/* * Copyright (c) 2010 Mark Heath mjpeg0 @ silicontrip dot org * Copyright (c) 2014 Clément Bœsch * Copyright (c) 2014 Dave Rice @dericed * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/intreadwrite.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "filters.h" #include "internal.h" enum FilterMode { FILTER_NONE = -1, FILTER_TOUT, FILTER_VREP, FILTER_BRNG, FILT_NUMB }; typedef struct SignalstatsContext { const AVClass *class; int chromah; // height of chroma plane int chromaw; // width of chroma plane int hsub; // horizontal subsampling int vsub; // vertical subsampling int depth; // pixel depth int fs; // pixel count per frame int cfs; // pixel count per frame of chroma planes int outfilter; // FilterMode int filters; AVFrame *frame_prev; uint8_t rgba_color[4]; int yuv_color[3]; int nb_jobs; int *jobs_rets; int maxsize; // history stats array size int *histy, *histu, *histv, *histsat; AVFrame *frame_sat; AVFrame *frame_hue; } SignalstatsContext; typedef struct ThreadData { const AVFrame *in; AVFrame *out; } ThreadData; typedef struct ThreadDataHueSatMetrics { const AVFrame *src; AVFrame *dst_sat, *dst_hue; } ThreadDataHueSatMetrics; #define OFFSET(x) offsetof(SignalstatsContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption signalstats_options[] = { {"stat", "set statistics filters", OFFSET(filters), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "filters"}, {"tout", "analyze pixels for temporal outliers", 0, AV_OPT_TYPE_CONST, {.i64=1<priv; if (s->outfilter != FILTER_NONE) s->filters |= 1 << s->outfilter; r = s->rgba_color[0]; g = s->rgba_color[1]; b = s->rgba_color[2]; s->yuv_color[0] = (( 66*r + 129*g + 25*b + (1<<7)) >> 8) + 16; s->yuv_color[1] = ((-38*r + -74*g + 112*b + (1<<7)) >> 8) + 128; s->yuv_color[2] = ((112*r + -94*g + -18*b + (1<<7)) >> 8) + 128; return 0; } static av_cold void uninit(AVFilterContext *ctx) { SignalstatsContext *s = ctx->priv; av_frame_free(&s->frame_prev); av_frame_free(&s->frame_sat); av_frame_free(&s->frame_hue); av_freep(&s->jobs_rets); av_freep(&s->histy); av_freep(&s->histu); av_freep(&s->histv); av_freep(&s->histsat); } // TODO: add more static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_NONE }; static AVFrame *alloc_frame(enum AVPixelFormat pixfmt, int w, int h) { AVFrame *frame = av_frame_alloc(); if (!frame) return NULL; frame->format = pixfmt; frame->width = w; frame->height = h; if (av_frame_get_buffer(frame, 0) < 0) { av_frame_free(&frame); return NULL; } return frame; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SignalstatsContext *s = ctx->priv; AVFilterLink *inlink = outlink->src->inputs[0]; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format); s->hsub = desc->log2_chroma_w; s->vsub = desc->log2_chroma_h; s->depth = desc->comp[0].depth; s->maxsize = 1 << s->depth; s->histy = av_malloc_array(s->maxsize, sizeof(*s->histy)); s->histu = av_malloc_array(s->maxsize, sizeof(*s->histu)); s->histv = av_malloc_array(s->maxsize, sizeof(*s->histv)); s->histsat = av_malloc_array(s->maxsize, sizeof(*s->histsat)); if (!s->histy || !s->histu || !s->histv || !s->histsat) return AVERROR(ENOMEM); outlink->w = inlink->w; outlink->h = inlink->h; s->chromaw = AV_CEIL_RSHIFT(inlink->w, s->hsub); s->chromah = AV_CEIL_RSHIFT(inlink->h, s->vsub); s->fs = inlink->w * inlink->h; s->cfs = s->chromaw * s->chromah; s->nb_jobs = FFMAX(1, FFMIN(inlink->h, ff_filter_get_nb_threads(ctx))); s->jobs_rets = av_malloc_array(s->nb_jobs, sizeof(*s->jobs_rets)); if (!s->jobs_rets) return AVERROR(ENOMEM); s->frame_sat = alloc_frame(s->depth > 8 ? AV_PIX_FMT_GRAY16 : AV_PIX_FMT_GRAY8, inlink->w, inlink->h); s->frame_hue = alloc_frame(AV_PIX_FMT_GRAY16, inlink->w, inlink->h); if (!s->frame_sat || !s->frame_hue) return AVERROR(ENOMEM); return 0; } static void burn_frame8(const SignalstatsContext *s, AVFrame *f, int x, int y) { const int chromax = x >> s->hsub; const int chromay = y >> s->vsub; f->data[0][y * f->linesize[0] + x] = s->yuv_color[0]; f->data[1][chromay * f->linesize[1] + chromax] = s->yuv_color[1]; f->data[2][chromay * f->linesize[2] + chromax] = s->yuv_color[2]; } static void burn_frame16(const SignalstatsContext *s, AVFrame *f, int x, int y) { const int chromax = x >> s->hsub; const int chromay = y >> s->vsub; const int mult = 1 << (s->depth - 8); AV_WN16(f->data[0] + y * f->linesize[0] + x * 2, s->yuv_color[0] * mult); AV_WN16(f->data[1] + chromay * f->linesize[1] + chromax * 2, s->yuv_color[1] * mult); AV_WN16(f->data[2] + chromay * f->linesize[2] + chromax * 2, s->yuv_color[2] * mult); } static int filter8_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; int x, y, score = 0; for (y = slice_start; y < slice_end; y++) { const int yc = y >> s->vsub; const uint8_t *pluma = &in->data[0][y * in->linesize[0]]; const uint8_t *pchromau = &in->data[1][yc * in->linesize[1]]; const uint8_t *pchromav = &in->data[2][yc * in->linesize[2]]; for (x = 0; x < w; x++) { const int xc = x >> s->hsub; const int luma = pluma[x]; const int chromau = pchromau[xc]; const int chromav = pchromav[xc]; const int filt = luma < 16 || luma > 235 || chromau < 16 || chromau > 240 || chromav < 16 || chromav > 240; score += filt; if (out && filt) burn_frame8(s, out, x, y); } } return score; } static int filter16_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int mult = 1 << (s->depth - 8); const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; int x, y, score = 0; for (y = slice_start; y < slice_end; y++) { const int yc = y >> s->vsub; const uint16_t *pluma = (uint16_t *)&in->data[0][y * in->linesize[0]]; const uint16_t *pchromau = (uint16_t *)&in->data[1][yc * in->linesize[1]]; const uint16_t *pchromav = (uint16_t *)&in->data[2][yc * in->linesize[2]]; for (x = 0; x < w; x++) { const int xc = x >> s->hsub; const int luma = pluma[x]; const int chromau = pchromau[xc]; const int chromav = pchromav[xc]; const int filt = luma < 16 * mult || luma > 235 * mult || chromau < 16 * mult || chromau > 240 * mult || chromav < 16 * mult || chromav > 240 * mult; score += filt; if (out && filt) burn_frame16(s, out, x, y); } } return score; } static int filter_tout_outlier(uint8_t x, uint8_t y, uint8_t z) { return ((abs(x - y) + abs (z - y)) / 2) - abs(z - x) > 4; // make 4 configurable? } static int filter8_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; const uint8_t *p = in->data[0]; int lw = in->linesize[0]; int x, y, score = 0, filt; for (y = slice_start; y < slice_end; y++) { if (y - 1 < 0 || y + 1 >= h) continue; // detect two pixels above and below (to eliminate interlace artefacts) // should check that video format is infact interlaced. #define FILTER(i, j) \ filter_tout_outlier(p[(y-j) * lw + x + i], \ p[ y * lw + x + i], \ p[(y+j) * lw + x + i]) #define FILTER3(j) (FILTER(-1, j) && FILTER(0, j) && FILTER(1, j)) if (y - 2 >= 0 && y + 2 < h) { for (x = 1; x < w - 1; x++) { filt = FILTER3(2) && FILTER3(1); score += filt; if (filt && out) burn_frame8(s, out, x, y); } } else { for (x = 1; x < w - 1; x++) { filt = FILTER3(1); score += filt; if (filt && out) burn_frame8(s, out, x, y); } } } return score; } static int filter16_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; const uint16_t *p = (uint16_t *)in->data[0]; int lw = in->linesize[0] / 2; int x, y, score = 0, filt; for (y = slice_start; y < slice_end; y++) { if (y - 1 < 0 || y + 1 >= h) continue; // detect two pixels above and below (to eliminate interlace artefacts) // should check that video format is infact interlaced. if (y - 2 >= 0 && y + 2 < h) { for (x = 1; x < w - 1; x++) { filt = FILTER3(2) && FILTER3(1); score += filt; if (filt && out) burn_frame16(s, out, x, y); } } else { for (x = 1; x < w - 1; x++) { filt = FILTER3(1); score += filt; if (filt && out) burn_frame16(s, out, x, y); } } } return score; } #define VREP_START 4 static int filter8_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; const uint8_t *p = in->data[0]; const int lw = in->linesize[0]; int x, y, score = 0; for (y = slice_start; y < slice_end; y++) { const int y2lw = (y - VREP_START) * lw; const int ylw = y * lw; int filt, totdiff = 0; if (y < VREP_START) continue; for (x = 0; x < w; x++) totdiff += abs(p[y2lw + x] - p[ylw + x]); filt = totdiff < w; score += filt; if (filt && out) for (x = 0; x < w; x++) burn_frame8(s, out, x, y); } return score * w; } static int filter16_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *in = td->in; AVFrame *out = td->out; const int w = in->width; const int h = in->height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; const uint16_t *p = (uint16_t *)in->data[0]; const int lw = in->linesize[0] / 2; int x, y, score = 0; for (y = slice_start; y < slice_end; y++) { const int y2lw = (y - VREP_START) * lw; const int ylw = y * lw; int64_t totdiff = 0; int filt; if (y < VREP_START) continue; for (x = 0; x < w; x++) totdiff += abs(p[y2lw + x] - p[ylw + x]); filt = totdiff < w; score += filt; if (filt && out) for (x = 0; x < w; x++) burn_frame16(s, out, x, y); } return score * w; } static const struct { const char *name; int (*process8)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); int (*process16)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } filters_def[] = { {"TOUT", filter8_tout, filter16_tout}, {"VREP", filter8_vrep, filter16_vrep}, {"BRNG", filter8_brng, filter16_brng}, {NULL} }; static int compute_sat_hue_metrics8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { int i, j; ThreadDataHueSatMetrics *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *src = td->src; AVFrame *dst_sat = td->dst_sat; AVFrame *dst_hue = td->dst_hue; const int slice_start = (s->chromah * jobnr ) / nb_jobs; const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs; const int lsz_u = src->linesize[1]; const int lsz_v = src->linesize[2]; const uint8_t *p_u = src->data[1] + slice_start * lsz_u; const uint8_t *p_v = src->data[2] + slice_start * lsz_v; const int lsz_sat = dst_sat->linesize[0]; const int lsz_hue = dst_hue->linesize[0]; uint8_t *p_sat = dst_sat->data[0] + slice_start * lsz_sat; uint8_t *p_hue = dst_hue->data[0] + slice_start * lsz_hue; for (j = slice_start; j < slice_end; j++) { for (i = 0; i < s->chromaw; i++) { const int yuvu = p_u[i]; const int yuvv = p_v[i]; p_sat[i] = hypotf(yuvu - 128, yuvv - 128); // int or round? ((int16_t*)p_hue)[i] = fmodf(floorf((180.f / M_PI) * atan2f(yuvu-128, yuvv-128) + 180.f), 360.f); } p_u += lsz_u; p_v += lsz_v; p_sat += lsz_sat; p_hue += lsz_hue; } return 0; } static int compute_sat_hue_metrics16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { int i, j; ThreadDataHueSatMetrics *td = arg; const SignalstatsContext *s = ctx->priv; const AVFrame *src = td->src; AVFrame *dst_sat = td->dst_sat; AVFrame *dst_hue = td->dst_hue; const int mid = 1 << (s->depth - 1); const int slice_start = (s->chromah * jobnr ) / nb_jobs; const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs; const int lsz_u = src->linesize[1] / 2; const int lsz_v = src->linesize[2] / 2; const uint16_t *p_u = (uint16_t*)src->data[1] + slice_start * lsz_u; const uint16_t *p_v = (uint16_t*)src->data[2] + slice_start * lsz_v; const int lsz_sat = dst_sat->linesize[0] / 2; const int lsz_hue = dst_hue->linesize[0] / 2; uint16_t *p_sat = (uint16_t*)dst_sat->data[0] + slice_start * lsz_sat; uint16_t *p_hue = (uint16_t*)dst_hue->data[0] + slice_start * lsz_hue; for (j = slice_start; j < slice_end; j++) { for (i = 0; i < s->chromaw; i++) { const int yuvu = p_u[i]; const int yuvv = p_v[i]; p_sat[i] = hypotf(yuvu - mid, yuvv - mid); // int or round? ((int16_t*)p_hue)[i] = fmodf(floorf((180.f / M_PI) * atan2f(yuvu-mid, yuvv-mid) + 180.f), 360.f); } p_u += lsz_u; p_v += lsz_v; p_sat += lsz_sat; p_hue += lsz_hue; } return 0; } static unsigned compute_bit_depth(uint16_t mask) { return av_popcount(mask); } static int filter_frame(AVFilterLink *link, AVFrame *in) { AVFilterContext *ctx = link->dst; SignalstatsContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out = in; int w = 0, cw = 0, // in pw = 0, cpw = 0; // prev int fil; char metabuf[128]; unsigned int *histy = s->histy, *histu = s->histu, *histv = s->histv, histhue[360] = {0}, *histsat = s->histsat; int miny = -1, minu = -1, minv = -1; int maxy = -1, maxu = -1, maxv = -1; int lowy = -1, lowu = -1, lowv = -1; int highy = -1, highu = -1, highv = -1; int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1; int lowp, highp, clowp, chighp; int accy, accu, accv; int accsat, acchue = 0; int medhue, maxhue; int64_t toty = 0, totu = 0, totv = 0, totsat=0; int64_t tothue = 0; int64_t dify = 0, difu = 0, difv = 0; uint16_t masky = 0, masku = 0, maskv = 0; int filtot[FILT_NUMB] = {0}; AVFrame *prev; int ret; AVFrame *sat = s->frame_sat; AVFrame *hue = s->frame_hue; const int hbd = s->depth > 8; ThreadDataHueSatMetrics td_huesat = { .src = in, .dst_sat = sat, .dst_hue = hue, }; if (!s->frame_prev) s->frame_prev = av_frame_clone(in); prev = s->frame_prev; if (s->outfilter != FILTER_NONE) { out = av_frame_clone(in); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } ret = ff_inlink_make_frame_writable(link, &out); if (ret < 0) { av_frame_free(&out); av_frame_free(&in); return ret; } } ff_filter_execute(ctx, hbd ? compute_sat_hue_metrics16 : compute_sat_hue_metrics8, &td_huesat, NULL, FFMIN(s->chromah, ff_filter_get_nb_threads(ctx))); memset(s->histy, 0, s->maxsize * sizeof(*s->histy)); memset(s->histu, 0, s->maxsize * sizeof(*s->histu)); memset(s->histv, 0, s->maxsize * sizeof(*s->histv)); memset(s->histsat, 0, s->maxsize * sizeof(*s->histsat)); if (hbd) { const uint16_t *p_sat = (uint16_t *)sat->data[0]; const uint16_t *p_hue = (uint16_t *)hue->data[0]; const int lsz_sat = sat->linesize[0] / 2; const int lsz_hue = hue->linesize[0] / 2; // Calculate luma histogram and difference with previous frame or field. for (int j = 0; j < link->h; j++) { for (int i = 0; i < link->w; i++) { const int yuv = AV_RN16(in->data[0] + w + i * 2); masky |= yuv; histy[yuv]++; dify += abs(yuv - (int)AV_RN16(prev->data[0] + pw + i * 2)); } w += in->linesize[0]; pw += prev->linesize[0]; } // Calculate chroma histogram and difference with previous frame or field. for (int j = 0; j < s->chromah; j++) { for (int i = 0; i < s->chromaw; i++) { const int yuvu = AV_RN16(in->data[1] + cw + i * 2); const int yuvv = AV_RN16(in->data[2] + cw + i * 2); masku |= yuvu; maskv |= yuvv; histu[yuvu]++; difu += abs(yuvu - (int)AV_RN16(prev->data[1] + cpw + i * 2)); histv[yuvv]++; difv += abs(yuvv - (int)AV_RN16(prev->data[2] + cpw + i * 2)); histsat[p_sat[i]]++; histhue[((int16_t*)p_hue)[i]]++; } cw += in->linesize[1]; cpw += prev->linesize[1]; p_sat += lsz_sat; p_hue += lsz_hue; } } else { const uint8_t *p_sat = sat->data[0]; const uint8_t *p_hue = hue->data[0]; const int lsz_sat = sat->linesize[0]; const int lsz_hue = hue->linesize[0]; // Calculate luma histogram and difference with previous frame or field. for (int j = 0; j < link->h; j++) { for (int i = 0; i < link->w; i++) { const int yuv = in->data[0][w + i]; masky |= yuv; histy[yuv]++; dify += abs(yuv - prev->data[0][pw + i]); } w += in->linesize[0]; pw += prev->linesize[0]; } // Calculate chroma histogram and difference with previous frame or field. for (int j = 0; j < s->chromah; j++) { for (int i = 0; i < s->chromaw; i++) { const int yuvu = in->data[1][cw+i]; const int yuvv = in->data[2][cw+i]; masku |= yuvu; maskv |= yuvv; histu[yuvu]++; difu += abs(yuvu - prev->data[1][cpw+i]); histv[yuvv]++; difv += abs(yuvv - prev->data[2][cpw+i]); histsat[p_sat[i]]++; histhue[((int16_t*)p_hue)[i]]++; } cw += in->linesize[1]; cpw += prev->linesize[1]; p_sat += lsz_sat; p_hue += lsz_hue; } } for (fil = 0; fil < FILT_NUMB; fil ++) { if (s->filters & 1<outfilter == fil ? out : NULL, }; memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets)); ff_filter_execute(ctx, hbd ? filters_def[fil].process16 : filters_def[fil].process8, &td, s->jobs_rets, s->nb_jobs); for (int i = 0; i < s->nb_jobs; i++) filtot[fil] += s->jobs_rets[i]; } } // find low / high based on histogram percentile // these only need to be calculated once. lowp = lrint(s->fs * 10 / 100.); highp = lrint(s->fs * 90 / 100.); clowp = lrint(s->cfs * 10 / 100.); chighp = lrint(s->cfs * 90 / 100.); accy = accu = accv = accsat = 0; for (fil = 0; fil < s->maxsize; fil++) { if (miny < 0 && histy[fil]) miny = fil; if (minu < 0 && histu[fil]) minu = fil; if (minv < 0 && histv[fil]) minv = fil; if (minsat < 0 && histsat[fil]) minsat = fil; if (histy[fil]) maxy = fil; if (histu[fil]) maxu = fil; if (histv[fil]) maxv = fil; if (histsat[fil]) maxsat = fil; toty += histy[fil] * fil; totu += histu[fil] * fil; totv += histv[fil] * fil; totsat += histsat[fil] * fil; accy += histy[fil]; accu += histu[fil]; accv += histv[fil]; accsat += histsat[fil]; if (lowy == -1 && accy >= lowp) lowy = fil; if (lowu == -1 && accu >= clowp) lowu = fil; if (lowv == -1 && accv >= clowp) lowv = fil; if (lowsat == -1 && accsat >= clowp) lowsat = fil; if (highy == -1 && accy >= highp) highy = fil; if (highu == -1 && accu >= chighp) highu = fil; if (highv == -1 && accv >= chighp) highv = fil; if (highsat == -1 && accsat >= chighp) highsat = fil; } maxhue = histhue[0]; medhue = -1; for (fil = 0; fil < 360; fil++) { tothue += histhue[fil] * fil; acchue += histhue[fil]; if (medhue == -1 && acchue > s->cfs / 2) medhue = fil; if (histhue[fil] > maxhue) { maxhue = histhue[fil]; } } av_frame_free(&s->frame_prev); s->frame_prev = av_frame_clone(in); #define SET_META(key, fmt, val) do { \ snprintf(metabuf, sizeof(metabuf), fmt, val); \ av_dict_set(&out->metadata, "lavfi.signalstats." key, metabuf, 0); \ } while (0) av_dict_set_int(&out->metadata, "lavfi.signalstats.YMIN", miny, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.YLOW", lowy, 0); SET_META("YAVG", "%g", 1.0 * toty / s->fs); av_dict_set_int(&out->metadata, "lavfi.signalstats.YHIGH", highy, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.YMAX", maxy, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.UMIN", minu, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.ULOW", lowu, 0); SET_META("UAVG", "%g", 1.0 * totu / s->cfs); av_dict_set_int(&out->metadata, "lavfi.signalstats.UHIGH", highu, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.UMAX", maxu, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.VMIN", minv, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.VLOW", lowv, 0); SET_META("VAVG", "%g", 1.0 * totv / s->cfs); av_dict_set_int(&out->metadata, "lavfi.signalstats.VHIGH", highv, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.VMAX", maxv, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.SATMIN", minsat, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.SATLOW", lowsat, 0); SET_META("SATAVG", "%g", 1.0 * totsat / s->cfs); av_dict_set_int(&out->metadata, "lavfi.signalstats.SATHIGH", highsat, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.SATMAX", maxsat, 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.HUEMED", medhue, 0); SET_META("HUEAVG", "%g", 1.0 * tothue / s->cfs); SET_META("YDIF", "%g", 1.0 * dify / s->fs); SET_META("UDIF", "%g", 1.0 * difu / s->cfs); SET_META("VDIF", "%g", 1.0 * difv / s->cfs); av_dict_set_int(&out->metadata, "lavfi.signalstats.YBITDEPTH", compute_bit_depth(masky), 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.UBITDEPTH", compute_bit_depth(masku), 0); av_dict_set_int(&out->metadata, "lavfi.signalstats.VBITDEPTH", compute_bit_depth(maskv), 0); for (fil = 0; fil < FILT_NUMB; fil ++) { if (s->filters & 1<fs); snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name); av_dict_set(&out->metadata, metaname, metabuf, 0); } } if (in != out) av_frame_free(&in); return ff_filter_frame(outlink, out); } static const AVFilterPad signalstats_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, }; static const AVFilterPad signalstats_outputs[] = { { .name = "default", .config_props = config_output, .type = AVMEDIA_TYPE_VIDEO, }, }; const AVFilter ff_vf_signalstats = { .name = "signalstats", .description = "Generate statistics from video analysis.", .init = init, .uninit = uninit, .priv_size = sizeof(SignalstatsContext), FILTER_INPUTS(signalstats_inputs), FILTER_OUTPUTS(signalstats_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .priv_class = &signalstats_class, .flags = AVFILTER_FLAG_SLICE_THREADS, };