/* * Microsoft Screen 4 (aka Microsoft Expression Encoder Screen) decoder * Copyright (c) 2012 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Microsoft Screen 4 (aka Microsoft Titanium Screen 2, * aka Microsoft Expression Encoder Screen) decoder */ #include "libavutil/thread.h" #include "libavutil/imgutils.h" #include "avcodec.h" #include "bytestream.h" #include "get_bits.h" #include "internal.h" #include "jpegtables.h" #include "mss34dsp.h" #include "unary.h" #define HEADER_SIZE 8 enum FrameType { INTRA_FRAME = 0, INTER_FRAME, SKIP_FRAME }; enum BlockType { SKIP_BLOCK = 0, DCT_BLOCK, IMAGE_BLOCK, }; enum CachePos { LEFT = 0, TOP_LEFT, TOP, }; static const uint8_t mss4_dc_vlc_lens[2][16] = { { 0, 1, 5, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0 } }; static const uint8_t vec_len_syms[2][4] = { { 4, 2, 3, 1 }, { 4, 1, 2, 3 } }; static const uint8_t mss4_vec_entry_vlc_lens[2][16] = { { 0, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; static const uint8_t mss4_vec_entry_vlc_syms[2][9] = { { 0, 7, 6, 5, 8, 4, 3, 1, 2 }, { 0, 2, 3, 4, 5, 6, 7, 1, 8 } }; #define MAX_ENTRIES 162 typedef struct MSS4Context { AVFrame *pic; int block[64]; uint8_t imgbuf[3][16 * 16]; int quality; uint16_t quant_mat[2][64]; int *prev_dc[3]; ptrdiff_t dc_stride[3]; int dc_cache[4][4]; int prev_vec[3][4]; } MSS4Context; static VLC dc_vlc[2], ac_vlc[2]; static VLC vec_entry_vlc[2]; static av_cold void mss4_init_vlc(VLC *vlc, unsigned *offset, const uint8_t *lens, const uint8_t *syms) { static VLC_TYPE vlc_buf[2146][2]; uint8_t bits[MAX_ENTRIES]; int i, j; int idx = 0; for (i = 0; i < 16; i++) { for (j = 0; j < lens[i]; j++) { bits[idx] = i + 1; idx++; } } vlc->table = &vlc_buf[*offset]; vlc->table_allocated = FF_ARRAY_ELEMS(vlc_buf) - *offset; ff_init_vlc_from_lengths(vlc, FFMIN(bits[idx - 1], 9), idx, bits, 1, syms, 1, 1, 0, INIT_VLC_STATIC_OVERLONG, NULL); *offset += vlc->table_size; } static av_cold void mss4_init_vlcs(void) { for (unsigned i = 0, offset = 0; i < 2; i++) { mss4_init_vlc(&dc_vlc[i], &offset, mss4_dc_vlc_lens[i], NULL); mss4_init_vlc(&ac_vlc[i], &offset, i ? avpriv_mjpeg_bits_ac_chrominance + 1 : avpriv_mjpeg_bits_ac_luminance + 1, i ? avpriv_mjpeg_val_ac_chrominance : avpriv_mjpeg_val_ac_luminance); mss4_init_vlc(&vec_entry_vlc[i], &offset, mss4_vec_entry_vlc_lens[i], mss4_vec_entry_vlc_syms[i]); } } /* This function returns values in the range * (-range + 1; -range/2] U [range/2; range - 1) * i.e. * nbits = 0 -> 0 * nbits = 1 -> -1, 1 * nbits = 2 -> -3, -2, 2, 3 */ static av_always_inline int get_coeff_bits(GetBitContext *gb, int nbits) { int val; if (!nbits) return 0; val = get_bits(gb, nbits); if (val < (1 << (nbits - 1))) val -= (1 << nbits) - 1; return val; } static inline int get_coeff(GetBitContext *gb, VLC *vlc) { int val = get_vlc2(gb, vlc->table, vlc->bits, 2); return get_coeff_bits(gb, val); } static int mss4_decode_dct(GetBitContext *gb, VLC *dc_vlc, VLC *ac_vlc, int *block, int *dc_cache, int bx, int by, uint16_t *quant_mat) { int skip, val, pos = 1, zz_pos, dc; memset(block, 0, sizeof(*block) * 64); dc = get_coeff(gb, dc_vlc); // DC prediction is the same as in MSS3 if (by) { if (bx) { int l, tl, t; l = dc_cache[LEFT]; tl = dc_cache[TOP_LEFT]; t = dc_cache[TOP]; if (FFABS(t - tl) <= FFABS(l - tl)) dc += l; else dc += t; } else { dc += dc_cache[TOP]; } } else if (bx) { dc += dc_cache[LEFT]; } dc_cache[LEFT] = dc; block[0] = dc * quant_mat[0]; while (pos < 64) { val = get_vlc2(gb, ac_vlc->table, 9, 2); if (!val) return 0; if (val == -1) return -1; if (val == 0xF0) { pos += 16; continue; } skip = val >> 4; val = get_coeff_bits(gb, val & 0xF); pos += skip; if (pos >= 64) return -1; zz_pos = ff_zigzag_direct[pos]; block[zz_pos] = val * quant_mat[zz_pos]; pos++; } return pos == 64 ? 0 : -1; } static int mss4_decode_dct_block(MSS4Context *c, GetBitContext *gb, uint8_t *dst[3], int mb_x, int mb_y) { int i, j, k, ret; uint8_t *out = dst[0]; for (j = 0; j < 2; j++) { for (i = 0; i < 2; i++) { int xpos = mb_x * 2 + i; c->dc_cache[j][TOP_LEFT] = c->dc_cache[j][TOP]; c->dc_cache[j][TOP] = c->prev_dc[0][mb_x * 2 + i]; ret = mss4_decode_dct(gb, &dc_vlc[0], &ac_vlc[0], c->block, c->dc_cache[j], xpos, mb_y * 2 + j, c->quant_mat[0]); if (ret) return ret; c->prev_dc[0][mb_x * 2 + i] = c->dc_cache[j][LEFT]; ff_mss34_dct_put(out + xpos * 8, c->pic->linesize[0], c->block); } out += 8 * c->pic->linesize[0]; } for (i = 1; i < 3; i++) { c->dc_cache[i + 1][TOP_LEFT] = c->dc_cache[i + 1][TOP]; c->dc_cache[i + 1][TOP] = c->prev_dc[i][mb_x]; ret = mss4_decode_dct(gb, &dc_vlc[1], &ac_vlc[1], c->block, c->dc_cache[i + 1], mb_x, mb_y, c->quant_mat[1]); if (ret) return ret; c->prev_dc[i][mb_x] = c->dc_cache[i + 1][LEFT]; ff_mss34_dct_put(c->imgbuf[i], 8, c->block); out = dst[i] + mb_x * 16; // Since the DCT block is coded as YUV420 and the whole frame as YUV444, // we need to scale chroma. for (j = 0; j < 16; j++) { for (k = 0; k < 8; k++) AV_WN16A(out + k * 2, c->imgbuf[i][k + (j & ~1) * 4] * 0x101); out += c->pic->linesize[i]; } } return 0; } static void read_vec_pos(GetBitContext *gb, int *vec_pos, int *sel_flag, int *sel_len, int *prev) { int i, y_flag = 0; for (i = 2; i >= 0; i--) { if (!sel_flag[i]) { vec_pos[i] = 0; continue; } if ((!i && !y_flag) || get_bits1(gb)) { if (sel_len[i] > 0) { int pval = prev[i]; vec_pos[i] = get_bits(gb, sel_len[i]); if (vec_pos[i] >= pval) vec_pos[i]++; } else { vec_pos[i] = !prev[i]; } y_flag = 1; } else { vec_pos[i] = prev[i]; } } } static int get_value_cached(GetBitContext *gb, int vec_pos, uint8_t *vec, int vec_size, int component, int shift, int *prev) { if (vec_pos < vec_size) return vec[vec_pos]; if (!get_bits1(gb)) return prev[component]; prev[component] = get_bits(gb, 8 - shift) << shift; return prev[component]; } #define MKVAL(vals) ((vals)[0] | ((vals)[1] << 3) | ((vals)[2] << 6)) /* Image mode - the hardest to comprehend MSS4 coding mode. * * In this mode all three 16x16 blocks are coded together with a method * remotely similar to the methods employed in MSS1-MSS3. * The idea is that every component has a vector of 1-4 most common symbols * and an escape mode for reading new value from the bitstream. Decoding * consists of retrieving pixel values from the vector or reading new ones * from the bitstream; depending on flags read from the bitstream, these vector * positions can be updated or reused from the state of the previous line * or previous pixel. */ static int mss4_decode_image_block(MSS4Context *ctx, GetBitContext *gb, uint8_t *picdst[3], int mb_x, int mb_y) { uint8_t vec[3][4]; int vec_len[3]; int sel_len[3], sel_flag[3]; int i, j, k, mode, split; int prev_vec1 = 0, prev_split = 0; int vals[3] = { 0 }; int prev_pix[3] = { 0 }; int prev_mode[16] = { 0 }; uint8_t *dst[3]; const int val_shift = ctx->quality == 100 ? 0 : 2; for (i = 0; i < 3; i++) dst[i] = ctx->imgbuf[i]; for (i = 0; i < 3; i++) { vec_len[i] = vec_len_syms[!!i][get_unary(gb, 0, 3)]; for (j = 0; j < vec_len[i]; j++) { vec[i][j] = get_coeff(gb, &vec_entry_vlc[!!i]); vec[i][j] += ctx->prev_vec[i][j]; ctx->prev_vec[i][j] = vec[i][j]; } sel_flag[i] = vec_len[i] > 1; sel_len[i] = vec_len[i] > 2 ? vec_len[i] - 2 : 0; } for (j = 0; j < 16; j++) { if (get_bits1(gb)) { split = 0; if (get_bits1(gb)) { prev_mode[0] = 0; vals[0] = vals[1] = vals[2] = 0; mode = 2; } else { mode = get_bits1(gb); if (mode) split = get_bits(gb, 4); } for (i = 0; i < 16; i++) { if (mode <= 1) { vals[0] = prev_mode[i] & 7; vals[1] = (prev_mode[i] >> 3) & 7; vals[2] = prev_mode[i] >> 6; if (mode == 1 && i == split) { read_vec_pos(gb, vals, sel_flag, sel_len, vals); } } else if (mode == 2) { if (get_bits1(gb)) read_vec_pos(gb, vals, sel_flag, sel_len, vals); } for (k = 0; k < 3; k++) *dst[k]++ = get_value_cached(gb, vals[k], vec[k], vec_len[k], k, val_shift, prev_pix); prev_mode[i] = MKVAL(vals); } } else { if (get_bits1(gb)) { split = get_bits(gb, 4); if (split >= prev_split) split++; prev_split = split; } else { split = prev_split; } if (split) { vals[0] = prev_mode[0] & 7; vals[1] = (prev_mode[0] >> 3) & 7; vals[2] = prev_mode[0] >> 6; for (i = 0; i < 3; i++) { for (k = 0; k < split; k++) { *dst[i]++ = get_value_cached(gb, vals[i], vec[i], vec_len[i], i, val_shift, prev_pix); prev_mode[k] = MKVAL(vals); } } } if (split != 16) { vals[0] = prev_vec1 & 7; vals[1] = (prev_vec1 >> 3) & 7; vals[2] = prev_vec1 >> 6; if (get_bits1(gb)) { read_vec_pos(gb, vals, sel_flag, sel_len, vals); prev_vec1 = MKVAL(vals); } for (i = 0; i < 3; i++) { for (k = 0; k < 16 - split; k++) { *dst[i]++ = get_value_cached(gb, vals[i], vec[i], vec_len[i], i, val_shift, prev_pix); prev_mode[split + k] = MKVAL(vals); } } } } } for (i = 0; i < 3; i++) for (j = 0; j < 16; j++) memcpy(picdst[i] + mb_x * 16 + j * ctx->pic->linesize[i], ctx->imgbuf[i] + j * 16, 16); return 0; } static inline void mss4_update_dc_cache(MSS4Context *c, int mb_x) { int i; c->dc_cache[0][TOP] = c->prev_dc[0][mb_x * 2 + 1]; c->dc_cache[0][LEFT] = 0; c->dc_cache[1][TOP] = 0; c->dc_cache[1][LEFT] = 0; for (i = 0; i < 2; i++) c->prev_dc[0][mb_x * 2 + i] = 0; for (i = 1; i < 3; i++) { c->dc_cache[i + 1][TOP] = c->prev_dc[i][mb_x]; c->dc_cache[i + 1][LEFT] = 0; c->prev_dc[i][mb_x] = 0; } } static int mss4_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MSS4Context *c = avctx->priv_data; GetBitContext gb; GetByteContext bc; uint8_t *dst[3]; int width, height, quality, frame_type; int x, y, i, mb_width, mb_height, blk_type; int ret; if (buf_size < HEADER_SIZE) { av_log(avctx, AV_LOG_ERROR, "Frame should have at least %d bytes, got %d instead\n", HEADER_SIZE, buf_size); return AVERROR_INVALIDDATA; } bytestream2_init(&bc, buf, buf_size); width = bytestream2_get_be16(&bc); height = bytestream2_get_be16(&bc); bytestream2_skip(&bc, 2); quality = bytestream2_get_byte(&bc); frame_type = bytestream2_get_byte(&bc); if (width > avctx->width || height != avctx->height) { av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d\n", width, height); return AVERROR_INVALIDDATA; } if (av_image_check_size2(width, height, avctx->max_pixels, AV_PIX_FMT_NONE, 0, avctx) < 0) return AVERROR_INVALIDDATA; if (quality < 1 || quality > 100) { av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality); return AVERROR_INVALIDDATA; } if ((frame_type & ~3) || frame_type == 3) { av_log(avctx, AV_LOG_ERROR, "Invalid frame type %d\n", frame_type); return AVERROR_INVALIDDATA; } if (frame_type != SKIP_FRAME && !bytestream2_get_bytes_left(&bc)) { av_log(avctx, AV_LOG_ERROR, "Empty frame found but it is not a skip frame.\n"); return AVERROR_INVALIDDATA; } mb_width = FFALIGN(width, 16) >> 4; mb_height = FFALIGN(height, 16) >> 4; if (frame_type != SKIP_FRAME && 8*buf_size < 8*HEADER_SIZE + mb_width*mb_height) return AVERROR_INVALIDDATA; if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0) return ret; c->pic->key_frame = (frame_type == INTRA_FRAME); c->pic->pict_type = (frame_type == INTRA_FRAME) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; if (frame_type == SKIP_FRAME) { *got_frame = 1; if ((ret = av_frame_ref(data, c->pic)) < 0) return ret; return buf_size; } if (c->quality != quality) { c->quality = quality; for (i = 0; i < 2; i++) ff_mss34_gen_quant_mat(c->quant_mat[i], quality, !i); } if ((ret = init_get_bits8(&gb, buf + HEADER_SIZE, buf_size - HEADER_SIZE)) < 0) return ret; dst[0] = c->pic->data[0]; dst[1] = c->pic->data[1]; dst[2] = c->pic->data[2]; memset(c->prev_vec, 0, sizeof(c->prev_vec)); for (y = 0; y < mb_height; y++) { memset(c->dc_cache, 0, sizeof(c->dc_cache)); for (x = 0; x < mb_width; x++) { blk_type = decode012(&gb); switch (blk_type) { case DCT_BLOCK: if (mss4_decode_dct_block(c, &gb, dst, x, y) < 0) { av_log(avctx, AV_LOG_ERROR, "Error decoding DCT block %d,%d\n", x, y); return AVERROR_INVALIDDATA; } break; case IMAGE_BLOCK: if (mss4_decode_image_block(c, &gb, dst, x, y) < 0) { av_log(avctx, AV_LOG_ERROR, "Error decoding VQ block %d,%d\n", x, y); return AVERROR_INVALIDDATA; } break; case SKIP_BLOCK: if (frame_type == INTRA_FRAME) { av_log(avctx, AV_LOG_ERROR, "Skip block in intra frame\n"); return AVERROR_INVALIDDATA; } break; } if (blk_type != DCT_BLOCK) mss4_update_dc_cache(c, x); } dst[0] += c->pic->linesize[0] * 16; dst[1] += c->pic->linesize[1] * 16; dst[2] += c->pic->linesize[2] * 16; } if ((ret = av_frame_ref(data, c->pic)) < 0) return ret; *got_frame = 1; return buf_size; } static av_cold int mss4_decode_end(AVCodecContext *avctx) { MSS4Context * const c = avctx->priv_data; int i; av_frame_free(&c->pic); for (i = 0; i < 3; i++) av_freep(&c->prev_dc[i]); return 0; } static av_cold int mss4_decode_init(AVCodecContext *avctx) { static AVOnce init_static_once = AV_ONCE_INIT; MSS4Context * const c = avctx->priv_data; int i; for (i = 0; i < 3; i++) { c->dc_stride[i] = FFALIGN(avctx->width, 16) >> (2 + !!i); c->prev_dc[i] = av_malloc_array(c->dc_stride[i], sizeof(**c->prev_dc)); if (!c->prev_dc[i]) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n"); return AVERROR(ENOMEM); } } c->pic = av_frame_alloc(); if (!c->pic) return AVERROR(ENOMEM); avctx->pix_fmt = AV_PIX_FMT_YUV444P; ff_thread_once(&init_static_once, mss4_init_vlcs); return 0; } AVCodec ff_mts2_decoder = { .name = "mts2", .long_name = NULL_IF_CONFIG_SMALL("MS Expression Encoder Screen"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_MTS2, .priv_data_size = sizeof(MSS4Context), .init = mss4_decode_init, .close = mss4_decode_end, .decode = mss4_decode_frame, .capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, };