/* * Copyright (c) 2009 Rob Sykes * Copyright (c) 2013 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/mem.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #define HISTOGRAM_SIZE 8192 #define HISTOGRAM_MAX (HISTOGRAM_SIZE-1) #define MEASURE_ALL UINT_MAX #define MEASURE_NONE 0 #define MEASURE_DC_OFFSET (1 << 0) #define MEASURE_MIN_LEVEL (1 << 1) #define MEASURE_MAX_LEVEL (1 << 2) #define MEASURE_MIN_DIFFERENCE (1 << 3) #define MEASURE_MAX_DIFFERENCE (1 << 4) #define MEASURE_MEAN_DIFFERENCE (1 << 5) #define MEASURE_RMS_DIFFERENCE (1 << 6) #define MEASURE_PEAK_LEVEL (1 << 7) #define MEASURE_RMS_LEVEL (1 << 8) #define MEASURE_RMS_PEAK (1 << 9) #define MEASURE_RMS_TROUGH (1 << 10) #define MEASURE_CREST_FACTOR (1 << 11) #define MEASURE_FLAT_FACTOR (1 << 12) #define MEASURE_PEAK_COUNT (1 << 13) #define MEASURE_BIT_DEPTH (1 << 14) #define MEASURE_DYNAMIC_RANGE (1 << 15) #define MEASURE_ZERO_CROSSINGS (1 << 16) #define MEASURE_ZERO_CROSSINGS_RATE (1 << 17) #define MEASURE_NUMBER_OF_SAMPLES (1 << 18) #define MEASURE_NUMBER_OF_NANS (1 << 19) #define MEASURE_NUMBER_OF_INFS (1 << 20) #define MEASURE_NUMBER_OF_DENORMALS (1 << 21) #define MEASURE_NOISE_FLOOR (1 << 22) #define MEASURE_NOISE_FLOOR_COUNT (1 << 23) #define MEASURE_ENTROPY (1 << 24) #define MEASURE_ABS_PEAK_COUNT (1 << 25) #define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL) typedef struct ChannelStats { double last; double last_non_zero; double min_non_zero; double sigma_x, sigma_x2; double avg_sigma_x2, min_sigma_x2, max_sigma_x2; double min, max; double nmin, nmax; double min_run, max_run; double min_runs, max_runs; double min_diff, max_diff; double diff1_sum; double diff1_sum_x2; double abs_peak; uint64_t mask[4]; uint64_t min_count, max_count; uint64_t abs_peak_count; uint64_t noise_floor_count; uint64_t zero_runs; uint64_t nb_samples; uint64_t nb_nans; uint64_t nb_infs; uint64_t nb_denormals; double *win_samples; double *sorted_samples; uint64_t ehistogram[HISTOGRAM_SIZE]; int64_t lasti; int sorted_front; int sorted_back; int win_pos; int max_index; double noise_floor; double entropy; } ChannelStats; typedef struct AudioStatsContext { const AVClass *class; ChannelStats *chstats; int nb_channels; uint64_t tc_samples; double time_constant; double mult; int metadata; int used; int reset_count; int nb_frames; int maxbitdepth; int measure_perchannel; int measure_overall; int is_float; int is_double; } AudioStatsContext; #define OFFSET(x) offsetof(AudioStatsContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption astats_options[] = { { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, 0, 10, FLAGS }, { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "reset", "Set the number of frames over which cumulative stats are calculated before being reset", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS }, { "measure_perchannel", "Select the parameters which are measured per channel", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, .unit = "measure" }, { "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, .unit = "measure" }, { "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, .unit = "measure" }, { "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, .unit = "measure" }, { "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, .unit = "measure" }, { "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, .unit = "measure" }, { "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, .unit = "measure" }, { "Entropy" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, FLAGS, .unit = "measure" }, { "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, .unit = "measure" }, { "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" }, { "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, .unit = "measure" }, { "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" }, { "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" }, { "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, .unit = "measure" }, { "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, .unit = "measure" }, { "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, .unit = "measure" }, { "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, .unit = "measure" }, { "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, .unit = "measure" }, { "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, .unit = "measure" }, { "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, .unit = "measure" }, { "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, .unit = "measure" }, { "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, .unit = "measure" }, { "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" }, { "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, .unit = "measure" }, { "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, .unit = "measure" }, { "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, .unit = "measure" }, { "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, .unit = "measure" }, { "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, .unit = "measure" }, { "Abs_Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ABS_PEAK_COUNT }, 0, 0, FLAGS, .unit = "measure" }, { "measure_overall", "Select the parameters which are measured overall", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, .unit = "measure" }, { NULL } }; AVFILTER_DEFINE_CLASS(astats); static void reset_stats(AudioStatsContext *s) { int c; for (c = 0; c < s->nb_channels; c++) { ChannelStats *p = &s->chstats[c]; p->min = p->nmin = p->min_sigma_x2 = DBL_MAX; p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX; p->abs_peak = 0; p->min_non_zero = DBL_MAX; p->min_diff = DBL_MAX; p->max_diff = 0; p->sigma_x = 0; p->sigma_x2 = 0; p->avg_sigma_x2 = 0; p->min_run = 0; p->max_run = 0; p->min_runs = 0; p->max_runs = 0; p->diff1_sum = 0; p->diff1_sum_x2 = 0; p->mask[0] = 0; p->mask[1] = 0; p->mask[2] =~0; p->mask[3] = 0; p->min_count = 0; p->max_count = 0; p->abs_peak_count = 0; p->zero_runs = 0; p->nb_samples = 0; p->nb_nans = 0; p->nb_infs = 0; p->nb_denormals = 0; p->last = NAN; p->noise_floor = NAN; p->noise_floor_count = 0; p->entropy = 0; p->win_pos = 0; p->sorted_front = 0; p->sorted_back = 0; memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples)); memset(p->ehistogram, 0, sizeof(p->ehistogram)); for (int n = 0; n < s->tc_samples; n++) p->sorted_samples[n] = -1.0; } } static int config_output(AVFilterLink *outlink) { AudioStatsContext *s = outlink->src->priv; s->chstats = av_calloc(sizeof(*s->chstats), outlink->ch_layout.nb_channels); if (!s->chstats) return AVERROR(ENOMEM); s->tc_samples = FFMAX(s->time_constant * outlink->sample_rate + .5, 1); s->nb_channels = outlink->ch_layout.nb_channels; for (int i = 0; i < s->nb_channels; i++) { ChannelStats *p = &s->chstats[i]; p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples)); if (!p->win_samples) return AVERROR(ENOMEM); p->sorted_samples = av_calloc(s->tc_samples, sizeof(*p->sorted_samples)); if (!p->sorted_samples) return AVERROR(ENOMEM); } s->mult = exp((-1 / s->time_constant / outlink->sample_rate)); s->nb_frames = 0; s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8; s->is_double = outlink->format == AV_SAMPLE_FMT_DBL || outlink->format == AV_SAMPLE_FMT_DBLP; s->is_float = outlink->format == AV_SAMPLE_FMT_FLT || outlink->format == AV_SAMPLE_FMT_FLTP; reset_stats(s); return 0; } static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth) { unsigned result = s->maxbitdepth; uint64_t amask = mask[1] & (~mask[2]); depth[0] = 0; for (int i = 0; i < result; i++) depth[0] += !!(mask[0] & (1ULL << i)); depth[1] = 0; for (int i = 0; i < result; i++) depth[1] += !!(mask[1] & (1ULL << i)); depth[2] = result; for (int i = 0; i < result && !(amask & 1); i++) { depth[2]--; amask >>= 1; } depth[3] = 0; for (int i = 0; i < result; i++) depth[3] += !!(mask[3] & (1ULL << i)); } static double calc_entropy(AudioStatsContext *s, ChannelStats *p) { double entropy = 0.; for (int i = 0; i < HISTOGRAM_SIZE; i++) { double entry = p->ehistogram[i] / ((double)p->nb_samples); if (entry > 1e-8) entropy += entry * log2(entry); } return -entropy / log2(HISTOGRAM_SIZE); } static double calc_noise_floor(double *ss, double x, double px, int n, int *ffront, int *bback) { double r, ax = fabs(x); int front = *ffront; int back = *bback; int empty = front == back && ss[front] == -1.0; if (!empty && fabs(px) == ss[front]) { ss[front] = -1.0; if (back != front) { front--; if (front < 0) front = n - 1; } empty = front == back; } if (!empty && ax >= ss[front]) { while (1) { ss[front] = -1.0; if (back == front) { empty = 1; break; } front--; if (front < 0) front = n - 1; } } while (!empty && ax >= ss[back]) { ss[back] = -1.0; if (back == front) { empty = 1; break; } back++; if (back >= n) back = 0; } if (!empty) { back--; if (back < 0) back = n - 1; } ss[back] = ax; r = ss[front]; *ffront = front; *bback = back; return r; } static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d) { if (d < p->min) p->min = d; if (d > p->max) p->max = d; } static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i) { double abs_d = FFABS(d); double drop, noise_floor; int index; if (p->abs_peak < abs_d) { p->abs_peak = abs_d; p->abs_peak_count = 1; } else if (p->abs_peak == abs_d) { p->abs_peak_count++; } if (d < p->min) { p->min = d; p->nmin = nd; p->min_run = 1; p->min_runs = 0; p->min_count = 1; } else if (d == p->min) { p->min_count++; p->min_run = d == p->last ? p->min_run + 1 : 1; } else if (p->last == p->min) { p->min_runs += p->min_run * p->min_run; } if (d != 0 && FFABS(d) < p->min_non_zero) p->min_non_zero = FFABS(d); if (d > p->max) { p->max = d; p->nmax = nd; p->max_run = 1; p->max_runs = 0; p->max_count = 1; } else if (d == p->max) { p->max_count++; p->max_run = d == p->last ? p->max_run + 1 : 1; } else if (p->last == p->max) { p->max_runs += p->max_run * p->max_run; } if (d != 0) { p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero); p->last_non_zero = d; } p->sigma_x += nd; p->sigma_x2 += nd * nd; p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd; if (!isnan(p->last)) { p->min_diff = FFMIN(p->min_diff, fabs(d - p->last)); p->max_diff = FFMAX(p->max_diff, fabs(d - p->last)); p->diff1_sum += fabs(d - p->last); p->diff1_sum_x2 += (d - p->last) * (d - p->last); } p->mask[0] |= (i < 0) ? -i : i; p->mask[1] |= i; p->mask[2] &= i; if (!isnan(p->last)) p->mask[3] |= i ^ p->lasti; p->lasti = i; p->last = d; drop = p->win_samples[p->win_pos]; p->win_samples[p->win_pos] = nd; index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX); p->max_index = FFMAX(p->max_index, index); p->ehistogram[index]++; p->win_pos++; if (p->win_pos >= s->tc_samples) p->win_pos = 0; if (p->nb_samples >= s->tc_samples) { p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2); p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2); } p->nb_samples++; noise_floor = calc_noise_floor(p->sorted_samples, nd, drop, s->tc_samples, &p->sorted_front, &p->sorted_back); if (p->nb_samples >= s->tc_samples) { if (isnan(p->noise_floor)) { p->noise_floor = noise_floor; p->noise_floor_count = 1; } else { if (noise_floor < p->noise_floor) { p->noise_floor = noise_floor; p->noise_floor_count = 1; } else if (noise_floor == p->noise_floor) { p->noise_floor_count++; } } } } static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d) { int type = fpclassify(d); p->nb_nans += type == FP_NAN; p->nb_infs += type == FP_INFINITE; p->nb_denormals += type == FP_SUBNORMAL; } static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d) { int type = fpclassify(d); p->nb_nans += type == FP_NAN; p->nb_infs += type == FP_INFINITE; p->nb_denormals += type == FP_SUBNORMAL; } static void set_meta(AVDictionary **metadata, int chan, const char *key, const char *fmt, double val) { uint8_t value[128]; uint8_t key2[128]; snprintf(value, sizeof(value), fmt, val); if (chan) snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key); else snprintf(key2, sizeof(key2), "lavfi.astats.%s", key); av_dict_set(metadata, key2, value, 0); } #define LINEAR_TO_DB(x) (log10(x) * 20) static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) { uint64_t mask[4], min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; uint64_t abs_peak_count = 0; double min_runs = 0, max_runs = 0, min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, nmin = DBL_MAX, nmax =-DBL_MAX, max_sigma_x = 0, diff1_sum = 0, diff1_sum_x2 = 0, sigma_x2 = 0, noise_floor = 0, entropy = 0, min_sigma_x2 = DBL_MAX, max_sigma_x2 =-DBL_MAX; uint8_t depth[4]; int c; mask[0] = 0; mask[1] = 0; mask[2] =~0; mask[3] = 0; for (c = 0; c < s->nb_channels; c++) { ChannelStats *p = &s->chstats[c]; if (p->nb_samples < s->tc_samples) p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; min = FFMIN(min, p->min); max = FFMAX(max, p->max); nmin = FFMIN(nmin, p->nmin); nmax = FFMAX(nmax, p->nmax); min_diff = FFMIN(min_diff, p->min_diff); max_diff = FFMAX(max_diff, p->max_diff); diff1_sum += p->diff1_sum; diff1_sum_x2 += p->diff1_sum_x2; min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); sigma_x2 += p->sigma_x2; noise_floor = FFMAX(noise_floor, p->noise_floor); noise_floor_count += p->noise_floor_count; p->entropy = calc_entropy(s, p); entropy += p->entropy; min_count += p->min_count; max_count += p->max_count; abs_peak_count += p->abs_peak_count; min_runs += p->min_runs; max_runs += p->max_runs; mask[0] |= p->mask[0]; mask[1] |= p->mask[1]; mask[2] &= p->mask[2]; mask[3] |= p->mask[3]; nb_samples += p->nb_samples; nb_nans += p->nb_nans; nb_infs += p->nb_infs; nb_denormals += p->nb_denormals; if (fabs(p->sigma_x) > fabs(max_sigma_x)) max_sigma_x = p->sigma_x; if (s->measure_perchannel & MEASURE_DC_OFFSET) set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples); if (s->measure_perchannel & MEASURE_MIN_LEVEL) set_meta(metadata, c + 1, "Min_level", "%f", p->min); if (s->measure_perchannel & MEASURE_MAX_LEVEL) set_meta(metadata, c + 1, "Max_level", "%f", p->max); if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff); if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff); if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1)); if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); if (s->measure_perchannel & MEASURE_PEAK_LEVEL) set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); if (s->measure_perchannel & MEASURE_RMS_LEVEL) set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); if (s->measure_perchannel & MEASURE_RMS_PEAK) set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); if (s->measure_perchannel & MEASURE_RMS_TROUGH) set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2))); if (s->measure_perchannel & MEASURE_CREST_FACTOR) set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1); if (s->measure_perchannel & MEASURE_FLAT_FACTOR) set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); if (s->measure_perchannel & MEASURE_PEAK_COUNT) set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count)); if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT) set_meta(metadata, c + 1, "Peak_count", "%f", p->abs_peak_count); if (s->measure_perchannel & MEASURE_NOISE_FLOOR) set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor)); if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count); if (s->measure_perchannel & MEASURE_ENTROPY) set_meta(metadata, c + 1, "Entropy", "%f", p->entropy); if (s->measure_perchannel & MEASURE_BIT_DEPTH) { bit_depth(s, p->mask, depth); set_meta(metadata, c + 1, "Bit_depth", "%f", depth[0]); set_meta(metadata, c + 1, "Bit_depth2", "%f", depth[1]); set_meta(metadata, c + 1, "Bit_depth3", "%f", depth[2]); set_meta(metadata, c + 1, "Bit_depth4", "%f", depth[3]); } if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs); if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals); } if (s->measure_overall & MEASURE_DC_OFFSET) set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels)); if (s->measure_overall & MEASURE_MIN_LEVEL) set_meta(metadata, 0, "Overall.Min_level", "%f", min); if (s->measure_overall & MEASURE_MAX_LEVEL) set_meta(metadata, 0, "Overall.Max_level", "%f", max); if (s->measure_overall & MEASURE_MIN_DIFFERENCE) set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff); if (s->measure_overall & MEASURE_MAX_DIFFERENCE) set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff); if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels)); if (s->measure_overall & MEASURE_RMS_DIFFERENCE) set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); if (s->measure_overall & MEASURE_PEAK_LEVEL) set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax))); if (s->measure_overall & MEASURE_RMS_LEVEL) set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); if (s->measure_overall & MEASURE_RMS_PEAK) set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2))); if (s->measure_overall & MEASURE_RMS_TROUGH) set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2))); if (s->measure_overall & MEASURE_FLAT_FACTOR) set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); if (s->measure_overall & MEASURE_PEAK_COUNT) set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels); if (s->measure_overall & MEASURE_ABS_PEAK_COUNT) set_meta(metadata, 0, "Overall.Abs_Peak_count", "%f", (float)(abs_peak_count) / (double)s->nb_channels); if (s->measure_overall & MEASURE_NOISE_FLOOR) set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor)); if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels); if (s->measure_overall & MEASURE_ENTROPY) set_meta(metadata, 0, "Overall.Entropy", "%f", entropy / (double)s->nb_channels); if (s->measure_overall & MEASURE_BIT_DEPTH) { bit_depth(s, mask, depth); set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth[0]); set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth[1]); set_meta(metadata, 0, "Overall.Bit_depth3", "%f", depth[2]); set_meta(metadata, 0, "Overall.Bit_depth4", "%f", depth[3]); } if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels); } #define UPDATE_STATS_P(type, update_func, update_float, channel_func) \ for (int c = start; c < end; c++) { \ ChannelStats *p = &s->chstats[c]; \ const type *src = (const type *)data[c]; \ const type * const srcend = src + samples; \ for (; src < srcend; src++) { \ update_func; \ update_float; \ } \ channel_func; \ } #define UPDATE_STATS_I(type, update_func, update_float, channel_func) \ for (int c = start; c < end; c++) { \ ChannelStats *p = &s->chstats[c]; \ const type *src = (const type *)data[0]; \ const type * const srcend = src + samples * channels; \ for (src += c; src < srcend; src += channels) { \ update_func; \ update_float; \ } \ channel_func; \ } #define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \ if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \ UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \ } else { \ UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \ } static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AudioStatsContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFrame *buf = arg; const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data; const int channels = s->nb_channels; const int samples = buf->nb_samples; const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs; const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; switch (inlink->format) { case AV_SAMPLE_FMT_DBLP: UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63))); break; case AV_SAMPLE_FMT_DBL: UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63))); break; case AV_SAMPLE_FMT_FLTP: UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31))); break; case AV_SAMPLE_FMT_FLT: UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31))); break; case AV_SAMPLE_FMT_S64P: UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src); break; case AV_SAMPLE_FMT_S64: UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src); break; case AV_SAMPLE_FMT_S32P: UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src); break; case AV_SAMPLE_FMT_S32: UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src); break; case AV_SAMPLE_FMT_S16P: UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src); break; case AV_SAMPLE_FMT_S16: UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src); break; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *buf) { AVFilterContext *ctx = inlink->dst; AudioStatsContext *s = ctx->priv; AVDictionary **metadata = &buf->metadata; if (s->reset_count > 0) { if (s->nb_frames >= s->reset_count) { reset_stats(s); s->nb_frames = 0; } s->nb_frames++; } if (s->used == 0) s->used = buf->nb_samples > 0; ff_filter_execute(ctx, filter_channel, buf, NULL, FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); if (s->metadata) set_metadata(s, metadata); return ff_filter_frame(inlink->dst->outputs[0], buf); } static void print_stats(AVFilterContext *ctx) { AudioStatsContext *s = ctx->priv; uint64_t mask[4], min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0, abs_peak_count = 0; double min_runs = 0, max_runs = 0, min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, nmin = DBL_MAX, nmax =-DBL_MAX, max_sigma_x = 0, diff1_sum_x2 = 0, diff1_sum = 0, sigma_x2 = 0, noise_floor = 0, entropy = 0, min_sigma_x2 = DBL_MAX, max_sigma_x2 =-DBL_MAX; uint8_t depth[4]; int c; mask[0] = 0; mask[1] = 0; mask[2] =~0; mask[3] = 0; for (c = 0; c < s->nb_channels; c++) { ChannelStats *p = &s->chstats[c]; if (p->nb_samples == 0 && !s->used) continue; if (p->nb_samples < s->tc_samples) p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; min = FFMIN(min, p->min); max = FFMAX(max, p->max); nmin = FFMIN(nmin, p->nmin); nmax = FFMAX(nmax, p->nmax); min_diff = FFMIN(min_diff, p->min_diff); max_diff = FFMAX(max_diff, p->max_diff); diff1_sum_x2 += p->diff1_sum_x2; diff1_sum += p->diff1_sum; min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); sigma_x2 += p->sigma_x2; noise_floor = FFMAX(noise_floor, p->noise_floor); p->entropy = calc_entropy(s, p); entropy += p->entropy; min_count += p->min_count; max_count += p->max_count; abs_peak_count += p->abs_peak_count; noise_floor_count += p->noise_floor_count; min_runs += p->min_runs; max_runs += p->max_runs; mask[0] |= p->mask[0]; mask[1] |= p->mask[1]; mask[2] &= p->mask[2]; mask[3] |= p->mask[3]; nb_samples += p->nb_samples; nb_nans += p->nb_nans; nb_infs += p->nb_infs; nb_denormals += p->nb_denormals; if (fabs(p->sigma_x) > fabs(max_sigma_x)) max_sigma_x = p->sigma_x; if (s->measure_perchannel != MEASURE_NONE) av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1); if (s->measure_perchannel & MEASURE_DC_OFFSET) av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples); if (s->measure_perchannel & MEASURE_MIN_LEVEL) av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min); if (s->measure_perchannel & MEASURE_MAX_LEVEL) av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max); if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff); if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff); if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1)); if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); if (s->measure_perchannel & MEASURE_PEAK_LEVEL) av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); if (s->measure_perchannel & MEASURE_RMS_LEVEL) av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); if (s->measure_perchannel & MEASURE_RMS_PEAK) av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); if (s->measure_perchannel & MEASURE_RMS_TROUGH) if (p->min_sigma_x2 != 1) av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2))); if (s->measure_perchannel & MEASURE_CREST_FACTOR) av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1); if (s->measure_perchannel & MEASURE_FLAT_FACTOR) av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); if (s->measure_perchannel & MEASURE_PEAK_COUNT) av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count); if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT) av_log(ctx, AV_LOG_INFO, "Abs Peak count: %"PRId64"\n", p->abs_peak_count); if (s->measure_perchannel & MEASURE_NOISE_FLOOR) av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor)); if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count); if (s->measure_perchannel & MEASURE_ENTROPY) av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", p->entropy); if (s->measure_perchannel & MEASURE_BIT_DEPTH) { bit_depth(s, p->mask, depth); av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u/%u/%u\n", depth[0], depth[1], depth[2], depth[3]); } if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs); if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs); if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals); } if (nb_samples == 0 && !s->used) return; if (s->measure_overall != MEASURE_NONE) av_log(ctx, AV_LOG_INFO, "Overall\n"); if (s->measure_overall & MEASURE_DC_OFFSET) av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels)); if (s->measure_overall & MEASURE_MIN_LEVEL) av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min); if (s->measure_overall & MEASURE_MAX_LEVEL) av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max); if (s->measure_overall & MEASURE_MIN_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff); if (s->measure_overall & MEASURE_MAX_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff); if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels)); if (s->measure_overall & MEASURE_RMS_DIFFERENCE) av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); if (s->measure_overall & MEASURE_PEAK_LEVEL) av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax))); if (s->measure_overall & MEASURE_RMS_LEVEL) av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); if (s->measure_overall & MEASURE_RMS_PEAK) av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2))); if (s->measure_overall & MEASURE_RMS_TROUGH) if (min_sigma_x2 != 1) av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2))); if (s->measure_overall & MEASURE_FLAT_FACTOR) av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); if (s->measure_overall & MEASURE_PEAK_COUNT) av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels); if (s->measure_overall & MEASURE_ABS_PEAK_COUNT) av_log(ctx, AV_LOG_INFO, "Abs Peak count: %f\n", abs_peak_count / (double)s->nb_channels); if (s->measure_overall & MEASURE_NOISE_FLOOR) av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor)); if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels); if (s->measure_overall & MEASURE_ENTROPY) av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", entropy / (double)s->nb_channels); if (s->measure_overall & MEASURE_BIT_DEPTH) { bit_depth(s, mask, depth); av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u/%u/%u\n", depth[0], depth[1], depth[2], depth[3]); } if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels); if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels); } static av_cold void uninit(AVFilterContext *ctx) { AudioStatsContext *s = ctx->priv; if (s->nb_channels) print_stats(ctx); if (s->chstats) { for (int i = 0; i < s->nb_channels; i++) { ChannelStats *p = &s->chstats[i]; av_freep(&p->win_samples); av_freep(&p->sorted_samples); } } av_freep(&s->chstats); } static const AVFilterPad astats_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, }, }; static const AVFilterPad astats_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, }; const AVFilter ff_af_astats = { .name = "astats", .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."), .priv_size = sizeof(AudioStatsContext), .priv_class = &astats_class, .uninit = uninit, FILTER_INPUTS(astats_inputs), FILTER_OUTPUTS(astats_outputs), FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P, AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP), .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY, };