/* * Copyright (c) 2005 Boðaç Topaktaþ * Copyright (c) 2020 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/ffmath.h" #include "libavutil/opt.h" #include "avfilter.h" #include "audio.h" #include "formats.h" typedef struct BiquadCoeffs { double a1, a2; double b0, b1, b2; } BiquadCoeffs; typedef struct ASuperCutContext { const AVClass *class; double cutoff; double level; double qfactor; int order; int filter_count; int bypass; BiquadCoeffs coeffs[10]; AVFrame *w; int (*filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } ASuperCutContext; static int query_formats(AVFilterContext *ctx) { static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE }; int ret = ff_set_common_formats_from_list(ctx, sample_fmts); if (ret < 0) return ret; ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; return ff_set_common_all_samplerates(ctx); } static void calc_q_factors(int n, double *q) { for (int i = 0; i < n / 2; i++) q[i] = 1. / (-2. * cos(M_PI * (2. * (i + 1) + n - 1.) / (2. * n))); } static int get_coeffs(AVFilterContext *ctx) { ASuperCutContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; double w0 = s->cutoff / inlink->sample_rate; double K = tan(M_PI * w0); double q[10]; s->bypass = w0 >= 0.5; if (s->bypass) return 0; if (!strcmp(ctx->filter->name, "asubcut")) { s->filter_count = s->order / 2 + (s->order & 1); calc_q_factors(s->order, q); if (s->order & 1) { BiquadCoeffs *coeffs = &s->coeffs[0]; double omega = 2. * tan(M_PI * w0); coeffs->b0 = 2. / (2. + omega); coeffs->b1 = -coeffs->b0; coeffs->b2 = 0.; coeffs->a1 = -(omega - 2.) / (2. + omega); coeffs->a2 = 0.; } for (int b = (s->order & 1); b < s->filter_count; b++) { BiquadCoeffs *coeffs = &s->coeffs[b]; const int idx = b - (s->order & 1); double norm = 1.0 / (1.0 + K / q[idx] + K * K); coeffs->b0 = norm; coeffs->b1 = -2.0 * coeffs->b0; coeffs->b2 = coeffs->b0; coeffs->a1 = -2.0 * (K * K - 1.0) * norm; coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm; } } else if (!strcmp(ctx->filter->name, "asupercut")) { s->filter_count = s->order / 2 + (s->order & 1); calc_q_factors(s->order, q); if (s->order & 1) { BiquadCoeffs *coeffs = &s->coeffs[0]; double omega = 2. * tan(M_PI * w0); coeffs->b0 = omega / (2. + omega); coeffs->b1 = coeffs->b0; coeffs->b2 = 0.; coeffs->a1 = -(omega - 2.) / (2. + omega); coeffs->a2 = 0.; } for (int b = (s->order & 1); b < s->filter_count; b++) { BiquadCoeffs *coeffs = &s->coeffs[b]; const int idx = b - (s->order & 1); double norm = 1.0 / (1.0 + K / q[idx] + K * K); coeffs->b0 = K * K * norm; coeffs->b1 = 2.0 * coeffs->b0; coeffs->b2 = coeffs->b0; coeffs->a1 = -2.0 * (K * K - 1.0) * norm; coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm; } } else if (!strcmp(ctx->filter->name, "asuperpass")) { double alpha, beta, gamma, theta; double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate); double d_E; s->filter_count = s->order / 2; d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0); for (int b = 0; b < s->filter_count; b += 2) { double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count)); double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.); double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.))); double B = D * (d_E / 2.) / d; double W = B + sqrt(B * B - 1.); for (int j = 0; j < 2; j++) { BiquadCoeffs *coeffs = &s->coeffs[b + j]; if (j == 1) theta = 2. * atan(tan(theta_0 / 2.) / W); else theta = 2. * atan(W * tan(theta_0 / 2.)); beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta))); gamma = (0.5 + beta) * cos(theta); alpha = 0.5 * (0.5 - beta) * sqrt(1. + pow((W - (1. / W)) / d, 2.)); coeffs->a1 = 2. * gamma; coeffs->a2 = -2. * beta; coeffs->b0 = 2. * alpha; coeffs->b1 = 0.; coeffs->b2 = -2. * alpha; } } } else if (!strcmp(ctx->filter->name, "asuperstop")) { double alpha, beta, gamma, theta; double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate); double d_E; s->filter_count = s->order / 2; d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0); for (int b = 0; b < s->filter_count; b += 2) { double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count)); double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.); double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.))); double B = D * (d_E / 2.) / d; double W = B + sqrt(B * B - 1.); for (int j = 0; j < 2; j++) { BiquadCoeffs *coeffs = &s->coeffs[b + j]; if (j == 1) theta = 2. * atan(tan(theta_0 / 2.) / W); else theta = 2. * atan(W * tan(theta_0 / 2.)); beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta))); gamma = (0.5 + beta) * cos(theta); alpha = 0.5 * (0.5 + beta) * ((1. - cos(theta)) / (1. - cos(theta_0))); coeffs->a1 = 2. * gamma; coeffs->a2 = -2. * beta; coeffs->b0 = 2. * alpha; coeffs->b1 = -4. * alpha * cos(theta_0); coeffs->b2 = 2. * alpha; } } } return 0; } typedef struct ThreadData { AVFrame *in, *out; } ThreadData; #define FILTER(name, type) \ static int filter_channels_## name(AVFilterContext *ctx, void *arg, \ int jobnr, int nb_jobs) \ { \ ASuperCutContext *s = ctx->priv; \ ThreadData *td = arg; \ AVFrame *out = td->out; \ AVFrame *in = td->in; \ const int start = (in->channels * jobnr) / nb_jobs; \ const int end = (in->channels * (jobnr+1)) / nb_jobs; \ const double level = s->level; \ \ for (int ch = start; ch < end; ch++) { \ const type *src = (const type *)in->extended_data[ch]; \ type *dst = (type *)out->extended_data[ch]; \ \ for (int b = 0; b < s->filter_count; b++) { \ BiquadCoeffs *coeffs = &s->coeffs[b]; \ const type a1 = coeffs->a1; \ const type a2 = coeffs->a2; \ const type b0 = coeffs->b0; \ const type b1 = coeffs->b1; \ const type b2 = coeffs->b2; \ type *w = ((type *)s->w->extended_data[ch]) + b * 2; \ \ for (int n = 0; n < in->nb_samples; n++) { \ type sin = b ? dst[n] : src[n] * level; \ type sout = sin * b0 + w[0]; \ \ w[0] = b1 * sin + w[1] + a1 * sout; \ w[1] = b2 * sin + a2 * sout; \ \ dst[n] = sout; \ } \ } \ } \ \ return 0; \ } FILTER(fltp, float) FILTER(dblp, double) static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ASuperCutContext *s = ctx->priv; switch (inlink->format) { case AV_SAMPLE_FMT_FLTP: s->filter_channels = filter_channels_fltp; break; case AV_SAMPLE_FMT_DBLP: s->filter_channels = filter_channels_dblp; break; } s->w = ff_get_audio_buffer(inlink, 2 * 10); if (!s->w) return AVERROR(ENOMEM); return get_coeffs(ctx); } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; ASuperCutContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; ThreadData td; AVFrame *out; if (s->bypass) return ff_filter_frame(outlink, in); if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.in = in; td.out = out; ff_filter_execute(ctx, s->filter_channels, &td, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; return get_coeffs(ctx); } static av_cold void uninit(AVFilterContext *ctx) { ASuperCutContext *s = ctx->priv; av_frame_free(&s->w); } #define OFFSET(x) offsetof(ASuperCutContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption asupercut_options[] = { { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20000}, 20000, 192000, FLAGS }, { "order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=10}, 3, 20, FLAGS }, { "level", "set input level", OFFSET(level), AV_OPT_TYPE_DOUBLE, {.dbl=1.}, 0., 1., FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(asupercut); static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; const AVFilter ff_af_asupercut = { .name = "asupercut", .description = NULL_IF_CONFIG_SMALL("Cut super frequencies."), .query_formats = query_formats, .priv_size = sizeof(ASuperCutContext), .priv_class = &asupercut_class, .uninit = uninit, .inputs = inputs, .outputs = outputs, .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, }; static const AVOption asubcut_options[] = { { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20}, 2, 200, FLAGS }, { "order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=10}, 3, 20, FLAGS }, { "level", "set input level", OFFSET(level), AV_OPT_TYPE_DOUBLE, {.dbl=1.}, 0., 1., FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(asubcut); const AVFilter ff_af_asubcut = { .name = "asubcut", .description = NULL_IF_CONFIG_SMALL("Cut subwoofer frequencies."), .query_formats = query_formats, .priv_size = sizeof(ASuperCutContext), .priv_class = &asubcut_class, .uninit = uninit, .inputs = inputs, .outputs = outputs, .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, }; static const AVOption asuperpass_asuperstop_options[] = { { "centerf","set center frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=1000}, 2, 999999, FLAGS }, { "order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=4}, 4, 20, FLAGS }, { "qfactor","set Q-factor", OFFSET(qfactor),AV_OPT_TYPE_DOUBLE, {.dbl=1.},0.01, 100., FLAGS }, { "level", "set input level", OFFSET(level), AV_OPT_TYPE_DOUBLE, {.dbl=1.}, 0., 2., FLAGS }, { NULL } }; #define asuperpass_options asuperpass_asuperstop_options AVFILTER_DEFINE_CLASS(asuperpass); const AVFilter ff_af_asuperpass = { .name = "asuperpass", .description = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-pass filter."), .query_formats = query_formats, .priv_size = sizeof(ASuperCutContext), .priv_class = &asuperpass_class, .uninit = uninit, .inputs = inputs, .outputs = outputs, .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, }; #define asuperstop_options asuperpass_asuperstop_options AVFILTER_DEFINE_CLASS(asuperstop); const AVFilter ff_af_asuperstop = { .name = "asuperstop", .description = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-stop filter."), .query_formats = query_formats, .priv_size = sizeof(ASuperCutContext), .priv_class = &asuperstop_class, .uninit = uninit, .inputs = inputs, .outputs = outputs, .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };