/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/h264.c * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "internal.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264.h" #include "h264data.h" #include "h264_mvpred.h" #include "h264_parser.h" #include "golomb.h" #include "mathops.h" #include "rectangle.h" #include "vdpau_internal.h" #include "cabac.h" //#undef NDEBUG #include static const uint8_t rem6[52]={ 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; static const uint8_t div6[52]={ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, }; void ff_h264_write_back_intra_pred_mode(H264Context *h){ int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy]; AV_COPY32(mode, h->intra4x4_pred_mode_cache + 4 + 8*4); mode[4]= h->intra4x4_pred_mode_cache[7+8*3]; mode[5]= h->intra4x4_pred_mode_cache[7+8*2]; mode[6]= h->intra4x4_pred_mode_cache[7+8*1]; } /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0}; static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED}; int i; if(!(h->top_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + i]= status; } } } if((h->left_samples_available&0x8888)!=0x8888){ static const int mask[4]={0x8000,0x2000,0x80,0x20}; for(i=0; i<4; i++){ if(!(h->left_samples_available&mask[i])){ int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status; } } } } return 0; } //FIXME cleanup like ff_h264_check_intra_pred_mode /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode){ MpegEncContext * const s = &h->s; static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1}; static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8}; if(mode > 6U) { av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y); return -1; } if(!(h->top_samples_available&0x8000)){ mode= top[ mode ]; if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } if((h->left_samples_available&0x8080) != 0x8080){ mode= left[ mode ]; if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8); } if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } return mode; } const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){ int i, si, di; uint8_t *dst; int bufidx; // src[0]&0x80; //forbidden bit h->nal_ref_idc= src[0]>>5; h->nal_unit_type= src[0]&0x1F; src++; length--; #if 0 for(i=0; i0 && !src[i]) i--; while(src[i]) i++; #else # define RS 0 for(i=0; i+10 && src[i-1]==0) i--; #endif if(i+2=length-1){ //no escaped 0 *dst_length= length; *consumed= length+1; //+1 for the header return src; } bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE); dst= h->rbsp_buffer[bufidx]; if (dst == NULL){ return NULL; } //printf("decoding esc\n"); memcpy(dst, src, i); si=di=i; while(si+23){ dst[di++]= src[si++]; dst[di++]= src[si++]; }else if(src[si]==0 && src[si+1]==0){ if(src[si+2]==3){ //escape dst[di++]= 0; dst[di++]= 0; si+=3; continue; }else //next start code goto nsc; } dst[di++]= src[si++]; } while(sis.avctx, "rbsp trailing %X\n", v); for(r=1; r<9; r++){ if(v&1) return r; v>>=1; } return 0; } /** * IDCT transforms the 16 dc values and dequantizes them. * @param qp quantization parameter */ static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ #define stride 16 int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; //memset(block, 64, 2*256); //return; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8)); block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8)); block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8)); } } #if 0 /** * DCT transforms the 16 dc values. * @param qp quantization parameter ??? FIXME */ static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){ // const int qmul= dequant_coeff[qp][0]; int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= (z0 + z3)>>1; block[stride*2 +offset]= (z1 + z2)>>1; block[stride*8 +offset]= (z1 - z2)>>1; block[stride*10+offset]= (z0 - z3)>>1; } } #endif #undef xStride #undef stride static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7; block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7; block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7; block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7; } #if 0 static void chroma_dc_dct_c(DCTELEM *block){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= (a+c); block[stride*0 + xStride*1]= (e+b); block[stride*1 + xStride*0]= (a-c); block[stride*1 + xStride*1]= (e-b); } #endif static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){ MpegEncContext * const s = &h->s; const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8; int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8; const int luma_xy= (mx&3) + ((my&3)<<2); uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize; uint8_t * src_cb, * src_cr; int extra_width= h->emu_edge_width; int extra_height= h->emu_edge_height; int emu=0; const int full_mx= mx>>2; const int full_my= my>>2; const int pic_width = 16*s->mb_width; const int pic_height = 16*s->mb_height >> MB_FIELD; if(mx&7) extra_width -= 3; if(my&7) extra_height -= 3; if( full_mx < 0-extra_width || full_my < 0-extra_height || full_mx + 16/*FIXME*/ > pic_width + extra_width || full_my + 16/*FIXME*/ > pic_height + extra_height){ ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height); src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize; emu=1; } qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps? if(!square){ qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); } if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return; if(MB_FIELD){ // chroma offset when predicting from a field of opposite parity my += 2 * ((s->mb_y & 1) - (pic->reference - 1)); emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1); } src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize; src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize; if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cb= s->edge_emu_buffer; } chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7); if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cr= s->edge_emu_buffer; } chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7); } static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1){ MpegEncContext * const s = &h->s; qpel_mc_func *qpix_op= qpix_put; h264_chroma_mc_func chroma_op= chroma_put; dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; dest_cb += x_offset + y_offset*h->mb_uvlinesize; dest_cr += x_offset + y_offset*h->mb_uvlinesize; x_offset += 8*s->mb_x; y_offset += 8*(s->mb_y >> MB_FIELD); if(list0){ Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); qpix_op= qpix_avg; chroma_op= chroma_avg; } if(list1){ Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); } } static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, int list0, int list1){ MpegEncContext * const s = &h->s; dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; dest_cb += x_offset + y_offset*h->mb_uvlinesize; dest_cr += x_offset + y_offset*h->mb_uvlinesize; x_offset += 8*s->mb_x; y_offset += 8*(s->mb_y >> MB_FIELD); if(list0 && list1){ /* don't optimize for luma-only case, since B-frames usually * use implicit weights => chroma too. */ uint8_t *tmp_cb = s->obmc_scratchpad; uint8_t *tmp_cr = s->obmc_scratchpad + 8; uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize; int refn0 = h->ref_cache[0][ scan8[n] ]; int refn1 = h->ref_cache[1][ scan8[n] ]; mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put); mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1, tmp_y, tmp_cb, tmp_cr, x_offset, y_offset, qpix_put, chroma_put); if(h->use_weight == 2){ int weight0 = h->implicit_weight[refn0][refn1]; int weight1 = 64 - weight0; luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0); }else{ luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom, h->luma_weight[0][refn0], h->luma_weight[1][refn1], h->luma_offset[0][refn0] + h->luma_offset[1][refn1]); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0], h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1], h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]); } }else{ int list = list1 ? 1 : 0; int refn = h->ref_cache[list][ scan8[n] ]; Picture *ref= &h->ref_list[list][refn]; mc_dir_part(h, ref, n, square, chroma_height, delta, list, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put); luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom, h->luma_weight[list][refn], h->luma_offset[list][refn]); if(h->use_weight_chroma){ chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]); chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]); } } } static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, h264_weight_func *weight_op, h264_biweight_func *weight_avg, int list0, int list1){ if((h->use_weight==2 && list0 && list1 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32)) || h->use_weight==1) mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1); else mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1); } static inline void prefetch_motion(H264Context *h, int list){ /* fetch pixels for estimated mv 4 macroblocks ahead * optimized for 64byte cache lines */ MpegEncContext * const s = &h->s; const int refn = h->ref_cache[list][scan8[0]]; if(refn >= 0){ const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8; const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y; uint8_t **src= h->ref_list[list][refn].data; int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64; s->dsp.prefetch(src[0]+off, s->linesize, 4); off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64; s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); } } static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put), qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg), h264_weight_func *weight_op, h264_biweight_func *weight_avg){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; const int mb_type= s->current_picture.mb_type[mb_xy]; assert(IS_INTER(mb_type)); prefetch_motion(h, 0); if(IS_16X16(mb_type)){ mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0], weight_op, weight_avg, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); }else if(IS_16X8(mb_type)){ mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], &weight_op[1], &weight_avg[1], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], &weight_op[1], &weight_avg[1], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else if(IS_8X16(mb_type)){ mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[2], &weight_avg[2], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[2], &weight_avg[2], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else{ int i; assert(IS_8X8(mb_type)); for(i=0; i<4; i++){ const int sub_mb_type= h->sub_mb_type[i]; const int n= 4*i; int x_offset= (i&1)<<2; int y_offset= (i&2)<<1; if(IS_SUB_8X8(sub_mb_type)){ mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[3], &weight_avg[3], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_8X4(sub_mb_type)){ mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], &weight_op[4], &weight_avg[4], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], &weight_op[4], &weight_avg[4], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_4X8(sub_mb_type)){ mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[5], &weight_avg[5], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[5], &weight_avg[5], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else{ int j; assert(IS_SUB_4X4(sub_mb_type)); for(j=0; j<4; j++){ int sub_x_offset= x_offset + 2*(j&1); int sub_y_offset= y_offset + (j&2); mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[6], &weight_avg[6], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); } } } } prefetch_motion(h, 1); } static void free_tables(H264Context *h){ int i; H264Context *hx; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table= NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); for(i = 0; i < MAX_THREADS; i++) { hx = h->thread_context[i]; if(!hx) continue; av_freep(&hx->top_borders[1]); av_freep(&hx->top_borders[0]); av_freep(&hx->s.obmc_scratchpad); av_freep(&hx->rbsp_buffer[1]); av_freep(&hx->rbsp_buffer[0]); hx->rbsp_buffer_size[0] = 0; hx->rbsp_buffer_size[1] = 0; if (i) av_freep(&h->thread_context[i]); } } static void init_dequant8_coeff_table(H264Context *h){ int i,q,x; const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly h->dequant8_coeff[0] = h->dequant8_buffer[0]; h->dequant8_coeff[1] = h->dequant8_buffer[1]; for(i=0; i<2; i++ ){ if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){ h->dequant8_coeff[1] = h->dequant8_buffer[0]; break; } for(q=0; q<52; q++){ int shift = div6[q]; int idx = rem6[q]; for(x=0; x<64; x++) h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] = ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * h->pps.scaling_matrix8[i][x]) << shift; } } } static void init_dequant4_coeff_table(H264Context *h){ int i,j,q,x; const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly for(i=0; i<6; i++ ){ h->dequant4_coeff[i] = h->dequant4_buffer[i]; for(j=0; jpps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){ h->dequant4_coeff[i] = h->dequant4_buffer[j]; break; } } if(jdequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] = ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] * h->pps.scaling_matrix4[i][x]) << shift; } } } static void init_dequant_tables(H264Context *h){ int i,x; init_dequant4_coeff_table(h); if(h->pps.transform_8x8_mode) init_dequant8_coeff_table(h); if(h->sps.transform_bypass){ for(i=0; i<6; i++) for(x=0; x<16; x++) h->dequant4_coeff[i][0][x] = 1<<6; if(h->pps.transform_8x8_mode) for(i=0; i<2; i++) for(x=0; x<64; x++) h->dequant8_coeff[i][0][x] = 1<<6; } } int ff_h264_alloc_tables(H264Context *h){ MpegEncContext * const s = &h->s; const int big_mb_num= s->mb_stride * (s->mb_height+1); int x,y; FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*big_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*big_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail) memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base)); h->slice_table= h->slice_table_base + s->mb_stride*2 + 1; FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail); for(y=0; ymb_height; y++){ for(x=0; xmb_width; x++){ const int mb_xy= x + y*s->mb_stride; const int b_xy = 4*x + 4*y*h->b_stride; h->mb2b_xy [mb_xy]= b_xy; h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride))); } } s->obmc_scratchpad = NULL; if(!h->dequant4_coeff[0]) init_dequant_tables(h); return 0; fail: free_tables(h); return -1; } /** * Mimic alloc_tables(), but for every context thread. */ static void clone_tables(H264Context *dst, H264Context *src){ dst->intra4x4_pred_mode = src->intra4x4_pred_mode; dst->non_zero_count = src->non_zero_count; dst->slice_table = src->slice_table; dst->cbp_table = src->cbp_table; dst->mb2b_xy = src->mb2b_xy; dst->mb2br_xy = src->mb2br_xy; dst->chroma_pred_mode_table = src->chroma_pred_mode_table; dst->mvd_table[0] = src->mvd_table[0]; dst->mvd_table[1] = src->mvd_table[1]; dst->direct_table = src->direct_table; dst->list_counts = src->list_counts; dst->s.obmc_scratchpad = NULL; ff_h264_pred_init(&dst->hpc, src->s.codec_id); } /** * Init context * Allocate buffers which are not shared amongst multiple threads. */ static int context_init(H264Context *h){ FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail) return 0; fail: return -1; // free_tables will clean up for us } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size); static av_cold void common_init(H264Context *h){ MpegEncContext * const s = &h->s; s->width = s->avctx->width; s->height = s->avctx->height; s->codec_id= s->avctx->codec->id; ff_h264_pred_init(&h->hpc, s->codec_id); h->dequant_coeff_pps= -1; s->unrestricted_mv=1; s->decode=1; //FIXME dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t)); } av_cold int ff_h264_decode_init(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; MpegEncContext * const s = &h->s; MPV_decode_defaults(s); s->avctx = avctx; common_init(h); s->out_format = FMT_H264; s->workaround_bugs= avctx->workaround_bugs; // set defaults // s->decode_mb= ff_h263_decode_mb; s->quarter_sample = 1; if(!avctx->has_b_frames) s->low_delay= 1; avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; ff_h264_decode_init_vlc(); h->thread_context[0] = h; h->outputed_poc = INT_MIN; h->prev_poc_msb= 1<<16; h->x264_build = -1; ff_h264_reset_sei(h); if(avctx->codec_id == CODEC_ID_H264){ if(avctx->ticks_per_frame == 1){ s->avctx->time_base.den *=2; } avctx->ticks_per_frame = 2; } h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] = h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE; if(avctx->extradata_size > 0 && avctx->extradata && *(char *)avctx->extradata == 1){ int i, cnt, nalsize; unsigned char *p = avctx->extradata; h->is_avc = 1; if(avctx->extradata_size < 7) { av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); return -1; } /* sps and pps in the avcC always have length coded with 2 bytes, so put a fake nal_length_size = 2 while parsing them */ h->nal_length_size = 2; // Decode sps from avcC cnt = *(p+5) & 0x1f; // Number of sps p += 6; for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i); return -1; } p += nalsize; } // Decode pps from avcC cnt = *(p++); // Number of pps for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) != nalsize) { av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i); return -1; } p += nalsize; } // Now store right nal length size, that will be use to parse all other nals h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1; } else { h->is_avc = 0; if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0) return -1; } if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){ s->avctx->has_b_frames = h->sps.num_reorder_frames; s->low_delay = 0; } return 0; } int ff_h264_frame_start(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(MPV_frame_start(s, s->avctx) < 0) return -1; ff_er_frame_start(s); /* * MPV_frame_start uses pict_type to derive key_frame. * This is incorrect for H.264; IDR markings must be used. * Zero here; IDR markings per slice in frame or fields are ORed in later. * See decode_nal_units(). */ s->current_picture_ptr->key_frame= 0; s->current_picture_ptr->mmco_reset= 0; assert(s->linesize && s->uvlinesize); for(i=0; i<16; i++){ h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3); } for(i=0; i<4; i++){ h->block_offset[16+i]= h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+16+i]= h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3); } /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ for(i = 0; i < s->avctx->thread_count; i++) if(!h->thread_context[i]->s.obmc_scratchpad) h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); /* some macroblocks will be accessed before they're available */ if(FRAME_MBAFF || s->avctx->thread_count > 1) memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table)); // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1; // We mark the current picture as non-reference after allocating it, so // that if we break out due to an error it can be released automatically // in the next MPV_frame_start(). // SVQ3 as well as most other codecs have only last/next/current and thus // get released even with set reference, besides SVQ3 and others do not // mark frames as reference later "naturally". if(s->codec_id != CODEC_ID_SVQ3) s->current_picture_ptr->reference= 0; s->current_picture_ptr->field_poc[0]= s->current_picture_ptr->field_poc[1]= INT_MAX; assert(s->current_picture_ptr->long_ref==0); return 0; } static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){ MpegEncContext * const s = &h->s; uint8_t *top_border; int top_idx = 1; src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; if(!simple && FRAME_MBAFF){ if(s->mb_y&1){ if(!MB_MBAFF){ top_border = h->top_borders[0][s->mb_x]; AV_COPY128(top_border, src_y + 15*linesize); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ AV_COPY64(top_border+16, src_cb+7*uvlinesize); AV_COPY64(top_border+24, src_cr+7*uvlinesize); } } }else if(MB_MBAFF){ top_idx = 0; }else return; } top_border = h->top_borders[top_idx][s->mb_x]; // There are two lines saved, the line above the the top macroblock of a pair, // and the line above the bottom macroblock AV_COPY128(top_border, src_y + 16*linesize); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ AV_COPY64(top_border+16, src_cb+8*uvlinesize); AV_COPY64(top_border+24, src_cr+8*uvlinesize); } } static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){ MpegEncContext * const s = &h->s; int deblock_left; int deblock_top; int top_idx = 1; uint8_t *top_border_m1; uint8_t *top_border; if(!simple && FRAME_MBAFF){ if(s->mb_y&1){ if(!MB_MBAFF) return; }else{ top_idx = MB_MBAFF ? 0 : 1; } } if(h->deblocking_filter == 2) { deblock_left = h->left_type[0]; deblock_top = h->top_type; } else { deblock_left = (s->mb_x > 0); deblock_top = (s->mb_y > !!MB_FIELD); } src_y -= linesize + 1; src_cb -= uvlinesize + 1; src_cr -= uvlinesize + 1; top_border_m1 = h->top_borders[top_idx][s->mb_x-1]; top_border = h->top_borders[top_idx][s->mb_x]; #define XCHG(a,b,xchg)\ if (xchg) AV_SWAP64(b,a);\ else AV_COPY64(b,a); if(deblock_top){ if(deblock_left){ XCHG(top_border_m1+8, src_y -7, 1); } XCHG(top_border+0, src_y +1, xchg); XCHG(top_border+8, src_y +9, 1); if(s->mb_x+1 < s->mb_width){ XCHG(h->top_borders[top_idx][s->mb_x+1], src_y +17, 1); } } if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ if(deblock_top){ if(deblock_left){ XCHG(top_border_m1+16, src_cb -7, 1); XCHG(top_border_m1+24, src_cr -7, 1); } XCHG(top_border+16, src_cb+1, 1); XCHG(top_border+24, src_cr+1, 1); } } } static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){ MpegEncContext * const s = &h->s; const int mb_x= s->mb_x; const int mb_y= s->mb_y; const int mb_xy= h->mb_xy; const int mb_type= s->current_picture.mb_type[mb_xy]; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize /*dct_offset*/; int i; int *block_offset = &h->block_offset[0]; const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass); /* is_h264 should always be true if SVQ3 is disabled. */ const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264; void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride); dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16; dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8; dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8; s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4); s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2); h->list_counts[mb_xy]= h->list_count; if (!simple && MB_FIELD) { linesize = h->mb_linesize = s->linesize * 2; uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; block_offset = &h->block_offset[24]; if(mb_y&1){ //FIXME move out of this function? dest_y -= s->linesize*15; dest_cb-= s->uvlinesize*7; dest_cr-= s->uvlinesize*7; } if(FRAME_MBAFF) { int list; for(list=0; listlist_count; list++){ if(!USES_LIST(mb_type, list)) continue; if(IS_16X16(mb_type)){ int8_t *ref = &h->ref_cache[list][scan8[0]]; fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1); }else{ for(i=0; i<16; i+=4){ int ref = h->ref_cache[list][scan8[i]]; if(ref >= 0) fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1); } } } } } else { linesize = h->mb_linesize = s->linesize; uvlinesize = h->mb_uvlinesize = s->uvlinesize; // dct_offset = s->linesize * 16; } if (!simple && IS_INTRA_PCM(mb_type)) { for (i=0; i<16; i++) { memcpy(dest_y + i* linesize, h->mb + i*8, 16); } for (i=0; i<8; i++) { memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8); memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8); } } else { if(IS_INTRA(mb_type)){ if(h->deblocking_filter) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize); h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize); } if(IS_INTRA4x4(mb_type)){ if(simple || !s->encoding){ if(IS_8x8DCT(mb_type)){ if(transform_bypass){ idct_dc_add = idct_add = s->dsp.add_pixels8; }else{ idct_dc_add = s->dsp.h264_idct8_dc_add; idct_add = s->dsp.h264_idct8_add; } for(i=0; i<16; i+=4){ uint8_t * const ptr= dest_y + block_offset[i]; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; if(transform_bypass && h->sps.profile_idc==244 && dir<=1){ h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize); }else{ const int nnz = h->non_zero_count_cache[ scan8[i] ]; h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<topright_samples_available<mb[i*16]) idct_dc_add(ptr, h->mb + i*16, linesize); else idct_add (ptr, h->mb + i*16, linesize); } } } }else{ if(transform_bypass){ idct_dc_add = idct_add = s->dsp.add_pixels4; }else{ idct_dc_add = s->dsp.h264_idct_dc_add; idct_add = s->dsp.h264_idct_add; } for(i=0; i<16; i++){ uint8_t * const ptr= dest_y + block_offset[i]; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; if(transform_bypass && h->sps.profile_idc==244 && dir<=1){ h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize); }else{ uint8_t *topright; int nnz, tr; if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){ const int topright_avail= (h->topright_samples_available<hpc.pred4x4[ dir ](ptr, topright, linesize); nnz = h->non_zero_count_cache[ scan8[i] ]; if(nnz){ if(is_h264){ if(nnz == 1 && h->mb[i*16]) idct_dc_add(ptr, h->mb + i*16, linesize); else idct_add (ptr, h->mb + i*16, linesize); }else ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0); } } } } } }else{ h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize); if(is_h264){ if(!transform_bypass) h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]); }else ff_svq3_luma_dc_dequant_idct_c(h->mb, s->qscale); } if(h->deblocking_filter) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple); }else if(is_h264){ hl_motion(h, dest_y, dest_cb, dest_cr, s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab, s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab, s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab); } if(!IS_INTRA4x4(mb_type)){ if(is_h264){ if(IS_INTRA16x16(mb_type)){ if(transform_bypass){ if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){ h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize); }else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]) s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize); } } }else{ s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); } }else if(h->cbp&15){ if(transform_bypass){ const int di = IS_8x8DCT(mb_type) ? 4 : 1; idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4; for(i=0; i<16; i+=di){ if(h->non_zero_count_cache[ scan8[i] ]){ idct_add(dest_y + block_offset[i], h->mb + i*16, linesize); } } }else{ if(IS_8x8DCT(mb_type)){ s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); }else{ s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); } } } }else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below uint8_t * const ptr= dest_y + block_offset[i]; ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } } if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){ uint8_t *dest[2] = {dest_cb, dest_cr}; if(transform_bypass){ if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){ h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize); h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize); }else{ idct_add = s->dsp.add_pixels4; for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]) idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); } } }else{ chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]); chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]); if(is_h264){ idct_add = s->dsp.h264_idct_add; idct_dc_add = s->dsp.h264_idct_dc_add; for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ]) idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); else if(h->mb[i*16]) idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); } }else{ for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i]; ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2); } } } } } } if(h->cbp || IS_INTRA(mb_type)) s->dsp.clear_blocks(h->mb); } /** * Process a macroblock; this case avoids checks for expensive uncommon cases. */ static void hl_decode_mb_simple(H264Context *h){ hl_decode_mb_internal(h, 1); } /** * Process a macroblock; this handles edge cases, such as interlacing. */ static void av_noinline hl_decode_mb_complex(H264Context *h){ hl_decode_mb_internal(h, 0); } void ff_h264_hl_decode_mb(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; const int mb_type= s->current_picture.mb_type[mb_xy]; int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0; if (is_complex) hl_decode_mb_complex(h); else hl_decode_mb_simple(h); } static int pred_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int list, i; int luma_def, chroma_def; h->use_weight= 0; h->use_weight_chroma= 0; h->luma_log2_weight_denom= get_ue_golomb(&s->gb); h->chroma_log2_weight_denom= get_ue_golomb(&s->gb); luma_def = 1<luma_log2_weight_denom; chroma_def = 1<chroma_log2_weight_denom; for(list=0; list<2; list++){ h->luma_weight_flag[list] = 0; h->chroma_weight_flag[list] = 0; for(i=0; iref_count[list]; i++){ int luma_weight_flag, chroma_weight_flag; luma_weight_flag= get_bits1(&s->gb); if(luma_weight_flag){ h->luma_weight[list][i]= get_se_golomb(&s->gb); h->luma_offset[list][i]= get_se_golomb(&s->gb); if( h->luma_weight[list][i] != luma_def || h->luma_offset[list][i] != 0) { h->use_weight= 1; h->luma_weight_flag[list]= 1; } }else{ h->luma_weight[list][i]= luma_def; h->luma_offset[list][i]= 0; } if(CHROMA){ chroma_weight_flag= get_bits1(&s->gb); if(chroma_weight_flag){ int j; for(j=0; j<2; j++){ h->chroma_weight[list][i][j]= get_se_golomb(&s->gb); h->chroma_offset[list][i][j]= get_se_golomb(&s->gb); if( h->chroma_weight[list][i][j] != chroma_def || h->chroma_offset[list][i][j] != 0) { h->use_weight_chroma= 1; h->chroma_weight_flag[list]= 1; } } }else{ int j; for(j=0; j<2; j++){ h->chroma_weight[list][i][j]= chroma_def; h->chroma_offset[list][i][j]= 0; } } } } if(h->slice_type_nos != FF_B_TYPE) break; } h->use_weight= h->use_weight || h->use_weight_chroma; return 0; } static void implicit_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int ref0, ref1, i; int cur_poc = s->current_picture_ptr->poc; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){ h->use_weight= 0; h->use_weight_chroma= 0; return; } h->use_weight= 2; h->use_weight_chroma= 2; h->luma_log2_weight_denom= 5; h->chroma_log2_weight_denom= 5; for(ref0=0; ref0 < h->ref_count[0]; ref0++){ int poc0 = h->ref_list[0][ref0].poc; for(ref1=0; ref1 < h->ref_count[1]; ref1++){ int poc1 = h->ref_list[1][ref1].poc; int td = av_clip(poc1 - poc0, -128, 127); if(td){ int tb = av_clip(cur_poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2; if(dist_scale_factor < -64 || dist_scale_factor > 128) h->implicit_weight[ref0][ref1] = 32; else h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor; }else h->implicit_weight[ref0][ref1] = 32; } } } /** * instantaneous decoder refresh. */ static void idr(H264Context *h){ ff_h264_remove_all_refs(h); h->prev_frame_num= 0; h->prev_frame_num_offset= 0; h->prev_poc_msb= h->prev_poc_lsb= 0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; int i; for(i=0; idelayed_pic[i]) h->delayed_pic[i]->reference= 0; h->delayed_pic[i]= NULL; } h->outputed_poc= INT_MIN; h->prev_interlaced_frame = 1; idr(h); if(h->s.current_picture_ptr) h->s.current_picture_ptr->reference= 0; h->s.first_field= 0; ff_h264_reset_sei(h); ff_mpeg_flush(avctx); } static int init_poc(H264Context *h){ MpegEncContext * const s = &h->s; const int max_frame_num= 1<sps.log2_max_frame_num; int field_poc[2]; Picture *cur = s->current_picture_ptr; h->frame_num_offset= h->prev_frame_num_offset; if(h->frame_num < h->prev_frame_num) h->frame_num_offset += max_frame_num; if(h->sps.poc_type==0){ const int max_poc_lsb= 1<sps.log2_max_poc_lsb; if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb); field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; }else if(h->sps.poc_type==1){ int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if(h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if(h->nal_ref_idc==0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for(i=0; i < h->sps.poc_cycle_length; i++) expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse if(abs_frame_num > 0){ int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for(i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ]; } else expectedpoc = 0; if(h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; }else{ int poc= 2*(h->frame_num_offset + h->frame_num); if(!h->nal_ref_idc) poc--; field_poc[0]= poc; field_poc[1]= poc; } if(s->picture_structure != PICT_BOTTOM_FIELD) s->current_picture_ptr->field_poc[0]= field_poc[0]; if(s->picture_structure != PICT_TOP_FIELD) s->current_picture_ptr->field_poc[1]= field_poc[1]; cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]); return 0; } /** * initialize scan tables */ static void init_scan_tables(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t)); memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t)); }else{ for(i=0; i<16; i++){ #define T(x) (x>>2) | ((x<<2) & 0xF) h->zigzag_scan[i] = T(zigzag_scan[i]); h-> field_scan[i] = T( field_scan[i]); #undef T } } if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){ memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t)); memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t)); memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t)); memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t)); }else{ for(i=0; i<64; i++){ #define T(x) (x>>3) | ((x&7)<<3) h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]); h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = T(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); #undef T } } if(h->sps.transform_bypass){ //FIXME same ugly h->zigzag_scan_q0 = zigzag_scan; h->zigzag_scan8x8_q0 = ff_zigzag_direct; h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc; h->field_scan_q0 = field_scan; h->field_scan8x8_q0 = field_scan8x8; h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc; }else{ h->zigzag_scan_q0 = h->zigzag_scan; h->zigzag_scan8x8_q0 = h->zigzag_scan8x8; h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc; h->field_scan_q0 = h->field_scan; h->field_scan8x8_q0 = h->field_scan8x8; h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc; } } static void field_end(H264Context *h){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; s->mb_y= 0; s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264; s->current_picture_ptr->pict_type= s->pict_type; if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_set_reference_frames(s); if(!s->dropable) { ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb= h->poc_msb; h->prev_poc_lsb= h->poc_lsb; } h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num= h->frame_num; if (avctx->hwaccel) { if (avctx->hwaccel->end_frame(avctx) < 0) av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n"); } if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_complete(s); /* * FIXME: Error handling code does not seem to support interlaced * when slices span multiple rows * The ff_er_add_slice calls don't work right for bottom * fields; they cause massive erroneous error concealing * Error marking covers both fields (top and bottom). * This causes a mismatched s->error_count * and a bad error table. Further, the error count goes to * INT_MAX when called for bottom field, because mb_y is * past end by one (callers fault) and resync_mb_y != 0 * causes problems for the first MB line, too. */ if (!FIELD_PICTURE) ff_er_frame_end(s); MPV_frame_end(s); h->current_slice=0; } /** * Replicates H264 "master" context to thread contexts. */ static void clone_slice(H264Context *dst, H264Context *src) { memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); dst->s.current_picture_ptr = src->s.current_picture_ptr; dst->s.current_picture = src->s.current_picture; dst->s.linesize = src->s.linesize; dst->s.uvlinesize = src->s.uvlinesize; dst->s.first_field = src->s.first_field; dst->prev_poc_msb = src->prev_poc_msb; dst->prev_poc_lsb = src->prev_poc_lsb; dst->prev_frame_num_offset = src->prev_frame_num_offset; dst->prev_frame_num = src->prev_frame_num; dst->short_ref_count = src->short_ref_count; memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list)); memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); } /** * decodes a slice header. * This will also call MPV_common_init() and frame_start() as needed. * * @param h h264context * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding) * * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded */ static int decode_slice_header(H264Context *h, H264Context *h0){ MpegEncContext * const s = &h->s; MpegEncContext * const s0 = &h0->s; unsigned int first_mb_in_slice; unsigned int pps_id; int num_ref_idx_active_override_flag; unsigned int slice_type, tmp, i, j; int default_ref_list_done = 0; int last_pic_structure; s->dropable= h->nal_ref_idc == 0; if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){ s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab; }else{ s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab; } first_mb_in_slice= get_ue_golomb(&s->gb); if(first_mb_in_slice == 0){ //FIXME better field boundary detection if(h0->current_slice && FIELD_PICTURE){ field_end(h); } h0->current_slice = 0; if (!s0->first_field) s->current_picture_ptr= NULL; } slice_type= get_ue_golomb_31(&s->gb); if(slice_type > 9){ av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y); return -1; } if(slice_type > 4){ slice_type -= 5; h->slice_type_fixed=1; }else h->slice_type_fixed=0; slice_type= golomb_to_pict_type[ slice_type ]; if (slice_type == FF_I_TYPE || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) { default_ref_list_done = 1; } h->slice_type= slice_type; h->slice_type_nos= slice_type & 3; s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though pps_id= get_ue_golomb(&s->gb); if(pps_id>=MAX_PPS_COUNT){ av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n"); return -1; } if(!h0->pps_buffers[pps_id]) { av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id); return -1; } h->pps= *h0->pps_buffers[pps_id]; if(!h0->sps_buffers[h->pps.sps_id]) { av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id); return -1; } h->sps = *h0->sps_buffers[h->pps.sps_id]; if(h == h0 && h->dequant_coeff_pps != pps_id){ h->dequant_coeff_pps = pps_id; init_dequant_tables(h); } s->mb_width= h->sps.mb_width; s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->b_stride= s->mb_width*4; s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7); if(h->sps.frame_mbs_only_flag) s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7); else s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3); if (s->context_initialized && ( s->width != s->avctx->width || s->height != s->avctx->height)) { if(h != h0) return -1; // width / height changed during parallelized decoding free_tables(h); flush_dpb(s->avctx); MPV_common_end(s); } if (!s->context_initialized) { if(h != h0) return -1; // we cant (re-)initialize context during parallel decoding avcodec_set_dimensions(s->avctx, s->width, s->height); s->avctx->sample_aspect_ratio= h->sps.sar; if(!s->avctx->sample_aspect_ratio.den) s->avctx->sample_aspect_ratio.den = 1; if(h->sps.video_signal_type_present_flag){ s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if(h->sps.colour_description_present_flag){ s->avctx->color_primaries = h->sps.color_primaries; s->avctx->color_trc = h->sps.color_trc; s->avctx->colorspace = h->sps.colorspace; } } if(h->sps.timing_info_present_flag){ int64_t den= h->sps.time_scale; if(h->x264_build < 44U) den *= 2; av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, h->sps.num_units_in_tick, den, 1<<30); } s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts); s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt); if (MPV_common_init(s) < 0) return -1; s->first_field = 0; h->prev_interlaced_frame = 1; init_scan_tables(h); ff_h264_alloc_tables(h); for(i = 1; i < s->avctx->thread_count; i++) { H264Context *c; c = h->thread_context[i] = av_malloc(sizeof(H264Context)); memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext)); memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext)); c->sps = h->sps; c->pps = h->pps; init_scan_tables(c); clone_tables(c, h); } for(i = 0; i < s->avctx->thread_count; i++) if(context_init(h->thread_context[i]) < 0) return -1; } h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); h->mb_mbaff = 0; h->mb_aff_frame = 0; last_pic_structure = s0->picture_structure; if(h->sps.frame_mbs_only_flag){ s->picture_structure= PICT_FRAME; }else{ if(get_bits1(&s->gb)) { //field_pic_flag s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag } else { s->picture_structure= PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME; if(h0->current_slice == 0){ while(h->frame_num != h->prev_frame_num && h->frame_num != (h->prev_frame_num+1)%(1<sps.log2_max_frame_num)){ av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num); if (ff_h264_frame_start(h) < 0) return -1; h->prev_frame_num++; h->prev_frame_num %= 1<sps.log2_max_frame_num; s->current_picture_ptr->frame_num= h->prev_frame_num; ff_h264_execute_ref_pic_marking(h, NULL, 0); } /* See if we have a decoded first field looking for a pair... */ if (s0->first_field) { assert(s0->current_picture_ptr); assert(s0->current_picture_ptr->data[0]); assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) { /* * Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ s0->current_picture_ptr = NULL; s0->first_field = FIELD_PICTURE; } else { if (h->nal_ref_idc && s0->current_picture_ptr->reference && s0->current_picture_ptr->frame_num != h->frame_num) { /* * This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ s0->first_field = 1; s0->current_picture_ptr = NULL; } else { /* Second field in complementary pair */ s0->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ assert(!s0->current_picture_ptr); s0->first_field = FIELD_PICTURE; } if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) { s0->first_field = 0; return -1; } } if(h != h0) clone_slice(h, h0); s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup assert(s->mb_num == s->mb_width * s->mb_height); if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num || first_mb_in_slice >= s->mb_num){ av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return -1; } s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width; s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE; if (s->picture_structure == PICT_BOTTOM_FIELD) s->resync_mb_y = s->mb_y = s->mb_y + 1; assert(s->mb_y < s->mb_height); if(s->picture_structure==PICT_FRAME){ h->curr_pic_num= h->frame_num; h->max_pic_num= 1<< h->sps.log2_max_frame_num; }else{ h->curr_pic_num= 2*h->frame_num + 1; h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1); } if(h->nal_unit_type == NAL_IDR_SLICE){ get_ue_golomb(&s->gb); /* idr_pic_id */ } if(h->sps.poc_type==0){ h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){ h->delta_poc_bottom= get_se_golomb(&s->gb); } } if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){ h->delta_poc[0]= get_se_golomb(&s->gb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME) h->delta_poc[1]= get_se_golomb(&s->gb); } init_poc(h); if(h->pps.redundant_pic_cnt_present){ h->redundant_pic_count= get_ue_golomb(&s->gb); } //set defaults, might be overridden a few lines later h->ref_count[0]= h->pps.ref_count[0]; h->ref_count[1]= h->pps.ref_count[1]; if(h->slice_type_nos != FF_I_TYPE){ if(h->slice_type_nos == FF_B_TYPE){ h->direct_spatial_mv_pred= get_bits1(&s->gb); } num_ref_idx_active_override_flag= get_bits1(&s->gb); if(num_ref_idx_active_override_flag){ h->ref_count[0]= get_ue_golomb(&s->gb) + 1; if(h->slice_type_nos==FF_B_TYPE) h->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){ av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n"); h->ref_count[0]= h->ref_count[1]= 1; return -1; } } if(h->slice_type_nos == FF_B_TYPE) h->list_count= 2; else h->list_count= 1; }else h->list_count= 0; if(!default_ref_list_done){ ff_h264_fill_default_ref_list(h); } if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0) return -1; if(h->slice_type_nos!=FF_I_TYPE){ s->last_picture_ptr= &h->ref_list[0][0]; ff_copy_picture(&s->last_picture, s->last_picture_ptr); } if(h->slice_type_nos==FF_B_TYPE){ s->next_picture_ptr= &h->ref_list[1][0]; ff_copy_picture(&s->next_picture, s->next_picture_ptr); } if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE ) || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) ) pred_weight_table(h); else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE) implicit_weight_table(h); else { h->use_weight = 0; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } } if(h->nal_ref_idc) ff_h264_decode_ref_pic_marking(h0, &s->gb); if(FRAME_MBAFF) ff_h264_fill_mbaff_ref_list(h); if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h); ff_h264_direct_ref_list_init(h); if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){ tmp = get_ue_golomb_31(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); return -1; } h->cabac_init_idc= tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&s->gb); if(tmp>51){ av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return -1; } s->qscale= tmp; h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); //FIXME qscale / qp ... stuff if(h->slice_type == FF_SP_TYPE){ get_bits1(&s->gb); /* sp_for_switch_flag */ } if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){ get_se_golomb(&s->gb); /* slice_qs_delta */ } h->deblocking_filter = 1; h->slice_alpha_c0_offset = 52; h->slice_beta_offset = 52; if( h->pps.deblocking_filter_parameters_present ) { tmp= get_ue_golomb_31(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return -1; } h->deblocking_filter= tmp; if(h->deblocking_filter < 2) h->deblocking_filter^= 1; // 1<->0 if( h->deblocking_filter ) { h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1; h->slice_beta_offset += get_se_golomb(&s->gb) << 1; if( h->slice_alpha_c0_offset > 104U || h->slice_beta_offset > 104U){ av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset); return -1; } } } if( s->avctx->skip_loop_filter >= AVDISCARD_ALL ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter= 0; if(h->deblocking_filter == 1 && h0->max_contexts > 1) { if(s->avctx->flags2 & CODEC_FLAG2_FAST) { /* Cheat slightly for speed: Do not bother to deblock across slices. */ h->deblocking_filter = 2; } else { h0->max_contexts = 1; if(!h0->single_decode_warning) { av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n"); h0->single_decode_warning = 1; } if(h != h0) return 1; // deblocking switched inside frame } } h->qp_thresh= 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]); #if 0 //FMO if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5) slice_group_change_cycle= get_bits(&s->gb, ?); #endif h0->last_slice_type = slice_type; h->slice_num = ++h0->current_slice; if(h->slice_num >= MAX_SLICES){ av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n"); } for(j=0; j<2; j++){ int id_list[16]; int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j]; for(i=0; i<16; i++){ id_list[i]= 60; if(h->ref_list[j][i].data[0]){ int k; uint8_t *base= h->ref_list[j][i].base[0]; for(k=0; kshort_ref_count; k++) if(h->short_ref[k]->base[0] == base){ id_list[i]= k; break; } for(k=0; klong_ref_count; k++) if(h->long_ref[k] && h->long_ref[k]->base[0] == base){ id_list[i]= h->short_ref_count + k; break; } } } ref2frm[0]= ref2frm[1]= -1; for(i=0; i<16; i++) ref2frm[i+2]= 4*id_list[i] +(h->ref_list[j][i].reference&3); ref2frm[18+0]= ref2frm[18+1]= -1; for(i=16; i<48; i++) ref2frm[i+4]= 4*id_list[(i-16)>>1] +(h->ref_list[j][i].reference&3); } h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width; s->avctx->refs= h->sps.ref_frame_count; if(s->avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", h->slice_num, (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", pps_id, h->frame_num, s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], s->qscale, h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26, h->use_weight, h->use_weight==1 && h->use_weight_chroma ? "c" : "", h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "" ); } return 0; } int ff_h264_get_slice_type(const H264Context *h) { switch (h->slice_type) { case FF_P_TYPE: return 0; case FF_B_TYPE: return 1; case FF_I_TYPE: return 2; case FF_SP_TYPE: return 3; case FF_SI_TYPE: return 4; default: return -1; } } static void loop_filter(H264Context *h){ MpegEncContext * const s = &h->s; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize, mb_x, mb_y; const int end_mb_y= s->mb_y + FRAME_MBAFF; const int old_slice_type= h->slice_type; if(h->deblocking_filter) { for(mb_x= 0; mb_xmb_width; mb_x++){ for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){ int mb_xy, mb_type; mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride; h->slice_num= h->slice_table[mb_xy]; mb_type= s->current_picture.mb_type[mb_xy]; h->list_count= h->list_counts[mb_xy]; if(FRAME_MBAFF) h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); s->mb_x= mb_x; s->mb_y= mb_y; dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16; dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8; dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8; //FIXME simplify above if (MB_FIELD) { linesize = h->mb_linesize = s->linesize * 2; uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; if(mb_y&1){ //FIXME move out of this function? dest_y -= s->linesize*15; dest_cb-= s->uvlinesize*7; dest_cr-= s->uvlinesize*7; } } else { linesize = h->mb_linesize = s->linesize; uvlinesize = h->mb_uvlinesize = s->uvlinesize; } backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); if(fill_filter_caches(h, mb_type)) continue; h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]); h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]); if (FRAME_MBAFF) { ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } } h->slice_type= old_slice_type; s->mb_x= 0; s->mb_y= end_mb_y - FRAME_MBAFF; h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); } static void predict_field_decoding_flag(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) ? s->current_picture.mb_type[mb_xy-1] : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) ? s->current_picture.mb_type[mb_xy-s->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } static int decode_slice(struct AVCodecContext *avctx, void *arg){ H264Context *h = *(void**)arg; MpegEncContext * const s = &h->s; const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F; s->mb_skip_run= -1; h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 || (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY)); if( h->pps.cabac ) { /* realign */ align_get_bits( &s->gb ); /* init cabac */ ff_init_cabac_states( &h->cabac); ff_init_cabac_decoder( &h->cabac, s->gb.buffer + get_bits_count(&s->gb)/8, (get_bits_left(&s->gb) + 7)/8); ff_h264_init_cabac_states(h); for(;;){ //START_TIMER int ret = ff_h264_decode_mb_cabac(h); int eos; //STOP_TIMER("decode_mb_cabac") if(ret>=0) ff_h264_hl_decode_mb(h); if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret = ff_h264_decode_mb_cabac(h); if(ret>=0) ff_h264_hl_decode_mb(h); s->mb_y--; } eos = get_cabac_terminate( &h->cabac ); if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; } if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) { av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if( ++s->mb_x >= s->mb_width ) { s->mb_x = 0; loop_filter(h); ff_draw_horiz_band(s, 16*s->mb_y, 16); ++s->mb_y; if(FIELD_OR_MBAFF_PICTURE) { ++s->mb_y; if(FRAME_MBAFF && s->mb_y < s->mb_height) predict_field_decoding_flag(h); } } if( eos || s->mb_y >= s->mb_height ) { tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; } } } else { for(;;){ int ret = ff_h264_decode_mb_cavlc(h); if(ret>=0) ff_h264_hl_decode_mb(h); if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret = ff_h264_decode_mb_cavlc(h); if(ret>=0) ff_h264_hl_decode_mb(h); s->mb_y--; } if(ret<0){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; loop_filter(h); ff_draw_horiz_band(s, 16*s->mb_y, 16); ++s->mb_y; if(FIELD_OR_MBAFF_PICTURE) { ++s->mb_y; if(FRAME_MBAFF && s->mb_y < s->mb_height) predict_field_decoding_flag(h); } if(s->mb_y >= s->mb_height){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits ) { ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits ){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } } #if 0 for(;s->mb_y < s->mb_height; s->mb_y++){ for(;s->mb_x < s->mb_width; s->mb_x++){ int ret= decode_mb(h); ff_h264_hl_decode_mb(h); if(ret<0){ av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; if(++s->mb_y >= s->mb_height){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); } #endif return -1; //not reached } /** * Call decode_slice() for each context. * * @param h h264 master context * @param context_count number of contexts to execute */ static void execute_decode_slices(H264Context *h, int context_count){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; H264Context *hx; int i; if (s->avctx->hwaccel) return; if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) return; if(context_count == 1) { decode_slice(avctx, &h); } else { for(i = 1; i < context_count; i++) { hx = h->thread_context[i]; hx->s.error_recognition = avctx->error_recognition; hx->s.error_count = 0; } avctx->execute(avctx, (void *)decode_slice, h->thread_context, NULL, context_count, sizeof(void*)); /* pull back stuff from slices to master context */ hx = h->thread_context[context_count - 1]; s->mb_x = hx->s.mb_x; s->mb_y = hx->s.mb_y; s->dropable = hx->s.dropable; s->picture_structure = hx->s.picture_structure; for(i = 1; i < context_count; i++) h->s.error_count += h->thread_context[i]->s.error_count; } } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; int buf_index=0; H264Context *hx; ///< thread context int context_count = 0; int next_avc= h->is_avc ? 0 : buf_size; h->max_contexts = avctx->thread_count; #if 0 int i; for(i=0; i<50; i++){ av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]); } #endif if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){ h->current_slice = 0; if (!s->first_field) s->current_picture_ptr= NULL; ff_h264_reset_sei(h); } for(;;){ int consumed; int dst_length; int bit_length; const uint8_t *ptr; int i, nalsize = 0; int err; if(buf_index >= next_avc) { if(buf_index >= buf_size) break; nalsize = 0; for(i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[buf_index++]; if(nalsize <= 1 || nalsize > buf_size - buf_index){ if(nalsize == 1){ buf_index++; continue; }else{ av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); break; } } next_avc= buf_index + nalsize; } else { // start code prefix search for(; buf_index + 3 < next_avc; buf_index++){ // This should always succeed in the first iteration. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1) break; } if(buf_index+3 >= buf_size) break; buf_index+=3; if(buf_index >= next_avc) continue; } hx = h->thread_context[context_count]; ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr==NULL || dst_length < 0){ return -1; } i= buf_index + consumed; if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3workaround_bugs |= FF_BUG_TRUNCATED; if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){ while(ptr[dst_length - 1] == 0 && dst_length > 0) dst_length--; } bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1)); if(s->avctx->debug&FF_DEBUG_STARTCODE){ av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length); } if (h->is_avc && (nalsize != consumed) && nalsize){ av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); } buf_index += consumed; if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) continue; again: err = 0; switch(hx->nal_unit_type){ case NAL_IDR_SLICE: if (h->nal_unit_type != NAL_IDR_SLICE) { av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices"); return -1; } idr(h); //FIXME ensure we don't loose some frames if there is reordering case NAL_SLICE: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= &hx->s.gb; hx->s.data_partitioning = 0; if((err = decode_slice_header(hx, h))) break; avctx->profile = hx->sps.profile_idc; avctx->level = hx->sps.level_idc; if (s->avctx->hwaccel && h->current_slice == 1) { if (s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0) return -1; } s->current_picture_ptr->key_frame |= (hx->nal_unit_type == NAL_IDR_SLICE) || (h->sei_recovery_frame_cnt >= 0); if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5 && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE) && avctx->skip_frame < AVDISCARD_ALL){ if(avctx->hwaccel) { if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0) return -1; }else if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){ static const uint8_t start_code[] = {0x00, 0x00, 0x01}; ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code)); ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed ); }else context_count++; } break; case NAL_DPA: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= NULL; if ((err = decode_slice_header(hx, h)) < 0) break; avctx->profile = hx->sps.profile_idc; avctx->level = hx->sps.level_idc; hx->s.data_partitioning = 1; break; case NAL_DPB: init_get_bits(&hx->intra_gb, ptr, bit_length); hx->intra_gb_ptr= &hx->intra_gb; break; case NAL_DPC: init_get_bits(&hx->inter_gb, ptr, bit_length); hx->inter_gb_ptr= &hx->inter_gb; if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning && s->context_initialized && s->hurry_up < 5 && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE) && avctx->skip_frame < AVDISCARD_ALL) context_count++; break; case NAL_SEI: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_sei(h); break; case NAL_SPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_seq_parameter_set(h); if(s->flags& CODEC_FLAG_LOW_DELAY) s->low_delay=1; if(avctx->has_b_frames < 2) avctx->has_b_frames= !s->low_delay; break; case NAL_PPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_picture_parameter_set(h, bit_length); break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length); } if(context_count == h->max_contexts) { execute_decode_slices(h, context_count); context_count = 0; } if (err < 0) av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); else if(err == 1) { /* Slice could not be decoded in parallel mode, copy down * NAL unit stuff to context 0 and restart. Note that * rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ h->nal_unit_type = hx->nal_unit_type; h->nal_ref_idc = hx->nal_ref_idc; hx = h; goto again; } } if(context_count) execute_decode_slices(h, context_count); return buf_index; } /** * returns the number of bytes consumed for building the current frame */ static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){ if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...) if(pos+10>buf_size) pos=buf_size; // oops ;) return pos; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; AVFrame *pict = data; int buf_index; s->flags= avctx->flags; s->flags2= avctx->flags2; /* end of stream, output what is still in the buffers */ if (buf_size == 0) { Picture *out; int i, out_idx; //FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; if(out){ *data_size = sizeof(AVFrame); *pict= *(AVFrame*)out; } return 0; } buf_index=decode_nal_units(h, buf, buf_size); if(buf_index < 0) return -1; if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){ if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return -1; } if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){ Picture *out = s->current_picture_ptr; Picture *cur = s->current_picture_ptr; int i, pics, out_of_order, out_idx; field_end(h); if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) { /* Wait for second field. */ *data_size = 0; } else { cur->interlaced_frame = 0; cur->repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used decoding process if it exists. */ if(h->sps.pic_struct_present_flag){ switch (h->sei_pic_struct) { case SEI_PIC_STRUCT_FRAME: break; case SEI_PIC_STRUCT_TOP_FIELD: case SEI_PIC_STRUCT_BOTTOM_FIELD: cur->interlaced_frame = 1; break; case SEI_PIC_STRUCT_TOP_BOTTOM: case SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE) cur->interlaced_frame = 1; else // try to flag soft telecine progressive cur->interlaced_frame = h->prev_interlaced_frame; break; case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: // Signal the possibility of telecined film externally (pic_struct 5,6) // From these hints, let the applications decide if they apply deinterlacing. cur->repeat_pict = 1; break; case SEI_PIC_STRUCT_FRAME_DOUBLING: // Force progressive here, as doubling interlaced frame is a bad idea. cur->repeat_pict = 2; break; case SEI_PIC_STRUCT_FRAME_TRIPLING: cur->repeat_pict = 4; break; } if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0; }else{ /* Derive interlacing flag from used decoding process. */ cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE; } h->prev_interlaced_frame = cur->interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]){ /* Derive top_field_first from field pocs. */ cur->top_field_first = cur->field_poc[0] < cur->field_poc[1]; }else{ if(cur->interlaced_frame || h->sps.pic_struct_present_flag){ /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */ if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) cur->top_field_first = 1; else cur->top_field_first = 0; }else{ /* Most likely progressive */ cur->top_field_first = 0; } } //FIXME do something with unavailable reference frames /* Sort B-frames into display order */ if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){ s->avctx->has_b_frames = h->sps.num_reorder_frames; s->low_delay = 0; } if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && !h->sps.bitstream_restriction_flag){ s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT; s->low_delay= 0; } pics = 0; while(h->delayed_pic[pics]) pics++; assert(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if(cur->reference == 0) cur->reference = DELAYED_PIC_REF; out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) h->outputed_poc= INT_MIN; out_of_order = out->poc < h->outputed_poc; if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames) { } else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) || (s->low_delay && ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2) || cur->pict_type == FF_B_TYPE))) { s->low_delay = 0; s->avctx->has_b_frames++; } if(out_of_order || pics > s->avctx->has_b_frames){ out->reference &= ~DELAYED_PIC_REF; for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; } if(!out_of_order && pics > s->avctx->has_b_frames){ *data_size = sizeof(AVFrame); if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) { h->outputed_poc = INT_MIN; } else h->outputed_poc = out->poc; *pict= *(AVFrame*)out; }else{ av_log(avctx, AV_LOG_DEBUG, "no picture\n"); } } } assert(pict->data[0] || !*data_size); ff_print_debug_info(s, pict); //printf("out %d\n", (int)pict->data[0]); return get_consumed_bytes(s, buf_index, buf_size); } #if 0 static inline void fill_mb_avail(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; if(s->mb_y){ h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num; h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num; h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num; }else{ h->mb_avail[0]= h->mb_avail[1]= h->mb_avail[2]= 0; } h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num; h->mb_avail[4]= 1; //FIXME move out h->mb_avail[5]= 0; //FIXME move out } #endif #ifdef TEST #undef printf #undef random #define COUNT 8000 #define SIZE (COUNT*40) int main(void){ int i; uint8_t temp[SIZE]; PutBitContext pb; GetBitContext gb; // int int_temp[10000]; DSPContext dsp; AVCodecContext avctx; dsputil_init(&dsp, &avctx); init_put_bits(&pb, temp, SIZE); printf("testing unsigned exp golomb\n"); for(i=0; idsp.h264_idct_add(ref, block, 4); /* for(j=0; j<16; j++){ printf("%d ", ref[j]); } printf("\n");*/ for(j=0; j<16; j++){ int diff= FFABS(src[j] - ref[j]); error+= diff*diff; max_error= FFMAX(max_error, diff); } } printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error ); printf("testing quantizer\n"); for(qp=0; qp<52; qp++){ for(i=0; i<16; i++) src1_block[i]= src2_block[i]= random()%255; } printf("Testing NAL layer\n"); uint8_t bitstream[COUNT]; uint8_t nal[COUNT*2]; H264Context h; memset(&h, 0, sizeof(H264Context)); for(i=0; isps_buffers + i); for(i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); } av_cold int ff_h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; ff_h264_free_context(h); MPV_common_end(s); // memset(h, 0, sizeof(H264Context)); return 0; } AVCodec h264_decoder = { "h264", CODEC_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), ff_h264_decode_init, NULL, ff_h264_decode_end, decode_frame, /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY, .flush= flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .pix_fmts= ff_hwaccel_pixfmt_list_420, }; #if CONFIG_H264_VDPAU_DECODER AVCodec h264_vdpau_decoder = { "h264_vdpau", CODEC_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), ff_h264_decode_init, NULL, ff_h264_decode_end, decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, .flush= flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE}, }; #endif