/* * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder * Copyright (c) 2012 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder */ #include "avcodec.h" #include "bytestream.h" #include "internal.h" #include "mathops.h" #include "mss34dsp.h" #define HEADER_SIZE 27 #define MODEL2_SCALE 13 #define MODEL_SCALE 15 #define MODEL256_SEC_SCALE 9 typedef struct Model2 { int upd_val, till_rescale; unsigned zero_freq, zero_weight; unsigned total_freq, total_weight; } Model2; typedef struct Model { int weights[16], freqs[16]; int num_syms; int tot_weight; int upd_val, max_upd_val, till_rescale; } Model; typedef struct Model256 { int weights[256], freqs[256]; int tot_weight; int secondary[68]; int sec_size; int upd_val, max_upd_val, till_rescale; } Model256; #define RAC_BOTTOM 0x01000000 typedef struct RangeCoder { const uint8_t *src, *src_end; uint32_t range, low; int got_error; } RangeCoder; enum BlockType { FILL_BLOCK = 0, IMAGE_BLOCK, DCT_BLOCK, HAAR_BLOCK, SKIP_BLOCK }; typedef struct BlockTypeContext { int last_type; Model bt_model[5]; } BlockTypeContext; typedef struct FillBlockCoder { int fill_val; Model coef_model; } FillBlockCoder; typedef struct ImageBlockCoder { Model256 esc_model, vec_entry_model; Model vec_size_model; Model vq_model[125]; } ImageBlockCoder; typedef struct DCTBlockCoder { int *prev_dc; ptrdiff_t prev_dc_stride; int prev_dc_height; int quality; uint16_t qmat[64]; Model dc_model; Model2 sign_model; Model256 ac_model; } DCTBlockCoder; typedef struct HaarBlockCoder { int quality, scale; Model256 coef_model; Model coef_hi_model; } HaarBlockCoder; typedef struct MSS3Context { AVCodecContext *avctx; AVFrame *pic; int got_error; RangeCoder coder; BlockTypeContext btype[3]; FillBlockCoder fill_coder[3]; ImageBlockCoder image_coder[3]; DCTBlockCoder dct_coder[3]; HaarBlockCoder haar_coder[3]; int dctblock[64]; int hblock[16 * 16]; } MSS3Context; static void model2_reset(Model2 *m) { m->zero_weight = 1; m->total_weight = 2; m->zero_freq = 0x1000; m->total_freq = 0x2000; m->upd_val = 4; m->till_rescale = 4; } static void model2_update(Model2 *m, int bit) { unsigned scale; if (!bit) m->zero_weight++; m->till_rescale--; if (m->till_rescale) return; m->total_weight += m->upd_val; if (m->total_weight > 0x2000) { m->total_weight = (m->total_weight + 1) >> 1; m->zero_weight = (m->zero_weight + 1) >> 1; if (m->total_weight == m->zero_weight) m->total_weight = m->zero_weight + 1; } m->upd_val = m->upd_val * 5 >> 2; if (m->upd_val > 64) m->upd_val = 64; scale = 0x80000000u / m->total_weight; m->zero_freq = m->zero_weight * scale >> 18; m->total_freq = m->total_weight * scale >> 18; m->till_rescale = m->upd_val; } static void model_update(Model *m, int val) { int i, sum = 0; unsigned scale; m->weights[val]++; m->till_rescale--; if (m->till_rescale) return; m->tot_weight += m->upd_val; if (m->tot_weight > 0x8000) { m->tot_weight = 0; for (i = 0; i < m->num_syms; i++) { m->weights[i] = (m->weights[i] + 1) >> 1; m->tot_weight += m->weights[i]; } } scale = 0x80000000u / m->tot_weight; for (i = 0; i < m->num_syms; i++) { m->freqs[i] = sum * scale >> 16; sum += m->weights[i]; } m->upd_val = m->upd_val * 5 >> 2; if (m->upd_val > m->max_upd_val) m->upd_val = m->max_upd_val; m->till_rescale = m->upd_val; } static void model_reset(Model *m) { int i; m->tot_weight = 0; for (i = 0; i < m->num_syms - 1; i++) m->weights[i] = 1; m->weights[m->num_syms - 1] = 0; m->upd_val = m->num_syms; m->till_rescale = 1; model_update(m, m->num_syms - 1); m->till_rescale = m->upd_val = (m->num_syms + 6) >> 1; } static av_cold void model_init(Model *m, int num_syms) { m->num_syms = num_syms; m->max_upd_val = 8 * num_syms + 48; model_reset(m); } static void model256_update(Model256 *m, int val) { int i, sum = 0; unsigned scale; int send, sidx = 1; m->weights[val]++; m->till_rescale--; if (m->till_rescale) return; m->tot_weight += m->upd_val; if (m->tot_weight > 0x8000) { m->tot_weight = 0; for (i = 0; i < 256; i++) { m->weights[i] = (m->weights[i] + 1) >> 1; m->tot_weight += m->weights[i]; } } scale = 0x80000000u / m->tot_weight; m->secondary[0] = 0; for (i = 0; i < 256; i++) { m->freqs[i] = sum * scale >> 16; sum += m->weights[i]; send = m->freqs[i] >> MODEL256_SEC_SCALE; while (sidx <= send) m->secondary[sidx++] = i - 1; } while (sidx < m->sec_size) m->secondary[sidx++] = 255; m->upd_val = m->upd_val * 5 >> 2; if (m->upd_val > m->max_upd_val) m->upd_val = m->max_upd_val; m->till_rescale = m->upd_val; } static void model256_reset(Model256 *m) { int i; for (i = 0; i < 255; i++) m->weights[i] = 1; m->weights[255] = 0; m->tot_weight = 0; m->upd_val = 256; m->till_rescale = 1; model256_update(m, 255); m->till_rescale = m->upd_val = (256 + 6) >> 1; } static av_cold void model256_init(Model256 *m) { m->max_upd_val = 8 * 256 + 48; m->sec_size = (1 << 6) + 2; model256_reset(m); } static void rac_init(RangeCoder *c, const uint8_t *src, int size) { int i; c->src = src; c->src_end = src + size; c->low = 0; for (i = 0; i < FFMIN(size, 4); i++) c->low = (c->low << 8) | *c->src++; c->range = 0xFFFFFFFF; c->got_error = 0; } static void rac_normalise(RangeCoder *c) { for (;;) { c->range <<= 8; c->low <<= 8; if (c->src < c->src_end) { c->low |= *c->src++; } else if (!c->low) { c->got_error = 1; c->low = 1; } if (c->range >= RAC_BOTTOM) return; } } static int rac_get_bit(RangeCoder *c) { int bit; c->range >>= 1; bit = (c->range <= c->low); if (bit) c->low -= c->range; if (c->range < RAC_BOTTOM) rac_normalise(c); return bit; } static int rac_get_bits(RangeCoder *c, int nbits) { int val; c->range >>= nbits; val = c->low / c->range; c->low -= c->range * val; if (c->range < RAC_BOTTOM) rac_normalise(c); return val; } static int rac_get_model2_sym(RangeCoder *c, Model2 *m) { int bit, helper; helper = m->zero_freq * (c->range >> MODEL2_SCALE); bit = (c->low >= helper); if (bit) { c->low -= helper; c->range -= helper; } else { c->range = helper; } if (c->range < RAC_BOTTOM) rac_normalise(c); model2_update(m, bit); return bit; } static int rac_get_model_sym(RangeCoder *c, Model *m) { int val; int end, end2; unsigned prob, prob2, helper; prob = 0; prob2 = c->range; c->range >>= MODEL_SCALE; val = 0; end = m->num_syms >> 1; end2 = m->num_syms; do { helper = m->freqs[end] * c->range; if (helper <= c->low) { val = end; prob = helper; } else { end2 = end; prob2 = helper; } end = (end2 + val) >> 1; } while (end != val); c->low -= prob; c->range = prob2 - prob; if (c->range < RAC_BOTTOM) rac_normalise(c); model_update(m, val); return val; } static int rac_get_model256_sym(RangeCoder *c, Model256 *m) { int prob, prob2, helper, val; int start, end; int ssym; prob2 = c->range; c->range >>= MODEL_SCALE; helper = c->low / c->range; ssym = helper >> MODEL256_SEC_SCALE; val = m->secondary[ssym]; end = start = m->secondary[ssym + 1] + 1; while (end > val + 1) { ssym = (end + val) >> 1; if (m->freqs[ssym] <= helper) { end = start; val = ssym; } else { end = (end + val) >> 1; start = ssym; } } prob = m->freqs[val] * c->range; if (val != 255) prob2 = m->freqs[val + 1] * c->range; c->low -= prob; c->range = prob2 - prob; if (c->range < RAC_BOTTOM) rac_normalise(c); model256_update(m, val); return val; } static int decode_block_type(RangeCoder *c, BlockTypeContext *bt) { bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]); return bt->last_type; } static int decode_coeff(RangeCoder *c, Model *m) { int val, sign; val = rac_get_model_sym(c, m); if (val) { sign = rac_get_bit(c); if (val > 1) { val--; val = (1 << val) + rac_get_bits(c, val); } if (!sign) val = -val; } return val; } static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc, uint8_t *dst, ptrdiff_t stride, int block_size) { int i; fc->fill_val += decode_coeff(c, &fc->coef_model); for (i = 0; i < block_size; i++, dst += stride) memset(dst, fc->fill_val, block_size); } static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic, uint8_t *dst, ptrdiff_t stride, int block_size) { int i, j; int vec_size; int vec[4]; int prev_line[16]; int A, B, C; vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2; for (i = 0; i < vec_size; i++) vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model); for (; i < 4; i++) vec[i] = 0; memset(prev_line, 0, sizeof(prev_line)); for (j = 0; j < block_size; j++) { A = 0; B = 0; for (i = 0; i < block_size; i++) { C = B; B = prev_line[i]; A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]); prev_line[i] = A; if (A < 4) dst[i] = vec[A]; else dst[i] = rac_get_model256_sym(c, &ic->esc_model); } dst += stride; } } static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block, int bx, int by) { int skip, val, sign, pos = 1, zz_pos, dc; int blk_pos = bx + by * bc->prev_dc_stride; memset(block, 0, sizeof(*block) * 64); dc = decode_coeff(c, &bc->dc_model); if (by) { if (bx) { int l, tl, t; l = bc->prev_dc[blk_pos - 1]; tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride]; t = bc->prev_dc[blk_pos - bc->prev_dc_stride]; if (FFABS(t - tl) <= FFABS(l - tl)) dc += l; else dc += t; } else { dc += bc->prev_dc[blk_pos - bc->prev_dc_stride]; } } else if (bx) { dc += bc->prev_dc[bx - 1]; } bc->prev_dc[blk_pos] = dc; block[0] = dc * bc->qmat[0]; while (pos < 64) { val = rac_get_model256_sym(c, &bc->ac_model); if (!val) return 0; if (val == 0xF0) { pos += 16; continue; } skip = val >> 4; val = val & 0xF; if (!val) return -1; pos += skip; if (pos >= 64) return -1; sign = rac_get_model2_sym(c, &bc->sign_model); if (val > 1) { val--; val = (1 << val) + rac_get_bits(c, val); } if (!sign) val = -val; zz_pos = ff_zigzag_direct[pos]; block[zz_pos] = val * bc->qmat[zz_pos]; pos++; } return pos == 64 ? 0 : -1; } static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc, uint8_t *dst, ptrdiff_t stride, int block_size, int *block, int mb_x, int mb_y) { int i, j; int bx, by; int nblocks = block_size >> 3; bx = mb_x * nblocks; by = mb_y * nblocks; for (j = 0; j < nblocks; j++) { for (i = 0; i < nblocks; i++) { if (decode_dct(c, bc, block, bx + i, by + j)) { c->got_error = 1; return; } ff_mss34_dct_put(dst + i * 8, stride, block); } dst += 8 * stride; } } static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc, uint8_t *dst, ptrdiff_t stride, int block_size, int *block) { const int hsize = block_size >> 1; int A, B, C, D, t1, t2, t3, t4; int i, j; for (j = 0; j < block_size; j++) { for (i = 0; i < block_size; i++) { if (i < hsize && j < hsize) block[i] = rac_get_model256_sym(c, &hc->coef_model); else block[i] = decode_coeff(c, &hc->coef_hi_model); block[i] *= hc->scale; } block += block_size; } block -= block_size * block_size; for (j = 0; j < hsize; j++) { for (i = 0; i < hsize; i++) { A = block[i]; B = block[i + hsize]; C = block[i + hsize * block_size]; D = block[i + hsize * block_size + hsize]; t1 = A - B; t2 = C - D; t3 = A + B; t4 = C + D; dst[i * 2] = av_clip_uint8(t1 - t2); dst[i * 2 + stride] = av_clip_uint8(t1 + t2); dst[i * 2 + 1] = av_clip_uint8(t3 - t4); dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4); } block += block_size; dst += stride * 2; } } static void reset_coders(MSS3Context *ctx, int quality) { int i, j; for (i = 0; i < 3; i++) { ctx->btype[i].last_type = SKIP_BLOCK; for (j = 0; j < 5; j++) model_reset(&ctx->btype[i].bt_model[j]); ctx->fill_coder[i].fill_val = 0; model_reset(&ctx->fill_coder[i].coef_model); model256_reset(&ctx->image_coder[i].esc_model); model256_reset(&ctx->image_coder[i].vec_entry_model); model_reset(&ctx->image_coder[i].vec_size_model); for (j = 0; j < 125; j++) model_reset(&ctx->image_coder[i].vq_model[j]); if (ctx->dct_coder[i].quality != quality) { ctx->dct_coder[i].quality = quality; ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i); } memset(ctx->dct_coder[i].prev_dc, 0, sizeof(*ctx->dct_coder[i].prev_dc) * ctx->dct_coder[i].prev_dc_stride * ctx->dct_coder[i].prev_dc_height); model_reset(&ctx->dct_coder[i].dc_model); model2_reset(&ctx->dct_coder[i].sign_model); model256_reset(&ctx->dct_coder[i].ac_model); if (ctx->haar_coder[i].quality != quality) { ctx->haar_coder[i].quality = quality; ctx->haar_coder[i].scale = 17 - 7 * quality / 50; } model_reset(&ctx->haar_coder[i].coef_hi_model); model256_reset(&ctx->haar_coder[i].coef_model); } } static av_cold void init_coders(MSS3Context *ctx) { int i, j; for (i = 0; i < 3; i++) { for (j = 0; j < 5; j++) model_init(&ctx->btype[i].bt_model[j], 5); model_init(&ctx->fill_coder[i].coef_model, 12); model256_init(&ctx->image_coder[i].esc_model); model256_init(&ctx->image_coder[i].vec_entry_model); model_init(&ctx->image_coder[i].vec_size_model, 3); for (j = 0; j < 125; j++) model_init(&ctx->image_coder[i].vq_model[j], 5); model_init(&ctx->dct_coder[i].dc_model, 12); model256_init(&ctx->dct_coder[i].ac_model); model_init(&ctx->haar_coder[i].coef_hi_model, 12); model256_init(&ctx->haar_coder[i].coef_model); } } static int mss3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MSS3Context *c = avctx->priv_data; RangeCoder *acoder = &c->coder; GetByteContext gb; uint8_t *dst[3]; int dec_width, dec_height, dec_x, dec_y, quality, keyframe; int x, y, i, mb_width, mb_height, blk_size, btype; int ret; if (buf_size < HEADER_SIZE) { av_log(avctx, AV_LOG_ERROR, "Frame should have at least %d bytes, got %d instead\n", HEADER_SIZE, buf_size); return AVERROR_INVALIDDATA; } bytestream2_init(&gb, buf, buf_size); keyframe = bytestream2_get_be32(&gb); if (keyframe & ~0x301) { av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe); return AVERROR_INVALIDDATA; } keyframe = !(keyframe & 1); bytestream2_skip(&gb, 6); dec_x = bytestream2_get_be16(&gb); dec_y = bytestream2_get_be16(&gb); dec_width = bytestream2_get_be16(&gb); dec_height = bytestream2_get_be16(&gb); if (dec_x + dec_width > avctx->width || dec_y + dec_height > avctx->height || (dec_width | dec_height) & 0xF) { av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n", dec_width, dec_height, dec_x, dec_y); return AVERROR_INVALIDDATA; } bytestream2_skip(&gb, 4); quality = bytestream2_get_byte(&gb); if (quality < 1 || quality > 100) { av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality); return AVERROR_INVALIDDATA; } bytestream2_skip(&gb, 4); if (keyframe && !bytestream2_get_bytes_left(&gb)) { av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n"); return AVERROR_INVALIDDATA; } if (!keyframe && c->got_error) return buf_size; c->got_error = 0; if ((ret = ff_reget_buffer(avctx, c->pic)) < 0) return ret; c->pic->key_frame = keyframe; c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; if (!bytestream2_get_bytes_left(&gb)) { if ((ret = av_frame_ref(data, c->pic)) < 0) return ret; *got_frame = 1; return buf_size; } reset_coders(c, quality); rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE); mb_width = dec_width >> 4; mb_height = dec_height >> 4; dst[0] = c->pic->data[0] + dec_x + dec_y * c->pic->linesize[0]; dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1]; dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2]; for (y = 0; y < mb_height; y++) { for (x = 0; x < mb_width; x++) { for (i = 0; i < 3; i++) { blk_size = 8 << !i; btype = decode_block_type(acoder, c->btype + i); switch (btype) { case FILL_BLOCK: decode_fill_block(acoder, c->fill_coder + i, dst[i] + x * blk_size, c->pic->linesize[i], blk_size); break; case IMAGE_BLOCK: decode_image_block(acoder, c->image_coder + i, dst[i] + x * blk_size, c->pic->linesize[i], blk_size); break; case DCT_BLOCK: decode_dct_block(acoder, c->dct_coder + i, dst[i] + x * blk_size, c->pic->linesize[i], blk_size, c->dctblock, x, y); break; case HAAR_BLOCK: decode_haar_block(acoder, c->haar_coder + i, dst[i] + x * blk_size, c->pic->linesize[i], blk_size, c->hblock); break; } if (c->got_error || acoder->got_error) { av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n", x, y); c->got_error = 1; return AVERROR_INVALIDDATA; } } } dst[0] += c->pic->linesize[0] * 16; dst[1] += c->pic->linesize[1] * 8; dst[2] += c->pic->linesize[2] * 8; } if ((ret = av_frame_ref(data, c->pic)) < 0) return ret; *got_frame = 1; return buf_size; } static av_cold int mss3_decode_end(AVCodecContext *avctx) { MSS3Context * const c = avctx->priv_data; int i; av_frame_free(&c->pic); for (i = 0; i < 3; i++) av_freep(&c->dct_coder[i].prev_dc); return 0; } static av_cold int mss3_decode_init(AVCodecContext *avctx) { MSS3Context * const c = avctx->priv_data; int i; c->avctx = avctx; if ((avctx->width & 0xF) || (avctx->height & 0xF)) { av_log(avctx, AV_LOG_ERROR, "Image dimensions should be a multiple of 16.\n"); return AVERROR_INVALIDDATA; } c->got_error = 0; for (i = 0; i < 3; i++) { int b_width = avctx->width >> (2 + !!i); int b_height = avctx->height >> (2 + !!i); c->dct_coder[i].prev_dc_stride = b_width; c->dct_coder[i].prev_dc_height = b_height; c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) * b_width * b_height); if (!c->dct_coder[i].prev_dc) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n"); av_frame_free(&c->pic); while (i >= 0) { av_freep(&c->dct_coder[i].prev_dc); i--; } return AVERROR(ENOMEM); } } c->pic = av_frame_alloc(); if (!c->pic) { mss3_decode_end(avctx); return AVERROR(ENOMEM); } avctx->pix_fmt = AV_PIX_FMT_YUV420P; init_coders(c); return 0; } AVCodec ff_msa1_decoder = { .name = "msa1", .long_name = NULL_IF_CONFIG_SMALL("MS ATC Screen"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_MSA1, .priv_data_size = sizeof(MSS3Context), .init = mss3_decode_init, .close = mss3_decode_end, .decode = mss3_decode_frame, .capabilities = AV_CODEC_CAP_DR1, };