch][n].im = 0; } phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1); theta = 2.f * M_PI * s->start / (float)inlink->sample_rate; for (int n = 0; n < M; n++) { h[n].re = cosf(n * n / 2.f * phi); h[n].im = sinf(n * n / 2.f * phi); } for (int n = M; n < L; n++) { h[n].re = 0.f; h[n].im = 0.f; } for (int n = L - N; n < L; n++) { h[n].re = cosf((L - n) * (L - n) / 2.f * phi); h[n].im = sinf((L - n) * (L - n) / 2.f * phi); } for (int n = N; n < L; n++) { g[n].re = 0.f; g[n].im = 0.f; } for (int n = 0; n < N; n++) { psi = n * theta + n * n / 2.f * phi; c = cosf(psi); S = -sinf(psi); a = c * g[n].re - S * g[n].im; b = S * g[n].re + c * g[n].im; g[n].re = a; g[n].im = b; } memcpy(f, h, s->buf_size * sizeof(*f)); s->tx_fn(s->fft[ch], h, f, sizeof(AVComplexFloat)); memcpy(f, g, s->buf_size * sizeof(*f)); s->tx_fn(s->fft[ch], g, f, sizeof(AVComplexFloat)); for (int n = 0; n < L; n++) { c = g[n].re; S = g[n].im; a = c * h[n].re - S * h[n].im; b = S * h[n].re + c * h[n].im; g[n].re = a / L; g[n].im = b / L; } memcpy(f, g, s->buf_size * sizeof(*f)); s->itx_fn(s->ifft[ch], g, f, sizeof(AVComplexFloat)); for (int k = 0; k < M; k++) { psi = k * k / 2.f * phi; c = cosf(psi); S = -sinf(psi); a = c * g[k].re - S * g[k].im; b = S * g[k].re + c * g[k].im; s->fft_data[ch][k].re = a; s->fft_data[ch][k].im = b; } } else { for (n = 0; n < s->win_size; n++) { s->fft_in[ch][n].re = in_frame[n] * window_func_lut[n]; s->fft_in[ch][n].im = 0; } /* run FFT on each samples set */ s->tx_fn(s->fft[ch], s->fft_data[ch], s->fft_in[ch], sizeof(AVComplexFloat)); } return 0; } static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o) { const uint8_t *font; int font_height; font = avpriv_cga_font, font_height = 8; for (int i = 0; txt[i]; i++) { int char_y, mask; if (o) { for (char_y = font_height - 1; char_y >= 0; char_y--) { uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x; for (mask = 0x80; mask; mask >>= 1) { if (font[txt[i] * font_height + font_height - 1 - char_y] & mask) p[char_y] = ~p[char_y]; p += pic->linesize[0]; } } } else { uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8); for (char_y = 0; char_y < font_height; char_y++) { for (mask = 0x80; mask; mask >>= 1) { if (font[txt[i] * font_height + char_y] & mask) *p = ~(*p); p++; } p += pic->linesize[0] - 8; } } } for (int i = 0; txt[i] && pic->data[3]; i++) { int char_y, mask; if (o) { for (char_y = font_height - 1; char_y >= 0; char_y--) { uint8_t *p = pic->data[3] + (y + i * 10) * pic->linesize[3] + x; for (mask = 0x80; mask; mask >>= 1) { for (int k = 0; k < 8; k++) p[k] = 255; p += pic->linesize[3]; } } } else { uint8_t *p = pic->data[3] + y*pic->linesize[3] + (x + i*8); for (char_y = 0; char_y < font_height; char_y++) { for (mask = 0x80; mask; mask >>= 1) *p++ = 255; p += pic->linesize[3] - 8; } } } } static void color_range(ShowSpectrumContext *s, int ch, float *yf, float *uf, float *vf) { switch (s->mode) { case COMBINED: // reduce range by channel count *yf = 256.0f / s->nb_display_channels; switch (s->color_mode) { case RAINBOW: case MORELAND: case NEBULAE: case FIRE: case FIERY: case FRUIT: case COOL: case GREEN: case VIRIDIS: case PLASMA: case CIVIDIS: case TERRAIN: case MAGMA: case INTENSITY: *uf = *yf; *vf = *yf; break; case CHANNEL: /* adjust saturation for mixed UV coloring */ /* this factor is correct for infinite channels, an approximation otherwise */ *uf = *yf * M_PI; *vf = *yf * M_PI; break; default: av_assert0(0); } break; case SEPARATE: // full range *yf = 256.0f; *uf = 256.0f; *vf = 256.0f; break; default: av_assert0(0); } if (s->color_mode == CHANNEL) { if (s->nb_display_channels > 1) { *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); } else { *uf *= 0.5f * sinf(M_PI * s->rotation); *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2); } } else { *uf += *uf * sinf(M_PI * s->rotation); *vf += *vf * cosf(M_PI * s->rotation + M_PI_2); } *uf *= s->saturation; *vf *= s->saturation; } static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out) { const float af = s->opacity_factor * 255.f; if (s->color_mode > CHANNEL) { const int cm = s->color_mode; float y, u, v; int i; for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++) if (color_table[cm][i].a >= a) break; // i now is the first item >= the color // now we know to interpolate between item i - 1 and i if (a <= color_table[cm][i - 1].a) { y = color_table[cm][i - 1].y; u = color_table[cm][i - 1].u; v = color_table[cm][i - 1].v; } else if (a >= color_table[cm][i].a) { y = color_table[cm][i].y; u = color_table[cm][i].u; v = color_table[cm][i].v; } else { float start = color_table[cm][i - 1].a; float end = color_table[cm][i].a; float lerpfrac = (a - start) / (end - start); y = color_table[cm][i - 1].y * (1.0f - lerpfrac) + color_table[cm][i].y * lerpfrac; u = color_table[cm][i - 1].u * (1.0f - lerpfrac) + color_table[cm][i].u * lerpfrac; v = color_table[cm][i - 1].v * (1.0f - lerpfrac) + color_table[cm][i].v * lerpfrac; } out[0] = y * yf; out[1] = u * uf; out[2] = v * vf; out[3] = a * af; } else { out[0] = a * yf; out[1] = a * uf; out[2] = a * vf; out[3] = a * af; } } static char *get_time(AVFilterContext *ctx, float seconds, int x) { char *units; if (x == 0) units = av_asprintf("0"); else if (log10(seconds) > 6) units = av_asprintf("%.2fh", seconds / (60 * 60)); else if (log10(seconds) > 3) units = av_asprintf("%.2fm", seconds / 60); else units = av_asprintf("%.2fs", seconds); return units; } static float log_scale(const float bin, const float bmin, const float bmax, const float min, const float max) { return exp2f(((bin - bmin) / (bmax - bmin)) * (log2f(max) - log2f(min)) + log2f(min)); } static float get_hz(const float bin, const float bmax, const float min, const float max, int fscale) { switch (fscale) { case F_LINEAR: return min + (bin / bmax) * (max - min); case F_LOG: return min + log_scale(bin, 0, bmax, 20.f, max - min); default: return 0.f; } } static float inv_log_scale(float bin, float bmin, float bmax, float min, float max) { return (min * exp2f((bin * (log2f(max) - log2f(20.f))) / bmax) + min) * bmax / max; } static float bin_pos(const int bin, const int num_bins, const float min, const float max) { return inv_log_scale(bin, 0.f, num_bins, 20.f, max - min); } static float get_scale(AVFilterContext *ctx, int scale, float a) { ShowSpectrumContext *s = ctx->priv; const float dmin = s->dmin; const float dmax = s->dmax; a = av_clipf(a, dmin, dmax); if (scale != LOG) a = (a - dmin) / (dmax - dmin); switch (scale) { case LINEAR: break; case SQRT: a = sqrtf(a); break; case CBRT: a = cbrtf(a); break; case FOURTHRT: a = sqrtf(sqrtf(a)); break; case FIFTHRT: a = powf(a, 0.2f); break; case LOG: a = (s->drange - s->limit + log10f(a) * 20.f) / s->drange; break; default: av_assert0(0); } return a; } static float get_iscale(AVFilterContext *ctx, int scale, float a) { ShowSpectrumContext *s = ctx->priv; const float dmin = s->dmin; const float dmax = s->dmax; switch (scale) { case LINEAR: break; case SQRT: a = a * a; break; case CBRT: a = a * a * a; break; case FOURTHRT: a = a * a * a * a; break; case FIFTHRT: a = a * a * a * a * a; break; case LOG: a = expf(M_LN10 * (a * s->drange - s->drange + s->limit) / 20.f); break; default: av_assert0(0); } if (scale != LOG) a = a * (dmax - dmin) + dmin; return a; } static int draw_legend(AVFilterContext *ctx, uint64_t samples) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h; int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL); float spp = samples / (float)sz; char *text; uint8_t *dst; char chlayout_str[128]; av_channel_layout_describe(&inlink->ch_layout, chlayout_str, sizeof(chlayout_str)); text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str); if (!text) return AVERROR(ENOMEM); drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0); drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0); av_freep(&text); if (s->stop) { text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop); if (!text) return AVERROR(ENOMEM); drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0); av_freep(&text); } dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1; for (x = 0; x < s->w + 1; x++) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1; for (x = 0; x < s->w + 1; x++) dst[x] = 200; for (y = 0; y < s->h + 2; y++) { dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0]; dst[s->start_x - 1] = 200; dst[s->start_x + s->w] = 200; } if (s->orientation == VERTICAL) { int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h; int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1; for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) { for (y = 0; y < h; y += 20) { dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0]; dst[s->start_x - 2] = 200; dst[s->start_x + s->w + 1] = 200; } for (y = 0; y < h; y += 40) { dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0]; dst[s->start_x - 3] = 200; dst[s->start_x + s->w + 2] = 200; } dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=40) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=80) dst[x] = 200; dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=40) { dst[x] = 200; } dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=80) { dst[x] = 200; } for (y = 0; y < h; y += 40) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; float hertz = get_hz(y, h, s->start, s->start + range, s->fscale); char *units; if (hertz == 0) units = av_asprintf("DC"); else units = av_asprintf("%.2f", hertz); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0); av_free(units); } } for (x = 0; x < s->w && s->single_pic; x+=80) { float seconds = x * spp / inlink->sample_rate; char *units = get_time(ctx, seconds, x); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0); drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0); av_free(units); } drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0); drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1); } else { int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w; for (y = 0; y < s->h; y += 20) { dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0]; dst[s->start_x - 2] = 200; dst[s->start_x + s->w + 1] = 200; } for (y = 0; y < s->h; y += 40) { dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0]; dst[s->start_x - 3] = 200; dst[s->start_x + s->w + 2] = 200; } for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) { dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=40) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=80) dst[x] = 200; dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=40) { dst[x] = 200; } dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=80) { dst[x] = 200; } for (x = 0; x < w - 79; x += 80) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; float hertz = get_hz(x, w, s->start, s->start + range, s->fscale); char *units; if (hertz == 0) units = av_asprintf("DC"); else units = av_asprintf("%.2f", hertz); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0); drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0); av_free(units); } } for (y = 0; y < s->h && s->single_pic; y+=40) { float seconds = y * spp / inlink->sample_rate; char *units = get_time(ctx, seconds, x); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0); av_free(units); } drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1); drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0); } for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) { int h = multi ? s->h / s->nb_display_channels : s->h; for (y = 0; y < h; y++) { float out[4] = { 0., 127.5, 127.5, 0.f}; int chn; for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) { float yf, uf, vf; int channel = (multi) ? s->nb_display_channels - ch - 1 : chn; float lout[4]; color_range(s, channel, &yf, &uf, &vf); pick_color(s, yf, uf, vf, y / (float)h, lout); out[0] += lout[0]; out[1] += lout[1]; out[2] += lout[2]; out[3] += lout[3]; } memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10); memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10); memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10); if (s->outpicref->data[3]) memset(s->outpicref->data[3]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[3] + s->w + s->start_x + 20, av_clip_uint8(out[3]), 10); } for (y = 0; ch == 0 && y < h + 5; y += 25) { static const char *log_fmt = "%.0f"; static const char *lin_fmt = "%.3f"; const float a = av_clipf(1.f - y / (float)(h - 1), 0.f, 1.f); const float value = s->scale == LOG ? log10f(get_iscale(ctx, s->scale, a)) * 20.f : get_iscale(ctx, s->scale, a); char *text; text = av_asprintf(s->scale == LOG ? log_fmt : lin_fmt, value); if (!text) continue; drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 3, text, 0); av_free(text); } } if (s->scale == LOG) drawtext(s->outpicref, s->w + s->start_x + 22, s->start_y + s->h + 20, "dBFS", 0); return 0; } static float get_value(AVFilterContext *ctx, int ch, int y) { ShowSpectrumContext *s = ctx->priv; float *magnitudes = s->magnitudes[ch]; float *phases = s->phases[ch]; float a; switch (s->data) { case D_MAGNITUDE: /* get magnitude */ a = magnitudes[y]; break; case D_UPHASE: case D_PHASE: /* get phase */ a = phases[y]; break; default: av_assert0(0); } return av_clipf(get_scale(ctx, s->scale, a), 0.f, 1.f); } static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; const int ch = jobnr; float yf, uf, vf; int y; /* decide color range */ color_range(s, ch, &yf, &uf, &vf); /* draw the channel */ for (y = 0; y < h; y++) { int row = (s->mode == COMBINED) ? y : ch * h + y; float *out = &s->color_buffer[ch][4 * row]; float a = get_value(ctx, ch, y); pick_color(s, yf, uf, vf, a, out); } return 0; } static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; const int ch = jobnr; float yf, uf, vf; /* decide color range */ color_range(s, ch, &yf, &uf, &vf); /* draw the channel */ for (int yy = 0; yy < h; yy++) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; float pos = bin_pos(yy, h, s->start, s->start + range); float delta = pos - floorf(pos); float a0, a1; a0 = get_value(ctx, ch, av_clip(pos, 0, h-1)); a1 = get_value(ctx, ch, av_clip(pos+1, 0, h-1)); { int row = (s->mode == COMBINED) ? yy : ch * h + yy; float *out = &s->color_buffer[ch][4 * row]; pick_color(s, yf, uf, vf, delta * a1 + (1.f - delta) * a0, out); } } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowSpectrumContext *s = ctx->priv; int i, fft_size, h, w, ret; float overlap; s->old_pts = AV_NOPTS_VALUE; s->dmax = expf(s->limit * M_LN10 / 20.f); s->dmin = expf((s->limit - s->drange) * M_LN10 / 20.f); switch (s->fscale) { case F_LINEAR: s->plot_channel = plot_channel_lin; break; case F_LOG: s->plot_channel = plot_channel_log; break; default: return AVERROR_BUG; } s->stop = FFMIN(s->stop, inlink->sample_rate / 2); if ((s->stop || s->start) && s->stop <= s->start) { av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n"); return AVERROR(EINVAL); } if (!strcmp(ctx->filter->name, "showspectrumpic")) s->single_pic = 1; outlink->w = s->w; outlink->h = s->h; outlink->sample_aspect_ratio = (AVRational){1,1}; if (s->legend) { s->start_x = (log10(inlink->sample_rate) + 1) * 25; s->start_y = 64; outlink->w += s->start_x * 2; outlink->h += s->start_y * 2; } h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->ch_layout.nb_channels; w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->ch_layout.nb_channels; s->channel_height = h; s->channel_width = w; if (s->orientation == VERTICAL) { /* FFT window size (precision) according to the requested output frame height */ fft_size = h * 2; } else { /* FFT window size (precision) according to the requested output frame width */ fft_size = w * 2; } s->win_size = fft_size; s->buf_size = FFALIGN(s->win_size << (!!s->stop), av_cpu_max_align()); if (!s->fft) { s->fft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft)); if (!s->fft) return AVERROR(ENOMEM); } if (s->stop) { if (!s->ifft) { s->ifft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->ifft)); if (!s->ifft) return AVERROR(ENOMEM); } } /* (re-)configuration if the video output changed (or first init) */ if (fft_size != s->fft_size) { AVFrame *outpicref; s->fft_size = fft_size; /* FFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_display_channels; i++) { if (s->stop) { av_tx_uninit(&s->ifft[i]); av_freep(&s->fft_scratch[i]); } av_tx_uninit(&s->fft[i]); av_freep(&s->fft_in[i]); av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); s->nb_display_channels = inlink->ch_layout.nb_channels; for (i = 0; i < s->nb_display_channels; i++) { float scale = 1.f; ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, fft_size << (!!s->stop), &scale, 0); if (s->stop) { ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, fft_size << (!!s->stop), &scale, 0); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. " "The window size might be too high.\n"); return ret; } } if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return ret; } } s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes)); if (!s->magnitudes) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes)); if (!s->magnitudes[i]) return AVERROR(ENOMEM); } s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases)); if (!s->phases) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases)); if (!s->phases[i]) return AVERROR(ENOMEM); } av_freep(&s->color_buffer); s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer)); if (!s->color_buffer) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 4 : s->w * 4, sizeof(**s->color_buffer)); if (!s->color_buffer[i]) return AVERROR(ENOMEM); } s->fft_in = av_calloc(s->nb_display_channels, sizeof(*s->fft_in)); if (!s->fft_in) return AVERROR(ENOMEM); s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch)); if (!s->fft_scratch) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->fft_in[i] = av_calloc(s->buf_size, sizeof(**s->fft_in)); if (!s->fft_in[i]) return AVERROR(ENOMEM); s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data)); if (!s->fft_data[i]) return AVERROR(ENOMEM); s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch)); if (!s->fft_scratch[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; s->hop_size = (1.f - s->overlap) * s->win_size; if (s->hop_size < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); } for (s->win_scale = 0, i = 0; i < s->win_size; i++) { s->win_scale += s->window_func_lut[i] * s->window_func_lut[i]; } s->win_scale = 1.f / sqrtf(s->win_scale); /* prepare the initial picref buffer (black frame) */ av_frame_free(&s->outpicref); s->outpicref = outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpicref) return AVERROR(ENOMEM); outpicref->sample_aspect_ratio = (AVRational){1,1}; for (i = 0; i < outlink->h; i++) { memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w); memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w); memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w); if (outpicref->data[3]) memset(outpicref->data[3] + i * outpicref->linesize[3], 0, outlink->w); } outpicref->color_range = AVCOL_RANGE_JPEG; if (!s->single_pic && s->legend) draw_legend(ctx, 0); } if ((s->orientation == VERTICAL && s->xpos >= s->w) || (s->orientation == HORIZONTAL && s->xpos >= s->h)) s->xpos = 0; if (s->sliding == LREPLACE) { if (s->orientation == VERTICAL) s->xpos = s->w - 1; if (s->orientation == HORIZONTAL) s->xpos = s->h - 1; } s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size); if (s->orientation == VERTICAL && s->sliding == FULLFRAME) s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->w)); if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME) s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->h)); if (!s->single_pic && strcmp(s->rate_str, "auto")) { int ret = av_parse_video_rate(&s->frame_rate, s->rate_str); if (ret < 0) return ret; } else if (s->single_pic) { s->frame_rate = av_make_q(1, 1); } else { s->frame_rate = s->auto_frame_rate; } outlink->frame_rate = s->frame_rate; outlink->time_base = av_inv_q(outlink->frame_rate); if (s->orientation == VERTICAL) { s->combine_buffer = av_realloc_f(s->combine_buffer, s->h * 4, sizeof(*s->combine_buffer)); } else { s->combine_buffer = av_realloc_f(s->combine_buffer, s->w * 4, sizeof(*s->combine_buffer)); } if (!s->combine_buffer) return AVERROR(ENOMEM); av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n", s->w, s->h, s->win_size); s->in_frame = ff_get_audio_buffer(inlink, s->win_size); if (!s->in_frame) return AVERROR(ENOMEM); s->frames = av_fast_realloc(NULL, &s->frames_size, DEFAULT_LENGTH * sizeof(*(s->frames))); if (!s->frames) return AVERROR(ENOMEM); return 0; } #define RE(y, ch) s->fft_data[ch][y].re #define IM(y, ch) s->fft_data[ch][y].im #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch)) #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch)) static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1); int y, h = s->orientation == VERTICAL ? s->h : s->w; const float f = s->gain * w; const int ch = jobnr; float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] = MAGNITUDE(y, ch) * f; return 0; } static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const int h = s->orientation == VERTICAL ? s->h : s->w; const int ch = jobnr; float *phases = s->phases[ch]; int y; for (y = 0; y < h; y++) phases[y] = (PHASE(y, ch) / M_PI + 1) / 2; return 0; } static void unwrap(float *x, int N, float tol, float *mi, float *ma) { const float rng = 2.f * M_PI; float prev_p = 0.f; float max = -FLT_MAX; float min = FLT_MAX; for (int i = 0; i < N; i++) { const float d = x[FFMIN(i + 1, N)] - x[i]; const float p = ceilf(fabsf(d) / rng) * rng * (((d < tol) > 0.f) - ((d > -tol) > 0.f)); x[i] += p + prev_p; prev_p += p; max = fmaxf(x[i], max); min = fminf(x[i], min); } *mi = min; *ma = max; } static int calc_channel_uphases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const int h = s->orientation == VERTICAL ? s->h : s->w; const int ch = jobnr; float *phases = s->phases[ch]; float min, max, scale; int y; for (y = 0; y < h; y++) phases[y] = PHASE(y, ch); unwrap(phases, h, M_PI, &min, &max); scale = 1.f / (max - min + FLT_MIN); for (y = 0; y < h; y++) phases[y] = fabsf((phases[y] - min) * scale); return 0; } static void acalc_magnitudes(ShowSpectrumContext *s) { const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1); int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; const float f = s->gain * w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] += MAGNITUDE(y, ch) * f; } } static void scale_magnitudes(ShowSpectrumContext *s, float scale) { int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] *= scale; } } static void clear_combine_buffer(ShowSpectrumContext *s, int size) { int y; for (y = 0; y < size; y++) { s->combine_buffer[4 * y ] = 0; s->combine_buffer[4 * y + 1] = 127.5; s->combine_buffer[4 * y + 2] = 127.5; s->combine_buffer[4 * y + 3] = 0; } } static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; AVFrame *outpicref = s->outpicref; int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w; const int alpha = outpicref->data[3] != NULL; /* fill a new spectrum column */ /* initialize buffer for combining to black */ clear_combine_buffer(s, z); ff_filter_execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels); for (y = 0; y < z * 4; y++) { for (x = 0; x < s->nb_display_channels; x++) { s->combine_buffer[y] += s->color_buffer[x][y]; } } ret = ff_inlink_make_frame_writable(outlink, &s->outpicref); if (ret < 0) return ret; outpicref = s->outpicref; /* copy to output */ if (s->orientation == VERTICAL) { if (s->sliding == SCROLL) { for (plane = 0; plane < 3 + alpha; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + s->start_x + (y + s->start_y) * outpicref->linesize[plane]; memmove(p, p + 1, s->w - 1); } } s->xpos = s->w - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3 + alpha; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + s->start_x + (y + s->start_y) * outpicref->linesize[plane]; memmove(p + 1, p, s->w - 1); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] + s->xpos; for (y = 0; y < s->h; y++) { *p = lrintf(av_clipf(s->combine_buffer[4 * y + plane], 0, 255)); p -= outpicref->linesize[plane]; } } if (alpha) { uint8_t *p = outpicref->data[3] + s->start_x + (outlink->h - 1 - s->start_y) * outpicref->linesize[3] + s->xpos; for (y = 0; y < s->h; y++) { *p = lrintf(av_clipf(s->combine_buffer[4 * y + 3], 0, 255)); p -= outpicref->linesize[3]; } } } else { if (s->sliding == SCROLL) { for (plane = 0; plane < 3 + alpha; plane++) { for (y = 1; y < s->h; y++) { memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x, outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x, s->w); } } s->xpos = s->h - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3 + alpha; plane++) { for (y = s->h - 1; y >= 1; y--) { memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x, outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x, s->w); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (s->xpos + s->start_y) * outpicref->linesize[plane]; for (x = 0; x < s->w; x++) { *p = lrintf(av_clipf(s->combine_buffer[4 * x + plane], 0, 255)); p++; } } if (alpha) { uint8_t *p = outpicref->data[3] + s->start_x + (s->xpos + s->start_y) * outpicref->linesize[3]; for (x = 0; x < s->w; x++) { *p = lrintf(av_clipf(s->combine_buffer[4 * x + 3], 0, 255)); p++; } } } if (s->sliding != FULLFRAME || s->xpos == 0) s->pts = outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base); if (s->sliding == LREPLACE) { s->xpos--; if (s->orientation == VERTICAL && s->xpos < 0) s->xpos = s->w - 1; if (s->orientation == HORIZONTAL && s->xpos < 0) s->xpos = s->h - 1; } else { s->xpos++; if (s->orientation == VERTICAL && s->xpos >= s->w) s->xpos = 0; if (s->orientation == HORIZONTAL && s->xpos >= s->h) s->xpos = 0; } if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) { if (s->old_pts < outpicref->pts || s->sliding == FULLFRAME || (s->eof && ff_inlink_queued_samples(inlink) <= s->hop_size)) { AVFrame *clone; if (s->legend) { char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x); if (!units) return AVERROR(ENOMEM); if (s->orientation == VERTICAL) { for (y = 0; y < 10; y++) { memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len + (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len); } drawtext(s->outpicref, outlink->w / 2 - 4 * strlen(units), outlink->h - s->start_y / 2 - 20, units, 0); } else { for (y = 0; y < 10 * s->old_len; y++) { memset(s->outpicref->data[0] + s->start_x / 7 + 20 + (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10); } drawtext(s->outpicref, s->start_x / 7 + 20, outlink->h / 2 - 4 * strlen(units), units, 1); } s->old_len = strlen(units); av_free(units); } s->old_pts = outpicref->pts; clone = av_frame_clone(s->outpicref); if (!clone) return AVERROR(ENOMEM); ret = ff_filter_frame(outlink, clone); if (ret < 0) return ret; return 0; } } return 1; } #if CONFIG_SHOWSPECTRUM_FILTER static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; int ret, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (s->outpicref && ff_inlink_queued_samples(inlink) > 0) { AVFrame *fin; ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &fin); if (ret < 0) return ret; if (ret > 0) { ff_filter_execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels); if (s->data == D_MAGNITUDE) ff_filter_execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels); if (s->data == D_PHASE) ff_filter_execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels); if (s->data == D_UPHASE) ff_filter_execute(ctx, calc_channel_uphases, NULL, NULL, s->nb_display_channels); if (s->sliding != FULLFRAME || s->xpos == 0) s->in_pts = fin->pts; ret = plot_spectrum_column(inlink, fin); av_frame_free(&fin); if (ret <= 0) return ret; } } if (s->eof && s->sliding == FULLFRAME && s->xpos > 0 && s->outpicref) { if (s->orientation == VERTICAL) { for (int i = 0; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos); if (s->outpicref->data[3]) memset(s->outpicref->data[3] + i * s->outpicref->linesize[3] + s->xpos, 0, outlink->w - s->xpos); } } else { for (int i = s->xpos; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w); if (s->outpicref->data[3]) memset(s->outpicref->data[3] + i * s->outpicref->linesize[3], 0, outlink->w); } } s->outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base); pts = s->outpicref->pts; ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; ff_outlink_set_status(outlink, AVERROR_EOF, pts); return 0; } if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) { s->eof = status == AVERROR_EOF; ff_filter_set_ready(ctx, 100); return 0; } if (s->eof) { ff_outlink_set_status(outlink, AVERROR_EOF, s->pts); return 0; } if (ff_inlink_queued_samples(inlink) >= s->hop_size) { ff_filter_set_ready(ctx, 10); return 0; } if (ff_outlink_frame_wanted(outlink)) { ff_inlink_request_frame(inlink); return 0; } return FFERROR_NOT_READY; } static const AVFilterPad showspectrum_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_avf_showspectrum = { .name = "showspectrum", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."), .uninit = uninit, .priv_size = sizeof(ShowSpectrumContext), FILTER_INPUTS(ff_audio_default_filterpad), FILTER_OUTPUTS(showspectrum_outputs), FILTER_QUERY_FUNC(query_formats), .activate = activate, .priv_class = &showspectrum_class, .flags = AVFILTER_FLAG_SLICE_THREADS, }; #endif // CONFIG_SHOWSPECTRUM_FILTER #if CONFIG_SHOWSPECTRUMPIC_FILTER static const AVOption showspectrumpic_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, .unit = "mode" }, { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "mode" }, { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "mode" }, { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, .unit = "color" }, { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, .unit = "color" }, { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, .unit = "color" }, { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, .unit = "color" }, { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, .unit = "color" }, { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, .unit = "color" }, { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, .unit = "color" }, { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, .unit = "color" }, { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, .unit = "color" }, { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, .unit = "color" }, { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, .unit = "color" }, { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, .unit = "color" }, { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, .unit = "color" }, { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, .unit = "color" }, { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, .unit = "color" }, { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, .unit = "color" }, { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, .unit = "scale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, .unit = "scale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, .unit = "scale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, .unit = "scale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, .unit = "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, .unit = "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, .unit = "scale" }, { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, .unit = "fscale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, .unit = "fscale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING), { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, .unit = "orientation" }, { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, .unit = "orientation" }, { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, .unit = "orientation" }, { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS }, { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS }, { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS }, { "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS }, { "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showspectrumpic); static int showspectrumpic_request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; int ret; ret = ff_request_frame(inlink); if (ret == AVERROR_EOF && s->outpicref && s->samples > 0) { int consumed = 0; int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h; unsigned int nb_frame = 0; int ch, spf, spb; int src_offset = 0; AVFrame *fin; spf = s->win_size * (s->samples / ((s->win_size * sz) * ceil(s->samples / (float)(s->win_size * sz)))); spf = FFMAX(1, spf); s->hop_size = spf; spb = (s->samples / (spf * sz)) * spf; fin = ff_get_audio_buffer(inlink, spf); if (!fin) return AVERROR(ENOMEM); while (x < sz) { int acc_samples = 0; int dst_offset = 0; while (nb_frame < s->nb_frames) { AVFrame *cur_frame = s->frames[nb_frame]; int cur_frame_samples = cur_frame->nb_samples; int nb_samples = 0; if (acc_samples < spf) { nb_samples = FFMIN(spf - acc_samples, cur_frame_samples - src_offset); acc_samples += nb_samples; av_samples_copy(fin->extended_data, cur_frame->extended_data, dst_offset, src_offset, nb_samples, cur_frame->ch_layout.nb_channels, AV_SAMPLE_FMT_FLTP); } src_offset += nb_samples; dst_offset += nb_samples; if (cur_frame_samples <= src_offset) { av_frame_free(&s->frames[nb_frame]); nb_frame++; src_offset = 0; } if (acc_samples == spf) break; } ff_filter_execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels); acalc_magnitudes(s); consumed += spf; if (consumed >= spb) { int h = s->orientation == VERTICAL ? s->h : s->w; scale_magnitudes(s, 1.f / (consumed / spf)); plot_spectrum_column(inlink, fin); consumed = 0; x++; for (ch = 0; ch < s->nb_display_channels; ch++) memset(s->magnitudes[ch], 0, h * sizeof(float)); } } av_frame_free(&fin); s->outpicref->pts = 0; if (s->legend) draw_legend(ctx, s->samples); ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; } return ret; } static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowSpectrumContext *s = ctx->priv; void *ptr; if (s->nb_frames + 1ULL > s->frames_size / sizeof(*(s->frames))) { ptr = av_fast_realloc(s->frames, &s->frames_size, s->frames_size * 2); if (!ptr) return AVERROR(ENOMEM); s->frames = ptr; } s->frames[s->nb_frames] = insamples; s->samples += insamples->nb_samples; s->nb_frames++; return 0; } static const AVFilterPad showspectrumpic_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = showspectrumpic_filter_frame, }, }; static const AVFilterPad showspectrumpic_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = showspectrumpic_request_frame, }, }; const AVFilter ff_avf_showspectrumpic = { .name = "showspectrumpic", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."), .uninit = uninit, .priv_size = sizeof(ShowSpectrumContext), FILTER_INPUTS(showspectrumpic_inputs), FILTER_OUTPUTS(showspectrumpic_outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &showspectrumpic_class, .flags = AVFILTER_FLAG_SLICE_THREADS, }; #endif // CONFIG_SHOWSPECTRUMPIC_FILTER