/* * Copyright (c) 2015 Stupeflix * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Use a palette to downsample an input video stream. */ #include "libavutil/bprint.h" #include "libavutil/file_open.h" #include "libavutil/internal.h" #include "libavutil/opt.h" #include "libavutil/qsort.h" #include "avfilter.h" #include "filters.h" #include "framesync.h" #include "internal.h" enum dithering_mode { DITHERING_NONE, DITHERING_BAYER, DITHERING_HECKBERT, DITHERING_FLOYD_STEINBERG, DITHERING_SIERRA2, DITHERING_SIERRA2_4A, NB_DITHERING }; enum color_search_method { COLOR_SEARCH_NNS_ITERATIVE, COLOR_SEARCH_NNS_RECURSIVE, COLOR_SEARCH_BRUTEFORCE, NB_COLOR_SEARCHES }; enum diff_mode { DIFF_MODE_NONE, DIFF_MODE_RECTANGLE, NB_DIFF_MODE }; struct color_node { uint8_t val[4]; uint8_t palette_id; int split; int left_id, right_id; }; #define NBITS 5 #define CACHE_SIZE (1<<(3*NBITS)) struct cached_color { uint32_t color; uint8_t pal_entry; }; struct cache_node { struct cached_color *entries; int nb_entries; }; struct PaletteUseContext; typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int width, int height); typedef struct PaletteUseContext { const AVClass *class; FFFrameSync fs; struct cache_node cache[CACHE_SIZE]; /* lookup cache */ struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */ uint32_t palette[AVPALETTE_COUNT]; int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */ int trans_thresh; int palette_loaded; int dither; int new; set_frame_func set_frame; int bayer_scale; int ordered_dither[8*8]; int diff_mode; AVFrame *last_in; AVFrame *last_out; /* debug options */ char *dot_filename; int color_search_method; int calc_mean_err; uint64_t total_mean_err; int debug_accuracy; } PaletteUseContext; #define OFFSET(x) offsetof(PaletteUseContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption paletteuse_options[] = { { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" }, { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" }, { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" }, { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" }, { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" }, { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" }, { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS }, { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" }, { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" }, { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS }, /* following are the debug options, not part of the official API */ { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" }, { "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" }, { "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" }, { "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" }, { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(paletteuse); static int load_apply_palette(FFFrameSync *fs); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE}; int ret; if ((ret = ff_formats_ref(ff_make_format_list(in_fmts), &ctx->inputs[0]->outcfg.formats)) < 0 || (ret = ff_formats_ref(ff_make_format_list(inpal_fmts), &ctx->inputs[1]->outcfg.formats)) < 0 || (ret = ff_formats_ref(ff_make_format_list(out_fmts), &ctx->outputs[0]->incfg.formats)) < 0) return ret; return 0; } static av_always_inline uint32_t dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift) { return (px & 0xff000000) | av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<> 8 & 0xff) + ((eg * scale) / (1<= trans_thresh && c2[0] >= trans_thresh) { return dr*dr + dg*dg + db*db; } else { return 255*255 + 255*255 + 255*255; } } static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh) { int i, pal_id = -1, min_dist = INT_MAX; for (i = 0; i < AVPALETTE_COUNT; i++) { const uint32_t c = palette[i]; if (c >> 24 >= trans_thresh) { // ignore transparent entry const uint8_t palargb[] = { palette[i]>>24, palette[i]>>16 & 0xff, palette[i]>> 8 & 0xff, palette[i] & 0xff, }; const int d = diff(palargb, argb, trans_thresh); if (d < min_dist) { pal_id = i; min_dist = d; } } } return pal_id; } /* Recursive form, simpler but a bit slower. Kept for reference. */ struct nearest_color { int node_pos; int dist_sqd; }; static void colormap_nearest_node(const struct color_node *map, const int node_pos, const uint8_t *target, const int trans_thresh, struct nearest_color *nearest) { const struct color_node *kd = map + node_pos; const int s = kd->split; int dx, nearer_kd_id, further_kd_id; const uint8_t *current = kd->val; const int current_to_target = diff(target, current, trans_thresh); if (current_to_target < nearest->dist_sqd) { nearest->node_pos = node_pos; nearest->dist_sqd = current_to_target; } if (kd->left_id != -1 || kd->right_id != -1) { dx = target[s] - current[s]; if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id; else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id; if (nearer_kd_id != -1) colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest); if (further_kd_id != -1 && dx*dx < nearest->dist_sqd) colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest); } } static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh) { struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1}; colormap_nearest_node(node, 0, rgb, trans_thresh, &res); return node[res.node_pos].palette_id; } struct stack_node { int color_id; int dx2; }; static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh) { int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0; struct stack_node nodes[16]; struct stack_node *node = &nodes[0]; for (;;) { const struct color_node *kd = &root[cur_color_id]; const uint8_t *current = kd->val; const int current_to_target = diff(target, current, trans_thresh); /* Compare current color node to the target and update our best node if * it's actually better. */ if (current_to_target < best_dist) { best_node_id = cur_color_id; if (!current_to_target) goto end; // exact match, we can return immediately best_dist = current_to_target; } /* Check if it's not a leaf */ if (kd->left_id != -1 || kd->right_id != -1) { const int split = kd->split; const int dx = target[split] - current[split]; int nearer_kd_id, further_kd_id; /* Define which side is the most interesting. */ if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id; else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id; if (nearer_kd_id != -1) { if (further_kd_id != -1) { /* Here, both paths are defined, so we push a state for * when we are going back. */ node->color_id = further_kd_id; node->dx2 = dx*dx; pos++; node++; } /* We can now update current color with the most probable path * (no need to create a state since there is nothing to save * anymore). */ cur_color_id = nearer_kd_id; continue; } else if (dx*dx < best_dist) { /* The nearest path isn't available, so there is only one path * possible and it's the least probable. We enter it only if the * distance from the current point to the hyper rectangle is * less than our best distance. */ cur_color_id = further_kd_id; continue; } } /* Unstack as much as we can, typically as long as the least probable * branch aren't actually probable. */ do { if (--pos < 0) goto end; node--; } while (node->dx2 >= best_dist); /* We got a node where the least probable branch might actually contain * a relevant color. */ cur_color_id = node->color_id; } end: return root[best_node_id].palette_id; } #define COLORMAP_NEAREST(search, palette, root, target, trans_thresh) \ search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target, trans_thresh) : \ search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target, trans_thresh) : \ colormap_nearest_bruteforce(palette, target, trans_thresh) /** * Check if the requested color is in the cache already. If not, find it in the * color tree and cache it. * Note: a, r, g, and b are the components of color, but are passed as well to avoid * recomputing them (they are generally computed by the caller for other uses). */ static av_always_inline int color_get(PaletteUseContext *s, uint32_t color, uint8_t a, uint8_t r, uint8_t g, uint8_t b, const enum color_search_method search_method) { int i; const uint8_t argb_elts[] = {a, r, g, b}; const uint8_t rhash = r & ((1<cache[hash]; struct cached_color *e; // first, check for transparency if (a < s->trans_thresh && s->transparency_index >= 0) { return s->transparency_index; } for (i = 0; i < node->nb_entries; i++) { e = &node->entries[i]; if (e->color == color) return e->pal_entry; } e = av_dynarray2_add((void**)&node->entries, &node->nb_entries, sizeof(*node->entries), NULL); if (!e) return AVERROR(ENOMEM); e->color = color; e->pal_entry = COLORMAP_NEAREST(search_method, s->palette, s->map, argb_elts, s->trans_thresh); return e->pal_entry; } static av_always_inline int get_dst_color_err(PaletteUseContext *s, uint32_t c, int *er, int *eg, int *eb, const enum color_search_method search_method) { const uint8_t a = c >> 24; const uint8_t r = c >> 16 & 0xff; const uint8_t g = c >> 8 & 0xff; const uint8_t b = c & 0xff; uint32_t dstc; const int dstx = color_get(s, c, a, r, g, b, search_method); if (dstx < 0) return dstx; dstc = s->palette[dstx]; if (dstx == s->transparency_index) { *er = *eg = *eb = 0; } else { *er = (int)r - (int)(dstc >> 16 & 0xff); *eg = (int)g - (int)(dstc >> 8 & 0xff); *eb = (int)b - (int)(dstc & 0xff); } return dstx; } static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int w, int h, enum dithering_mode dither, const enum color_search_method search_method) { int x, y; const int src_linesize = in ->linesize[0] >> 2; const int dst_linesize = out->linesize[0]; uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize; uint8_t *dst = out->data[0] + y_start*dst_linesize; w += x_start; h += y_start; for (y = y_start; y < h; y++) { for (x = x_start; x < w; x++) { int er, eg, eb; if (dither == DITHERING_BAYER) { const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)]; const uint8_t a8 = src[x] >> 24; const uint8_t r8 = src[x] >> 16 & 0xff; const uint8_t g8 = src[x] >> 8 & 0xff; const uint8_t b8 = src[x] & 0xff; const uint8_t r = av_clip_uint8(r8 + d); const uint8_t g = av_clip_uint8(g8 + d); const uint8_t b = av_clip_uint8(b8 + d); const uint32_t color_new = (unsigned)(a8) << 24 | r << 16 | g << 8 | b; const int color = color_get(s, color_new, a8, r, g, b, search_method); if (color < 0) return color; dst[x] = color; } else if (dither == DITHERING_HECKBERT) { const int right = x < w - 1, down = y < h - 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3); if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3); } else if (dither == DITHERING_FLOYD_STEINBERG) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4); if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4); if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4); } else if (dither == DITHERING_SIERRA2) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int right2 = x < w - 2, left2 = x > x_start + 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4); if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4); if (down) { if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4); if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4); if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4); if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4); if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4); } } else if (dither == DITHERING_SIERRA2_4A) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2); if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2); } else { const uint8_t a = src[x] >> 24; const uint8_t r = src[x] >> 16 & 0xff; const uint8_t g = src[x] >> 8 & 0xff; const uint8_t b = src[x] & 0xff; const int color = color_get(s, src[x], a, r, g, b, search_method); if (color < 0) return color; dst[x] = color; } } src += src_linesize; dst += dst_linesize; } return 0; } #define INDENT 4 static void disp_node(AVBPrint *buf, const struct color_node *map, int parent_id, int node_id, int depth) { const struct color_node *node = &map[node_id]; const uint32_t fontcolor = node->val[1] > 0x50 && node->val[2] > 0x50 && node->val[3] > 0x50 ? 0 : 0xffffff; const int rgb_comp = node->split - 1; av_bprintf(buf, "%*cnode%d [" "label=\"%c%02X%c%02X%c%02X%c\" " "fillcolor=\"#%02x%02x%02x\" " "fontcolor=\"#%06"PRIX32"\"]\n", depth*INDENT, ' ', node->palette_id, "[ "[rgb_comp], node->val[1], "][ "[rgb_comp], node->val[2], " ]["[rgb_comp], node->val[3], " ]"[rgb_comp], node->val[1], node->val[2], node->val[3], fontcolor); if (parent_id != -1) av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ', map[parent_id].palette_id, node->palette_id); if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1); if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1); } // debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png static int disp_tree(const struct color_node *node, const char *fname) { AVBPrint buf; FILE *f = avpriv_fopen_utf8(fname, "w"); if (!f) { int ret = AVERROR(errno); av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n", fname, av_err2str(ret)); return ret; } av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED); av_bprintf(&buf, "digraph {\n"); av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n"); disp_node(&buf, node, -1, 0, 0); av_bprintf(&buf, "}\n"); fwrite(buf.str, 1, buf.len, f); fclose(f); av_bprint_finalize(&buf, NULL); return 0; } static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh, const enum color_search_method search_method) { int r, g, b, ret = 0; for (r = 0; r < 256; r++) { for (g = 0; g < 256; g++) { for (b = 0; b < 256; b++) { const uint8_t argb[] = {0xff, r, g, b}; const int r1 = COLORMAP_NEAREST(search_method, palette, node, argb, trans_thresh); const int r2 = colormap_nearest_bruteforce(palette, argb, trans_thresh); if (r1 != r2) { const uint32_t c1 = palette[r1]; const uint32_t c2 = palette[r2]; const uint8_t palargb1[] = { 0xff, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff }; const uint8_t palargb2[] = { 0xff, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff }; const int d1 = diff(palargb1, argb, trans_thresh); const int d2 = diff(palargb2, argb, trans_thresh); if (d1 != d2) { av_log(NULL, AV_LOG_ERROR, "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n", r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2); ret = 1; } } } } } return ret; } struct color { uint32_t value; uint8_t pal_id; }; struct color_rect { uint8_t min[3]; uint8_t max[3]; }; typedef int (*cmp_func)(const void *, const void *); #define DECLARE_CMP_FUNC(name, pos) \ static int cmp_##name(const void *pa, const void *pb) \ { \ const struct color *a = pa; \ const struct color *b = pb; \ return (int)(a->value >> (8 * (3 - (pos))) & 0xff) \ - (int)(b->value >> (8 * (3 - (pos))) & 0xff); \ } DECLARE_CMP_FUNC(a, 0) DECLARE_CMP_FUNC(r, 1) DECLARE_CMP_FUNC(g, 2) DECLARE_CMP_FUNC(b, 3) static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b}; static int get_next_color(const uint8_t *color_used, const uint32_t *palette, const int trans_thresh, int *component, const struct color_rect *box) { int wr, wg, wb; int i, longest = 0; unsigned nb_color = 0; struct color_rect ranges; struct color tmp_pal[256]; cmp_func cmpf; ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff; ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00; for (i = 0; i < AVPALETTE_COUNT; i++) { const uint32_t c = palette[i]; const uint8_t a = c >> 24; const uint8_t r = c >> 16 & 0xff; const uint8_t g = c >> 8 & 0xff; const uint8_t b = c & 0xff; if (a < trans_thresh) { continue; } if (color_used[i] || (a != 0xff) || r < box->min[0] || g < box->min[1] || b < box->min[2] || r > box->max[0] || g > box->max[1] || b > box->max[2]) continue; if (r < ranges.min[0]) ranges.min[0] = r; if (g < ranges.min[1]) ranges.min[1] = g; if (b < ranges.min[2]) ranges.min[2] = b; if (r > ranges.max[0]) ranges.max[0] = r; if (g > ranges.max[1]) ranges.max[1] = g; if (b > ranges.max[2]) ranges.max[2] = b; tmp_pal[nb_color].value = c; tmp_pal[nb_color].pal_id = i; nb_color++; } if (!nb_color) return -1; /* define longest axis that will be the split component */ wr = ranges.max[0] - ranges.min[0]; wg = ranges.max[1] - ranges.min[1]; wb = ranges.max[2] - ranges.min[2]; if (wr >= wg && wr >= wb) longest = 1; if (wg >= wr && wg >= wb) longest = 2; if (wb >= wr && wb >= wg) longest = 3; cmpf = cmp_funcs[longest]; *component = longest; /* sort along this axis to get median */ AV_QSORT(tmp_pal, nb_color, struct color, cmpf); return tmp_pal[nb_color >> 1].pal_id; } static int colormap_insert(struct color_node *map, uint8_t *color_used, int *nb_used, const uint32_t *palette, const int trans_thresh, const struct color_rect *box) { uint32_t c; int component, cur_id; int node_left_id = -1, node_right_id = -1; struct color_node *node; struct color_rect box1, box2; const int pal_id = get_next_color(color_used, palette, trans_thresh, &component, box); if (pal_id < 0) return -1; /* create new node with that color */ cur_id = (*nb_used)++; c = palette[pal_id]; node = &map[cur_id]; node->split = component; node->palette_id = pal_id; node->val[0] = c>>24; node->val[1] = c>>16 & 0xff; node->val[2] = c>> 8 & 0xff; node->val[3] = c & 0xff; color_used[pal_id] = 1; /* get the two boxes this node creates */ box1 = box2 = *box; box1.max[component-1] = node->val[component]; box2.min[component-1] = FFMIN(node->val[component] + 1, 255); node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1); if (box2.min[component-1] <= box2.max[component-1]) node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2); node->left_id = node_left_id; node->right_id = node_right_id; return cur_id; } static int cmp_pal_entry(const void *a, const void *b) { const int c1 = *(const uint32_t *)a & 0xffffff; const int c2 = *(const uint32_t *)b & 0xffffff; return c1 - c2; } static void load_colormap(PaletteUseContext *s) { int i, nb_used = 0; uint8_t color_used[AVPALETTE_COUNT] = {0}; uint32_t last_color = 0; struct color_rect box; if (s->transparency_index >= 0) { FFSWAP(uint32_t, s->palette[s->transparency_index], s->palette[255]); } /* disable transparent colors and dups */ qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette), cmp_pal_entry); for (i = 0; i < AVPALETTE_COUNT; i++) { const uint32_t c = s->palette[i]; if (i != 0 && c == last_color) { color_used[i] = 1; continue; } last_color = c; if (c >> 24 < s->trans_thresh) { color_used[i] = 1; // ignore transparent color(s) continue; } } box.min[0] = box.min[1] = box.min[2] = 0x00; box.max[0] = box.max[1] = box.max[2] = 0xff; colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box); if (s->dot_filename) disp_tree(s->map, s->dot_filename); if (s->debug_accuracy) { if (!debug_accuracy(s->map, s->palette, s->trans_thresh, s->color_search_method)) av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n"); } } static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1, const AVFrame *in2, int frame_count) { int x, y; const uint32_t *palette = s->palette; uint32_t *src1 = (uint32_t *)in1->data[0]; uint8_t *src2 = in2->data[0]; const int src1_linesize = in1->linesize[0] >> 2; const int src2_linesize = in2->linesize[0]; const float div = in1->width * in1->height * 3; unsigned mean_err = 0; for (y = 0; y < in1->height; y++) { for (x = 0; x < in1->width; x++) { const uint32_t c1 = src1[x]; const uint32_t c2 = palette[src2[x]]; const uint8_t argb1[] = {0xff, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff}; const uint8_t argb2[] = {0xff, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff}; mean_err += diff(argb1, argb2, s->trans_thresh); } src1 += src1_linesize; src2 += src2_linesize; } s->total_mean_err += mean_err; av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n", mean_err / div, s->total_mean_err / (div * frame_count)); } static void set_processing_window(enum diff_mode diff_mode, const AVFrame *prv_src, const AVFrame *cur_src, const AVFrame *prv_dst, AVFrame *cur_dst, int *xp, int *yp, int *wp, int *hp) { int x_start = 0, y_start = 0; int width = cur_src->width; int height = cur_src->height; if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) { int y; int x_end = cur_src->width - 1, y_end = cur_src->height - 1; const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0]; const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0]; const uint8_t *prv_dstp = prv_dst->data[0]; uint8_t *cur_dstp = cur_dst->data[0]; const int prv_src_linesize = prv_src->linesize[0] >> 2; const int cur_src_linesize = cur_src->linesize[0] >> 2; const int prv_dst_linesize = prv_dst->linesize[0]; const int cur_dst_linesize = cur_dst->linesize[0]; /* skip common lines */ while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize, cur_srcp + y_start*cur_src_linesize, cur_src->width * 4)) { memcpy(cur_dstp + y_start*cur_dst_linesize, prv_dstp + y_start*prv_dst_linesize, cur_dst->width); y_start++; } while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize, cur_srcp + y_end*cur_src_linesize, cur_src->width * 4)) { memcpy(cur_dstp + y_end*cur_dst_linesize, prv_dstp + y_end*prv_dst_linesize, cur_dst->width); y_end--; } height = y_end + 1 - y_start; /* skip common columns */ while (x_start < x_end) { int same_column = 1; for (y = y_start; y <= y_end; y++) { if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) { same_column = 0; break; } } if (!same_column) break; x_start++; } while (x_end > x_start) { int same_column = 1; for (y = y_start; y <= y_end; y++) { if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) { same_column = 0; break; } } if (!same_column) break; x_end--; } width = x_end + 1 - x_start; if (x_start) { for (y = y_start; y <= y_end; y++) memcpy(cur_dstp + y*cur_dst_linesize, prv_dstp + y*prv_dst_linesize, x_start); } if (x_end != cur_src->width - 1) { const int copy_len = cur_src->width - 1 - x_end; for (y = y_start; y <= y_end; y++) memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1, prv_dstp + y*prv_dst_linesize + x_end + 1, copy_len); } } *xp = x_start; *yp = y_start; *wp = width; *hp = height; } static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf) { int x, y, w, h, ret; AVFilterContext *ctx = inlink->dst; PaletteUseContext *s = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { *outf = NULL; return AVERROR(ENOMEM); } av_frame_copy_props(out, in); set_processing_window(s->diff_mode, s->last_in, in, s->last_out, out, &x, &y, &w, &h); av_frame_unref(s->last_in); av_frame_unref(s->last_out); if ((ret = av_frame_ref(s->last_in, in)) < 0 || (ret = av_frame_ref(s->last_out, out)) < 0 || (ret = av_frame_make_writable(s->last_in)) < 0) { av_frame_free(&out); *outf = NULL; return ret; } ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n", w, h, x, y, x+w, y+h, in->width, in->height); ret = s->set_frame(s, out, in, x, y, w, h); if (ret < 0) { av_frame_free(&out); *outf = NULL; return ret; } memcpy(out->data[1], s->palette, AVPALETTE_SIZE); if (s->calc_mean_err) debug_mean_error(s, in, out, inlink->frame_count_out); *outf = out; return 0; } static int config_output(AVFilterLink *outlink) { int ret; AVFilterContext *ctx = outlink->src; PaletteUseContext *s = ctx->priv; ret = ff_framesync_init_dualinput(&s->fs, ctx); if (ret < 0) return ret; s->fs.opt_repeatlast = 1; // only 1 frame in the palette s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY; s->fs.on_event = load_apply_palette; outlink->w = ctx->inputs[0]->w; outlink->h = ctx->inputs[0]->h; outlink->time_base = ctx->inputs[0]->time_base; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; return 0; } static int config_input_palette(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; if (inlink->w * inlink->h != AVPALETTE_COUNT) { av_log(ctx, AV_LOG_ERROR, "Palette input must contain exactly %d pixels. " "Specified input has %dx%d=%d pixels\n", AVPALETTE_COUNT, inlink->w, inlink->h, inlink->w * inlink->h); return AVERROR(EINVAL); } return 0; } static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame) { int i, x, y; const uint32_t *p = (const uint32_t *)palette_frame->data[0]; const int p_linesize = palette_frame->linesize[0] >> 2; s->transparency_index = -1; if (s->new) { memset(s->palette, 0, sizeof(s->palette)); memset(s->map, 0, sizeof(s->map)); for (i = 0; i < CACHE_SIZE; i++) av_freep(&s->cache[i].entries); memset(s->cache, 0, sizeof(s->cache)); } i = 0; for (y = 0; y < palette_frame->height; y++) { for (x = 0; x < palette_frame->width; x++) { s->palette[i] = p[x]; if (p[x]>>24 < s->trans_thresh) { s->transparency_index = i; // we are assuming at most one transparent color in palette } i++; } p += p_linesize; } load_colormap(s); if (!s->new) s->palette_loaded = 1; } static int load_apply_palette(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; AVFilterLink *inlink = ctx->inputs[0]; PaletteUseContext *s = ctx->priv; AVFrame *master, *second, *out = NULL; int ret; // writable for error diffusal dithering ret = ff_framesync_dualinput_get_writable(fs, &master, &second); if (ret < 0) return ret; if (!master || !second) { av_frame_free(&master); return AVERROR_BUG; } if (!s->palette_loaded) { load_palette(s, second); } ret = apply_palette(inlink, master, &out); av_frame_free(&master); if (ret < 0) return ret; return ff_filter_frame(ctx->outputs[0], out); } #define DEFINE_SET_FRAME(color_search, name, value) \ static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \ int x_start, int y_start, int w, int h) \ { \ return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \ } #define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \ DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \ DEFINE_SET_FRAME_COLOR_SEARCH(nns_iterative, COLOR_SEARCH_NNS_ITERATIVE) DEFINE_SET_FRAME_COLOR_SEARCH(nns_recursive, COLOR_SEARCH_NNS_RECURSIVE) DEFINE_SET_FRAME_COLOR_SEARCH(bruteforce, COLOR_SEARCH_BRUTEFORCE) #define DITHERING_ENTRIES(color_search) { \ set_frame_##color_search##_none, \ set_frame_##color_search##_bayer, \ set_frame_##color_search##_heckbert, \ set_frame_##color_search##_floyd_steinberg, \ set_frame_##color_search##_sierra2, \ set_frame_##color_search##_sierra2_4a, \ } static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING] = { DITHERING_ENTRIES(nns_iterative), DITHERING_ENTRIES(nns_recursive), DITHERING_ENTRIES(bruteforce), }; static int dither_value(int p) { const int q = p ^ (p >> 3); return (p & 4) >> 2 | (q & 4) >> 1 \ | (p & 2) << 1 | (q & 2) << 2 \ | (p & 1) << 4 | (q & 1) << 5; } static av_cold int init(AVFilterContext *ctx) { PaletteUseContext *s = ctx->priv; s->last_in = av_frame_alloc(); s->last_out = av_frame_alloc(); if (!s->last_in || !s->last_out) return AVERROR(ENOMEM); s->set_frame = set_frame_lut[s->color_search_method][s->dither]; if (s->dither == DITHERING_BAYER) { int i; const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++) s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta; } return 0; } static int activate(AVFilterContext *ctx) { PaletteUseContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { int i; PaletteUseContext *s = ctx->priv; ff_framesync_uninit(&s->fs); for (i = 0; i < CACHE_SIZE; i++) av_freep(&s->cache[i].entries); av_frame_free(&s->last_in); av_frame_free(&s->last_out); } static const AVFilterPad paletteuse_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, },{ .name = "palette", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_palette, }, }; static const AVFilterPad paletteuse_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_paletteuse = { .name = "paletteuse", .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."), .priv_size = sizeof(PaletteUseContext), .init = init, .uninit = uninit, .activate = activate, FILTER_INPUTS(paletteuse_inputs), FILTER_OUTPUTS(paletteuse_outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &paletteuse_class, };