/* * H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 motion vector predicion. * @author Michael Niedermayer */ #ifndef AVCODEC_H264_MVPRED_H #define AVCODEC_H264_MVPRED_H #include "internal.h" #include "avcodec.h" #include "h264.h" #include "mpegutils.h" #include "libavutil/avassert.h" static av_always_inline int fetch_diagonal_mv(const H264Context *h, H264SliceContext *sl, const int16_t **C, int i, int list, int part_width) { const int topright_ref = sl->ref_cache[list][i - 8 + part_width]; /* there is no consistent mapping of mvs to neighboring locations that will * make mbaff happy, so we can't move all this logic to fill_caches */ if (FRAME_MBAFF(h)) { #define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4) \ const int xy = XY, y4 = Y4; \ const int mb_type = mb_types[xy + (y4 >> 2) * h->mb_stride]; \ if (!USES_LIST(mb_type, list)) \ return LIST_NOT_USED; \ mv = h->cur_pic_ptr->motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \ sl->mv_cache[list][scan8[0] - 2][0] = mv[0]; \ sl->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP; \ return h->cur_pic_ptr->ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP; if (topright_ref == PART_NOT_AVAILABLE && i >= scan8[0] + 8 && (i & 7) == 4 && sl->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) { const uint32_t *mb_types = h->cur_pic_ptr->mb_type; const int16_t *mv; AV_ZERO32(sl->mv_cache[list][scan8[0] - 2]); *C = sl->mv_cache[list][scan8[0] - 2]; if (!MB_FIELD(sl) && IS_INTERLACED(sl->left_type[0])) { SET_DIAG_MV(* 2, >> 1, sl->left_mb_xy[0] + h->mb_stride, (sl->mb_y & 1) * 2 + (i >> 5)); } if (MB_FIELD(sl) && !IS_INTERLACED(sl->left_type[0])) { // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK. SET_DIAG_MV(/ 2, *2, sl->left_mb_xy[i >= 36], ((i >> 2)) & 3); } } #undef SET_DIAG_MV } if (topright_ref != PART_NOT_AVAILABLE) { *C = sl->mv_cache[list][i - 8 + part_width]; return topright_ref; } else { ff_tlog(h->avctx, "topright MV not available\n"); *C = sl->mv_cache[list][i - 8 - 1]; return sl->ref_cache[list][i - 8 - 1]; } } /** * Get the predicted MV. * @param n the block index * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4) * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_motion(const H264Context *const h, H264SliceContext *sl, int n, int part_width, int list, int ref, int *const mx, int *const my) { const int index8 = scan8[n]; const int top_ref = sl->ref_cache[list][index8 - 8]; const int left_ref = sl->ref_cache[list][index8 - 1]; const int16_t *const A = sl->mv_cache[list][index8 - 1]; const int16_t *const B = sl->mv_cache[list][index8 - 8]; const int16_t *C; int diagonal_ref, match_count; av_assert2(part_width == 1 || part_width == 2 || part_width == 4); /* mv_cache * B . . A T T T T * U . . L . . , . * U . . L . . . . * U . . L . . , . * . . . L . . . . */ diagonal_ref = fetch_diagonal_mv(h, sl, &C, index8, list, part_width); match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref); ff_tlog(h->avctx, "pred_motion match_count=%d\n", match_count); if (match_count > 1) { //most common *mx = mid_pred(A[0], B[0], C[0]); *my = mid_pred(A[1], B[1], C[1]); } else if (match_count == 1) { if (left_ref == ref) { *mx = A[0]; *my = A[1]; } else if (top_ref == ref) { *mx = B[0]; *my = B[1]; } else { *mx = C[0]; *my = C[1]; } } else { if (top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE) { *mx = A[0]; *my = A[1]; } else { *mx = mid_pred(A[0], B[0], C[0]); *my = mid_pred(A[1], B[1], C[1]); } } ff_tlog(h->avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, sl->mb_x, sl->mb_y, n, list); } /** * Get the directionally predicted 16x8 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_16x8_motion(const H264Context *const h, H264SliceContext *sl, int n, int list, int ref, int *const mx, int *const my) { if (n == 0) { const int top_ref = sl->ref_cache[list][scan8[0] - 8]; const int16_t *const B = sl->mv_cache[list][scan8[0] - 8]; ff_tlog(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], sl->mb_x, sl->mb_y, n, list); if (top_ref == ref) { *mx = B[0]; *my = B[1]; return; } } else { const int left_ref = sl->ref_cache[list][scan8[8] - 1]; const int16_t *const A = sl->mv_cache[list][scan8[8] - 1]; ff_tlog(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], sl->mb_x, sl->mb_y, n, list); if (left_ref == ref) { *mx = A[0]; *my = A[1]; return; } } //RARE pred_motion(h, sl, n, 4, list, ref, mx, my); } /** * Get the directionally predicted 8x16 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_8x16_motion(const H264Context *const h, H264SliceContext *sl, int n, int list, int ref, int *const mx, int *const my) { if (n == 0) { const int left_ref = sl->ref_cache[list][scan8[0] - 1]; const int16_t *const A = sl->mv_cache[list][scan8[0] - 1]; ff_tlog(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], sl->mb_x, sl->mb_y, n, list); if (left_ref == ref) { *mx = A[0]; *my = A[1]; return; } } else { const int16_t *C; int diagonal_ref; diagonal_ref = fetch_diagonal_mv(h, sl, &C, scan8[4], list, 2); ff_tlog(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], sl->mb_x, sl->mb_y, n, list); if (diagonal_ref == ref) { *mx = C[0]; *my = C[1]; return; } } //RARE pred_motion(h, sl, n, 2, list, ref, mx, my); } #define FIX_MV_MBAFF(type, refn, mvn, idx) \ if (FRAME_MBAFF(h)) { \ if (MB_FIELD(sl)) { \ if (!IS_INTERLACED(type)) { \ refn <<= 1; \ AV_COPY32(mvbuf[idx], mvn); \ mvbuf[idx][1] /= 2; \ mvn = mvbuf[idx]; \ } \ } else { \ if (IS_INTERLACED(type)) { \ refn >>= 1; \ AV_COPY32(mvbuf[idx], mvn); \ mvbuf[idx][1] *= 2; \ mvn = mvbuf[idx]; \ } \ } \ } static av_always_inline void pred_pskip_motion(const H264Context *const h, H264SliceContext *sl) { DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 }; DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2]; int8_t *ref = h->cur_pic.ref_index[0]; int16_t(*mv)[2] = h->cur_pic.motion_val[0]; int top_ref, left_ref, diagonal_ref, match_count, mx, my; const int16_t *A, *B, *C; int b_stride = h->b_stride; fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); /* To avoid doing an entire fill_decode_caches, we inline the relevant * parts here. * FIXME: this is a partial duplicate of the logic in fill_decode_caches, * but it's faster this way. Is there a way to avoid this duplication? */ if (USES_LIST(sl->left_type[LTOP], 0)) { left_ref = ref[4 * sl->left_mb_xy[LTOP] + 1 + (sl->left_block[0] & ~1)]; A = mv[h->mb2b_xy[sl->left_mb_xy[LTOP]] + 3 + b_stride * sl->left_block[0]]; FIX_MV_MBAFF(sl->left_type[LTOP], left_ref, A, 0); if (!(left_ref | AV_RN32A(A))) goto zeromv; } else if (sl->left_type[LTOP]) { left_ref = LIST_NOT_USED; A = zeromv; } else { goto zeromv; } if (USES_LIST(sl->top_type, 0)) { top_ref = ref[4 * sl->top_mb_xy + 2]; B = mv[h->mb2b_xy[sl->top_mb_xy] + 3 * b_stride]; FIX_MV_MBAFF(sl->top_type, top_ref, B, 1); if (!(top_ref | AV_RN32A(B))) goto zeromv; } else if (sl->top_type) { top_ref = LIST_NOT_USED; B = zeromv; } else { goto zeromv; } ff_tlog(h->avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, sl->mb_x, sl->mb_y); if (USES_LIST(sl->topright_type, 0)) { diagonal_ref = ref[4 * sl->topright_mb_xy + 2]; C = mv[h->mb2b_xy[sl->topright_mb_xy] + 3 * b_stride]; FIX_MV_MBAFF(sl->topright_type, diagonal_ref, C, 2); } else if (sl->topright_type) { diagonal_ref = LIST_NOT_USED; C = zeromv; } else { if (USES_LIST(sl->topleft_type, 0)) { diagonal_ref = ref[4 * sl->topleft_mb_xy + 1 + (sl->topleft_partition & 2)]; C = mv[h->mb2b_xy[sl->topleft_mb_xy] + 3 + b_stride + (sl->topleft_partition & 2 * b_stride)]; FIX_MV_MBAFF(sl->topleft_type, diagonal_ref, C, 2); } else if (sl->topleft_type) { diagonal_ref = LIST_NOT_USED; C = zeromv; } else { diagonal_ref = PART_NOT_AVAILABLE; C = zeromv; } } match_count = !diagonal_ref + !top_ref + !left_ref; ff_tlog(h->avctx, "pred_pskip_motion match_count=%d\n", match_count); if (match_count > 1) { mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); } else if (match_count == 1) { if (!left_ref) { mx = A[0]; my = A[1]; } else if (!top_ref) { mx = B[0]; my = B[1]; } else { mx = C[0]; my = C[1]; } } else { mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); } fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4); return; zeromv: fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4); return; } static void fill_decode_neighbors(const H264Context *h, H264SliceContext *sl, int mb_type) { const int mb_xy = sl->mb_xy; int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; static const uint8_t left_block_options[4][32] = { { 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 }, { 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 }, { 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }, { 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 } }; sl->topleft_partition = -1; top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl)); /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ topleft_xy = top_xy - 1; topright_xy = top_xy + 1; left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; sl->left_block = left_block_options[0]; if (FRAME_MBAFF(h)) { const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if (sl->mb_y & 1) { if (left_mb_field_flag != curr_mb_field_flag) { left_xy[LBOT] = left_xy[LTOP] = mb_xy - h->mb_stride - 1; if (curr_mb_field_flag) { left_xy[LBOT] += h->mb_stride; sl->left_block = left_block_options[3]; } else { topleft_xy += h->mb_stride; /* take top left mv from the middle of the mb, as opposed * to all other modes which use the bottom right partition */ sl->topleft_partition = 0; sl->left_block = left_block_options[1]; } } } else { if (curr_mb_field_flag) { topleft_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy - 1] >> 7) & 1) - 1); topright_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy + 1] >> 7) & 1) - 1); top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1); } if (left_mb_field_flag != curr_mb_field_flag) { if (curr_mb_field_flag) { left_xy[LBOT] += h->mb_stride; sl->left_block = left_block_options[3]; } else { sl->left_block = left_block_options[2]; } } } } sl->topleft_mb_xy = topleft_xy; sl->top_mb_xy = top_xy; sl->topright_mb_xy = topright_xy; sl->left_mb_xy[LTOP] = left_xy[LTOP]; sl->left_mb_xy[LBOT] = left_xy[LBOT]; //FIXME do we need all in the context? sl->topleft_type = h->cur_pic.mb_type[topleft_xy]; sl->top_type = h->cur_pic.mb_type[top_xy]; sl->topright_type = h->cur_pic.mb_type[topright_xy]; sl->left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]]; sl->left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]]; if (FMO) { if (h->slice_table[topleft_xy] != sl->slice_num) sl->topleft_type = 0; if (h->slice_table[top_xy] != sl->slice_num) sl->top_type = 0; if (h->slice_table[left_xy[LTOP]] != sl->slice_num) sl->left_type[LTOP] = sl->left_type[LBOT] = 0; } else { if (h->slice_table[topleft_xy] != sl->slice_num) { sl->topleft_type = 0; if (h->slice_table[top_xy] != sl->slice_num) sl->top_type = 0; if (h->slice_table[left_xy[LTOP]] != sl->slice_num) sl->left_type[LTOP] = sl->left_type[LBOT] = 0; } } if (h->slice_table[topright_xy] != sl->slice_num) sl->topright_type = 0; } static void fill_decode_caches(const H264Context *h, H264SliceContext *sl, int mb_type) { int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; int topleft_type, top_type, topright_type, left_type[LEFT_MBS]; const uint8_t *left_block = sl->left_block; int i; uint8_t *nnz; uint8_t *nnz_cache; topleft_xy = sl->topleft_mb_xy; top_xy = sl->top_mb_xy; topright_xy = sl->topright_mb_xy; left_xy[LTOP] = sl->left_mb_xy[LTOP]; left_xy[LBOT] = sl->left_mb_xy[LBOT]; topleft_type = sl->topleft_type; top_type = sl->top_type; topright_type = sl->topright_type; left_type[LTOP] = sl->left_type[LTOP]; left_type[LBOT] = sl->left_type[LBOT]; if (!IS_SKIP(mb_type)) { if (IS_INTRA(mb_type)) { int type_mask = h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; sl->topleft_samples_available = sl->top_samples_available = sl->left_samples_available = 0xFFFF; sl->topright_samples_available = 0xEEEA; if (!(top_type & type_mask)) { sl->topleft_samples_available = 0xB3FF; sl->top_samples_available = 0x33FF; sl->topright_samples_available = 0x26EA; } if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) { if (IS_INTERLACED(mb_type)) { if (!(left_type[LTOP] & type_mask)) { sl->topleft_samples_available &= 0xDFFF; sl->left_samples_available &= 0x5FFF; } if (!(left_type[LBOT] & type_mask)) { sl->topleft_samples_available &= 0xFF5F; sl->left_samples_available &= 0xFF5F; } } else { int left_typei = h->cur_pic.mb_type[left_xy[LTOP] + h->mb_stride]; av_assert2(left_xy[LTOP] == left_xy[LBOT]); if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) { sl->topleft_samples_available &= 0xDF5F; sl->left_samples_available &= 0x5F5F; } } } else { if (!(left_type[LTOP] & type_mask)) { sl->topleft_samples_available &= 0xDF5F; sl->left_samples_available &= 0x5F5F; } } if (!(topleft_type & type_mask)) sl->topleft_samples_available &= 0x7FFF; if (!(topright_type & type_mask)) sl->topright_samples_available &= 0xFBFF; if (IS_INTRA4x4(mb_type)) { if (IS_INTRA4x4(top_type)) { AV_COPY32(sl->intra4x4_pred_mode_cache + 4 + 8 * 0, sl->intra4x4_pred_mode + h->mb2br_xy[top_xy]); } else { sl->intra4x4_pred_mode_cache[4 + 8 * 0] = sl->intra4x4_pred_mode_cache[5 + 8 * 0] = sl->intra4x4_pred_mode_cache[6 + 8 * 0] = sl->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask); } for (i = 0; i < 2; i++) { if (IS_INTRA4x4(left_type[LEFT(i)])) { int8_t *mode = sl->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]]; sl->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]]; sl->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]]; } else { sl->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = sl->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask); } } } } /* * 0 . T T. T T T T * 1 L . .L . . . . * 2 L . .L . . . . * 3 . T TL . . . . * 4 L . .L . . . . * 5 L . .. . . . . */ /* FIXME: constraint_intra_pred & partitioning & nnz * (let us hope this is just a typo in the spec) */ nnz_cache = sl->non_zero_count_cache; if (top_type) { nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]); if (!h->chroma_y_shift) { AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 7]); AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]); } else { AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 5]); AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]); } } else { uint32_t top_empty = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 0x40404040; AV_WN32A(&nnz_cache[4 + 8 * 0], top_empty); AV_WN32A(&nnz_cache[4 + 8 * 5], top_empty); AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty); } for (i = 0; i < 2; i++) { if (left_type[LEFT(i)]) { nnz = h->non_zero_count[left_xy[LEFT(i)]]; nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]]; nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]]; if (CHROMA444(h)) { nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4]; nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4]; nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4]; nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4]; } else if (CHROMA422(h)) { nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4]; nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4]; nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4]; nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4]; } else { nnz_cache[3 + 8 * 6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]]; nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]]; } } else { nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 64; } } if (CABAC(h)) { // top_cbp if (top_type) sl->top_cbp = h->cbp_table[top_xy]; else sl->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; // left_cbp if (left_type[LTOP]) { sl->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) | ((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) | (((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2); } else { sl->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; } } } if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && sl->direct_spatial_mv_pred)) { int list; int b_stride = h->b_stride; for (list = 0; list < sl->list_count; list++) { int8_t *ref_cache = &sl->ref_cache[list][scan8[0]]; int8_t *ref = h->cur_pic.ref_index[list]; int16_t(*mv_cache)[2] = &sl->mv_cache[list][scan8[0]]; int16_t(*mv)[2] = h->cur_pic.motion_val[list]; if (!USES_LIST(mb_type, list)) continue; av_assert2(!(IS_DIRECT(mb_type) && !sl->direct_spatial_mv_pred)); if (USES_LIST(top_type, list)) { const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]); ref_cache[0 - 1 * 8] = ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2]; ref_cache[2 - 1 * 8] = ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3]; } else { AV_ZERO128(mv_cache[0 - 1 * 8]); AV_WN32A(&ref_cache[0 - 1 * 8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u); } if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) { for (i = 0; i < 2; i++) { int cache_idx = -1 + i * 2 * 8; if (USES_LIST(left_type[LEFT(i)], list)) { const int b_xy = h->mb2b_xy[left_xy[LEFT(i)]] + 3; const int b8_xy = 4 * left_xy[LEFT(i)] + 1; AV_COPY32(mv_cache[cache_idx], mv[b_xy + b_stride * left_block[0 + i * 2]]); AV_COPY32(mv_cache[cache_idx + 8], mv[b_xy + b_stride * left_block[1 + i * 2]]); ref_cache[cache_idx] = ref[b8_xy + (left_block[0 + i * 2] & ~1)]; ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)]; } else { AV_ZERO32(mv_cache[cache_idx]); AV_ZERO32(mv_cache[cache_idx + 8]); ref_cache[cache_idx] = ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } } else { if (USES_LIST(left_type[LTOP], list)) { const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy = 4 * left_xy[LTOP] + 1; AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]); ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)]; } else { AV_ZERO32(mv_cache[-1]); ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if (USES_LIST(topright_type, list)) { const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride; AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]); ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2]; } else { AV_ZERO32(mv_cache[4 - 1 * 8]); ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(ref_cache[2 - 1*8] < 0 || ref_cache[4 - 1 * 8] < 0) { if (USES_LIST(topleft_type, list)) { const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride + (sl->topleft_partition & 2 * b_stride); const int b8_xy = 4 * topleft_xy + 1 + (sl->topleft_partition & 2); AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]); ref_cache[-1 - 1 * 8] = ref[b8_xy]; } else { AV_ZERO32(mv_cache[-1 - 1 * 8]); ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF(h)) continue; if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) { uint8_t(*mvd_cache)[2] = &sl->mvd_cache[list][scan8[0]]; uint8_t(*mvd)[2] = sl->mvd_table[list]; ref_cache[2 + 8 * 0] = ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE; AV_ZERO32(mv_cache[2 + 8 * 0]); AV_ZERO32(mv_cache[2 + 8 * 2]); if (CABAC(h)) { if (USES_LIST(top_type, list)) { const int b_xy = h->mb2br_xy[top_xy]; AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]); } else { AV_ZERO64(mvd_cache[0 - 1 * 8]); } if (USES_LIST(left_type[LTOP], list)) { const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6; AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]); AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]); } else { AV_ZERO16(mvd_cache[-1 + 0 * 8]); AV_ZERO16(mvd_cache[-1 + 1 * 8]); } if (USES_LIST(left_type[LBOT], list)) { const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6; AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]); AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]); } else { AV_ZERO16(mvd_cache[-1 + 2 * 8]); AV_ZERO16(mvd_cache[-1 + 3 * 8]); } AV_ZERO16(mvd_cache[2 + 8 * 0]); AV_ZERO16(mvd_cache[2 + 8 * 2]); if (sl->slice_type_nos == AV_PICTURE_TYPE_B) { uint8_t *direct_cache = &sl->direct_cache[scan8[0]]; uint8_t *direct_table = h->direct_table; fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1); if (IS_DIRECT(top_type)) { AV_WN32A(&direct_cache[-1 * 8], 0x01010101u * (MB_TYPE_DIRECT2 >> 1)); } else if (IS_8X8(top_type)) { int b8_xy = 4 * top_xy; direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2]; direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3]; } else { AV_WN32A(&direct_cache[-1 * 8], 0x01010101 * (MB_TYPE_16x16 >> 1)); } if (IS_DIRECT(left_type[LTOP])) direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1; else if (IS_8X8(left_type[LTOP])) direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)]; else direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1; if (IS_DIRECT(left_type[LBOT])) direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1; else if (IS_8X8(left_type[LBOT])) direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)]; else direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1; } } } #define MAP_MVS \ MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type) \ MAP_F2F(scan8[0] + 0 - 1 * 8, top_type) \ MAP_F2F(scan8[0] + 1 - 1 * 8, top_type) \ MAP_F2F(scan8[0] + 2 - 1 * 8, top_type) \ MAP_F2F(scan8[0] + 3 - 1 * 8, top_type) \ MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type) \ MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP]) \ MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP]) \ MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT]) \ MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT]) if (FRAME_MBAFF(h)) { if (MB_FIELD(sl)) { #define MAP_F2F(idx, mb_type) \ if (!IS_INTERLACED(mb_type) && sl->ref_cache[list][idx] >= 0) { \ sl->ref_cache[list][idx] *= 2; \ sl->mv_cache[list][idx][1] /= 2; \ sl->mvd_cache[list][idx][1] >>= 1; \ } MAP_MVS } else { #undef MAP_F2F #define MAP_F2F(idx, mb_type) \ if (IS_INTERLACED(mb_type) && sl->ref_cache[list][idx] >= 0) { \ sl->ref_cache[list][idx] >>= 1; \ sl->mv_cache[list][idx][1] *= 2; \ sl->mvd_cache[list][idx][1] <<= 1; \ } MAP_MVS #undef MAP_F2F } } } } sl->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]); } /** * decodes a P_SKIP or B_SKIP macroblock */ static void av_unused decode_mb_skip(const H264Context *h, H264SliceContext *sl) { const int mb_xy = sl->mb_xy; int mb_type = 0; memset(h->non_zero_count[mb_xy], 0, 48); if (MB_FIELD(sl)) mb_type |= MB_TYPE_INTERLACED; if (sl->slice_type_nos == AV_PICTURE_TYPE_B) { // just for fill_caches. pred_direct_motion will set the real mb_type mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP; if (sl->direct_spatial_mv_pred) { fill_decode_neighbors(h, sl, mb_type); fill_decode_caches(h, sl, mb_type); //FIXME check what is needed and what not ... } ff_h264_pred_direct_motion(h, sl, &mb_type); mb_type |= MB_TYPE_SKIP; } else { mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP; fill_decode_neighbors(h, sl, mb_type); pred_pskip_motion(h, sl); } write_back_motion(h, sl, mb_type); h->cur_pic.mb_type[mb_xy] = mb_type; h->cur_pic.qscale_table[mb_xy] = sl->qscale; h->slice_table[mb_xy] = sl->slice_num; sl->prev_mb_skipped = 1; } #endif /* AVCODEC_H264_MVPRED_H */