/* * Copyright (c) 2019 Eugene Lyapustin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * 360 video conversion filter. * Principle of operation: * * (for each pixel in output frame) * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j) * 2) Apply 360 operations (rotation, mirror) to (x, y, z) * 3) Calculate pixel position (u, v) in input frame * 4) Calculate interpolation window and weight for each pixel * * (for each frame) * 5) Remap input frame to output frame using precalculated data */ #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #include "libavutil/opt.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "v360.h" typedef struct ThreadData { AVFrame *in; AVFrame *out; } ThreadData; #define OFFSET(x) offsetof(V360Context, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption v360_options[] = { { "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" }, { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" }, { "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" }, { "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" }, { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" }, { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" }, { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" }, { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" }, { "c1x6", "cubemap1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "in" }, { "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" }, { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, { "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" }, { "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" }, { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" }, { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" }, { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" }, { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" }, { "c1x6", "cubemap1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "out" }, { "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" }, { "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, { "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, { "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" }, { "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" }, { "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" }, { "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" }, { "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" }, { "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" }, { "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "w"}, { "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "h"}, { "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"}, {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"}, { "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"}, { "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"}, { "in_pad", "input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "in_pad"}, { "out_pad", "output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "out_pad"}, { "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "yaw"}, { "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "pitch"}, { "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "roll"}, { "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0, FLAGS, "rorder"}, { "h_fov", "horizontal field of view", OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.f, 180.f, FLAGS, "h_fov"}, { "v_fov", "vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.f, 90.f, FLAGS, "v_fov"}, { "h_flip", "flip video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "h_flip"}, { "v_flip", "flip video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "v_flip"}, { "d_flip", "flip video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "d_flip"}, { NULL } }; AVFILTER_DEFINE_CLASS(v360); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { // YUVA444 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, // YUVA422 AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, // YUVA420 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, // YUVJ AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, // YUV444 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, // YUV440 AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV440P12, // YUV422 AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16, // YUV420 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, // YUV411 AV_PIX_FMT_YUV411P, // YUV410 AV_PIX_FMT_YUV410P, // GBR AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, // GBRA AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, // GRAY AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } #define DEFINE_REMAP1_LINE(bits, div) \ static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src, \ ptrdiff_t in_linesize, \ const uint16_t *u, const uint16_t *v, const int16_t *ker) \ { \ const uint##bits##_t *s = (const uint##bits##_t *)src; \ uint##bits##_t *d = (uint##bits##_t *)dst; \ \ in_linesize /= div; \ \ for (int x = 0; x < width; x++) \ d[x] = s[v[x] * in_linesize + u[x]]; \ } DEFINE_REMAP1_LINE( 8, 1) DEFINE_REMAP1_LINE(16, 2) typedef struct XYRemap { uint16_t u[4][4]; uint16_t v[4][4]; float ker[4][4]; } XYRemap; /** * Generate remapping function with a given window size and pixel depth. * * @param ws size of interpolation window * @param bits number of bits per pixel */ #define DEFINE_REMAP(ws, bits) \ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ ThreadData *td = (ThreadData*)arg; \ const V360Context *s = ctx->priv; \ const AVFrame *in = td->in; \ AVFrame *out = td->out; \ \ for (int plane = 0; plane < s->nb_planes; plane++) { \ const int in_linesize = in->linesize[plane]; \ const int out_linesize = out->linesize[plane]; \ const uint8_t *src = in->data[plane]; \ uint8_t *dst = out->data[plane]; \ const int width = s->planewidth[plane]; \ const int height = s->planeheight[plane]; \ \ const int slice_start = (height * jobnr ) / nb_jobs; \ const int slice_end = (height * (jobnr + 1)) / nb_jobs; \ \ for (int y = slice_start; y < slice_end; y++) { \ const unsigned map = s->map[plane]; \ const uint16_t *u = s->u[map] + y * width * ws * ws; \ const uint16_t *v = s->v[map] + y * width * ws * ws; \ const int16_t *ker = s->ker[map] + y * width * ws * ws; \ \ s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \ } \ } \ \ return 0; \ } DEFINE_REMAP(1, 8) DEFINE_REMAP(2, 8) DEFINE_REMAP(4, 8) DEFINE_REMAP(1, 16) DEFINE_REMAP(2, 16) DEFINE_REMAP(4, 16) #define DEFINE_REMAP_LINE(ws, bits, div) \ static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src, \ ptrdiff_t in_linesize, \ const uint16_t *u, const uint16_t *v, const int16_t *ker) \ { \ const uint##bits##_t *s = (const uint##bits##_t *)src; \ uint##bits##_t *d = (uint##bits##_t *)dst; \ \ in_linesize /= div; \ \ for (int x = 0; x < width; x++) { \ const uint16_t *uu = u + x * ws * ws; \ const uint16_t *vv = v + x * ws * ws; \ const int16_t *kker = ker + x * ws * ws; \ int tmp = 0; \ \ for (int i = 0; i < ws; i++) { \ for (int j = 0; j < ws; j++) { \ tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]]; \ } \ } \ \ d[x] = av_clip_uint##bits(tmp >> 14); \ } \ } DEFINE_REMAP_LINE(2, 8, 1) DEFINE_REMAP_LINE(4, 8, 1) DEFINE_REMAP_LINE(2, 16, 2) DEFINE_REMAP_LINE(4, 16, 2) void ff_v360_init(V360Context *s, int depth) { switch (s->interp) { case NEAREST: s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c; break; case BILINEAR: s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c; break; case BICUBIC: case LANCZOS: s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c; break; } if (ARCH_X86) ff_v360_init_x86(s, depth); } /** * Save nearest pixel coordinates for remapping. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param r_tmp calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void nearest_kernel(float du, float dv, const XYRemap *r_tmp, uint16_t *u, uint16_t *v, int16_t *ker) { const int i = roundf(dv) + 1; const int j = roundf(du) + 1; u[0] = r_tmp->u[i][j]; v[0] = r_tmp->v[i][j]; } /** * Calculate kernel for bilinear interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param r_tmp calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void bilinear_kernel(float du, float dv, const XYRemap *r_tmp, uint16_t *u, uint16_t *v, int16_t *ker) { int i, j; for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { u[i * 2 + j] = r_tmp->u[i + 1][j + 1]; v[i * 2 + j] = r_tmp->v[i + 1][j + 1]; } } ker[0] = (1.f - du) * (1.f - dv) * 16384; ker[1] = du * (1.f - dv) * 16384; ker[2] = (1.f - du) * dv * 16384; ker[3] = du * dv * 16384; } /** * Calculate 1-dimensional cubic coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static inline void calculate_bicubic_coeffs(float t, float *coeffs) { const float tt = t * t; const float ttt = t * t * t; coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f; coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f; coeffs[2] = t + tt / 2.f - ttt / 2.f; coeffs[3] = - t / 6.f + ttt / 6.f; } /** * Calculate kernel for bicubic interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param r_tmp calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void bicubic_kernel(float du, float dv, const XYRemap *r_tmp, uint16_t *u, uint16_t *v, int16_t *ker) { int i, j; float du_coeffs[4]; float dv_coeffs[4]; calculate_bicubic_coeffs(du, du_coeffs); calculate_bicubic_coeffs(dv, dv_coeffs); for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { u[i * 4 + j] = r_tmp->u[i][j]; v[i * 4 + j] = r_tmp->v[i][j]; ker[i * 4 + j] = du_coeffs[j] * dv_coeffs[i] * 16384; } } } /** * Calculate 1-dimensional lanczos coefficients. * * @param t relative coordinate * @param coeffs coefficients */ static inline void calculate_lanczos_coeffs(float t, float *coeffs) { int i; float sum = 0.f; for (i = 0; i < 4; i++) { const float x = M_PI * (t - i + 1); if (x == 0.f) { coeffs[i] = 1.f; } else { coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f); } sum += coeffs[i]; } for (i = 0; i < 4; i++) { coeffs[i] /= sum; } } /** * Calculate kernel for lanczos interpolation. * * @param du horizontal relative coordinate * @param dv vertical relative coordinate * @param r_tmp calculated 4x4 window * @param u u remap data * @param v v remap data * @param ker ker remap data */ static void lanczos_kernel(float du, float dv, const XYRemap *r_tmp, uint16_t *u, uint16_t *v, int16_t *ker) { int i, j; float du_coeffs[4]; float dv_coeffs[4]; calculate_lanczos_coeffs(du, du_coeffs); calculate_lanczos_coeffs(dv, dv_coeffs); for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { u[i * 4 + j] = r_tmp->u[i][j]; v[i * 4 + j] = r_tmp->v[i][j]; ker[i * 4 + j] = du_coeffs[j] * dv_coeffs[i] * 16384; } } } /** * Modulo operation with only positive remainders. * * @param a dividend * @param b divisor * * @return positive remainder of (a / b) */ static inline int mod(int a, int b) { const int res = a % b; if (res < 0) { return res + b; } else { return res; } } /** * Convert char to corresponding direction. * Used for cubemap options. */ static int get_direction(char c) { switch (c) { case 'r': return RIGHT; case 'l': return LEFT; case 'u': return UP; case 'd': return DOWN; case 'f': return FRONT; case 'b': return BACK; default: return -1; } } /** * Convert char to corresponding rotation angle. * Used for cubemap options. */ static int get_rotation(char c) { switch (c) { case '0': return ROT_0; case '1': return ROT_90; case '2': return ROT_180; case '3': return ROT_270; default: return -1; } } /** * Convert char to corresponding rotation order. */ static int get_rorder(char c) { switch (c) { case 'Y': case 'y': return YAW; case 'P': case 'p': return PITCH; case 'R': case 'r': return ROLL; default: return -1; } } /** * Prepare data for processing cubemap input format. * * @param ctx filter context * * @return error code */ static int prepare_cube_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; for (int face = 0; face < NB_FACES; face++) { const char c = s->in_forder[face]; int direction; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete in_forder option. Direction for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } direction = get_direction(c); if (direction == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect direction symbol '%c' in in_forder option.\n", c); return AVERROR(EINVAL); } s->in_cubemap_face_order[direction] = face; } for (int face = 0; face < NB_FACES; face++) { const char c = s->in_frot[face]; int rotation; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } rotation = get_rotation(c); if (rotation == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect rotation symbol '%c' in in_frot option.\n", c); return AVERROR(EINVAL); } s->in_cubemap_face_rotation[face] = rotation; } return 0; } /** * Prepare data for processing cubemap output format. * * @param ctx filter context * * @return error code */ static int prepare_cube_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; for (int face = 0; face < NB_FACES; face++) { const char c = s->out_forder[face]; int direction; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete out_forder option. Direction for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } direction = get_direction(c); if (direction == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect direction symbol '%c' in out_forder option.\n", c); return AVERROR(EINVAL); } s->out_cubemap_direction_order[face] = direction; } for (int face = 0; face < NB_FACES; face++) { const char c = s->out_frot[face]; int rotation; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n"); return AVERROR(EINVAL); } rotation = get_rotation(c); if (rotation == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect rotation symbol '%c' in out_frot option.\n", c); return AVERROR(EINVAL); } s->out_cubemap_face_rotation[face] = rotation; } return 0; } static inline void rotate_cube_face(float *uf, float *vf, int rotation) { float tmp; switch (rotation) { case ROT_0: break; case ROT_90: tmp = *uf; *uf = -*vf; *vf = tmp; break; case ROT_180: *uf = -*uf; *vf = -*vf; break; case ROT_270: tmp = -*uf; *uf = *vf; *vf = tmp; break; default: av_assert0(0); } } static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation) { float tmp; switch (rotation) { case ROT_0: break; case ROT_90: tmp = -*uf; *uf = *vf; *vf = tmp; break; case ROT_180: *uf = -*uf; *vf = -*vf; break; case ROT_270: tmp = *uf; *uf = -*vf; *vf = tmp; break; default: av_assert0(0); } } /** * Calculate 3D coordinates on sphere for corresponding cubemap position. * Common operation for every cubemap. * * @param s filter context * @param uf horizontal cubemap coordinate [0, 1) * @param vf vertical cubemap coordinate [0, 1) * @param face face of cubemap * @param vec coordinates on sphere */ static void cube_to_xyz(const V360Context *s, float uf, float vf, int face, float *vec) { const int direction = s->out_cubemap_direction_order[face]; float norm; float l_x, l_y, l_z; uf /= (1.f - s->out_pad); vf /= (1.f - s->out_pad); rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]); switch (direction) { case RIGHT: l_x = 1.f; l_y = -vf; l_z = uf; break; case LEFT: l_x = -1.f; l_y = -vf; l_z = -uf; break; case UP: l_x = uf; l_y = 1.f; l_z = -vf; break; case DOWN: l_x = uf; l_y = -1.f; l_z = vf; break; case FRONT: l_x = uf; l_y = -vf; l_z = -1.f; break; case BACK: l_x = -uf; l_y = -vf; l_z = 1.f; break; } norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z); vec[0] = l_x / norm; vec[1] = l_y / norm; vec[2] = l_z / norm; } /** * Calculate cubemap position for corresponding 3D coordinates on sphere. * Common operation for every cubemap. * * @param s filter context * @param vec coordinated on sphere * @param uf horizontal cubemap coordinate [0, 1) * @param vf vertical cubemap coordinate [0, 1) * @param direction direction of view */ static void xyz_to_cube(const V360Context *s, const float *vec, float *uf, float *vf, int *direction) { const float phi = atan2f(vec[0], -vec[2]); const float theta = asinf(-vec[1]); float phi_norm, theta_threshold; int face; if (phi >= -M_PI_4 && phi < M_PI_4) { *direction = FRONT; phi_norm = phi; } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) { *direction = LEFT; phi_norm = phi + M_PI_2; } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) { *direction = RIGHT; phi_norm = phi - M_PI_2; } else { *direction = BACK; phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI); } theta_threshold = atanf(cosf(phi_norm)); if (theta > theta_threshold) { *direction = DOWN; } else if (theta < -theta_threshold) { *direction = UP; } switch (*direction) { case RIGHT: *uf = vec[2] / vec[0]; *vf = -vec[1] / vec[0]; break; case LEFT: *uf = vec[2] / vec[0]; *vf = vec[1] / vec[0]; break; case UP: *uf = vec[0] / vec[1]; *vf = -vec[2] / vec[1]; break; case DOWN: *uf = -vec[0] / vec[1]; *vf = -vec[2] / vec[1]; break; case FRONT: *uf = -vec[0] / vec[2]; *vf = vec[1] / vec[2]; break; case BACK: *uf = -vec[0] / vec[2]; *vf = -vec[1] / vec[2]; break; default: av_assert0(0); } face = s->in_cubemap_face_order[*direction]; rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]); } /** * Find position on another cube face in case of overflow/underflow. * Used for calculation of interpolation window. * * @param s filter context * @param uf horizontal cubemap coordinate * @param vf vertical cubemap coordinate * @param direction direction of view * @param new_uf new horizontal cubemap coordinate * @param new_vf new vertical cubemap coordinate * @param face face position on cubemap */ static void process_cube_coordinates(const V360Context *s, float uf, float vf, int direction, float *new_uf, float *new_vf, int *face) { /* * Cubemap orientation * * width * <-------> * +-------+ * | | U * | up | h -------> * +-------+-------+-------+-------+ ^ e | * | | | | | | i V | * | left | front | right | back | | g | * +-------+-------+-------+-------+ v h v * | | t * | down | * +-------+ */ *face = s->in_cubemap_face_order[direction]; rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]); if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) { // There are no pixels to use in this case *new_uf = uf; *new_vf = vf; } else if (uf < -1.f) { uf += 2.f; switch (direction) { case RIGHT: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case LEFT: direction = BACK; *new_uf = uf; *new_vf = vf; break; case UP: direction = LEFT; *new_uf = vf; *new_vf = -uf; break; case DOWN: direction = LEFT; *new_uf = -vf; *new_vf = uf; break; case FRONT: direction = LEFT; *new_uf = uf; *new_vf = vf; break; case BACK: direction = RIGHT; *new_uf = uf; *new_vf = vf; break; default: av_assert0(0); } } else if (uf >= 1.f) { uf -= 2.f; switch (direction) { case RIGHT: direction = BACK; *new_uf = uf; *new_vf = vf; break; case LEFT: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case UP: direction = RIGHT; *new_uf = -vf; *new_vf = uf; break; case DOWN: direction = RIGHT; *new_uf = vf; *new_vf = -uf; break; case FRONT: direction = RIGHT; *new_uf = uf; *new_vf = vf; break; case BACK: direction = LEFT; *new_uf = uf; *new_vf = vf; break; default: av_assert0(0); } } else if (vf < -1.f) { vf += 2.f; switch (direction) { case RIGHT: direction = UP; *new_uf = vf; *new_vf = -uf; break; case LEFT: direction = UP; *new_uf = -vf; *new_vf = uf; break; case UP: direction = BACK; *new_uf = -uf; *new_vf = -vf; break; case DOWN: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case FRONT: direction = UP; *new_uf = uf; *new_vf = vf; break; case BACK: direction = UP; *new_uf = -uf; *new_vf = -vf; break; default: av_assert0(0); } } else if (vf >= 1.f) { vf -= 2.f; switch (direction) { case RIGHT: direction = DOWN; *new_uf = -vf; *new_vf = uf; break; case LEFT: direction = DOWN; *new_uf = vf; *new_vf = -uf; break; case UP: direction = FRONT; *new_uf = uf; *new_vf = vf; break; case DOWN: direction = BACK; *new_uf = -uf; *new_vf = -vf; break; case FRONT: direction = DOWN; *new_uf = uf; *new_vf = vf; break; case BACK: direction = DOWN; *new_uf = -uf; *new_vf = -vf; break; default: av_assert0(0); } } else { // Inside cube face *new_uf = uf; *new_vf = vf; } *face = s->in_cubemap_face_order[direction]; rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]); } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void cube3x2_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float ew = width / 3.f; const float eh = height / 2.f; const int u_face = floorf(i / ew); const int v_face = floorf(j / eh); const int face = u_face + 3 * v_face; const int u_shift = ceilf(ew * u_face); const int v_shift = ceilf(eh * v_face); const int ewi = ceilf(ew * (u_face + 1)) - u_shift; const int ehi = ceilf(eh * (v_face + 1)) - v_shift; const float uf = 2.f * (i - u_shift) / ewi - 1.f; const float vf = 2.f * (j - v_shift) / ehi - 1.f; cube_to_xyz(s, uf, vf, face, vec); } /** * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_cube3x2(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float ew = width / 3.f; const float eh = height / 2.f; float uf, vf; int ui, vi; int ewi, ehi; int i, j; int direction, face; int u_face, v_face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face); ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face); uf = 0.5f * ewi * (uf + 1.f); vf = 0.5f * ehi * (vf + 1.f); ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { int new_ui = ui + j; int new_vi = vi + i; int u_shift, v_shift; int new_ewi, new_ehi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; u_shift = ceilf(ew * u_face); v_shift = ceilf(eh * v_face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= (1.f - s->in_pad); vf /= (1.f - s->in_pad); process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); u_face = face % 3; v_face = face / 3; u_shift = ceilf(ew * u_face); v_shift = ceilf(eh * v_face); new_ewi = ceilf(ew * (u_face + 1)) - u_shift; new_ehi = ceilf(eh * (v_face + 1)) - v_shift; new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); } us[i + 1][j + 1] = u_shift + new_ui; vs[i + 1][j + 1] = v_shift + new_vi; } } } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void cube1x6_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float ew = width; const float eh = height / 6.f; const int face = floorf(j / eh); const int v_shift = ceilf(eh * face); const int ehi = ceilf(eh * (face + 1)) - v_shift; const float uf = 2.f * i / ew - 1.f; const float vf = 2.f * (j - v_shift) / ehi - 1.f; cube_to_xyz(s, uf, vf, face, vec); } /** * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void cube6x1_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float ew = width / 6.f; const float eh = height; const int face = floorf(i / ew); const int u_shift = ceilf(ew * face); const int ewi = ceilf(ew * (face + 1)) - u_shift; const float uf = 2.f * (i - u_shift) / ewi - 1.f; const float vf = 2.f * j / eh - 1.f; cube_to_xyz(s, uf, vf, face, vec); } /** * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_cube1x6(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float eh = height / 6.f; const int ewi = width; float uf, vf; int ui, vi; int ehi; int i, j; int direction, face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); face = s->in_cubemap_face_order[direction]; ehi = ceilf(eh * (face + 1)) - ceilf(eh * face); uf = 0.5f * ewi * (uf + 1.f); vf = 0.5f * ehi * (vf + 1.f); ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { int new_ui = ui + j; int new_vi = vi + i; int v_shift; int new_ehi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; v_shift = ceilf(eh * face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= (1.f - s->in_pad); vf /= (1.f - s->in_pad); process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); v_shift = ceilf(eh * face); new_ehi = ceilf(eh * (face + 1)) - v_shift; new_ui = av_clip(roundf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1); new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1); } us[i + 1][j + 1] = new_ui; vs[i + 1][j + 1] = v_shift + new_vi; } } } /** * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_cube6x1(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float ew = width / 6.f; const int ehi = height; float uf, vf; int ui, vi; int ewi; int i, j; int direction, face; xyz_to_cube(s, vec, &uf, &vf, &direction); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); face = s->in_cubemap_face_order[direction]; ewi = ceilf(ew * (face + 1)) - ceilf(ew * face); uf = 0.5f * ewi * (uf + 1.f); vf = 0.5f * ehi * (vf + 1.f); ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { int new_ui = ui + j; int new_vi = vi + i; int u_shift; int new_ewi; if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) { face = s->in_cubemap_face_order[direction]; u_shift = ceilf(ew * face); } else { uf = 2.f * new_ui / ewi - 1.f; vf = 2.f * new_vi / ehi - 1.f; uf /= (1.f - s->in_pad); vf /= (1.f - s->in_pad); process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face); uf *= (1.f - s->in_pad); vf *= (1.f - s->in_pad); u_shift = ceilf(ew * face); new_ewi = ceilf(ew * (face + 1)) - u_shift; new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1); new_vi = av_clip(roundf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1); } us[i + 1][j + 1] = u_shift + new_ui; vs[i + 1][j + 1] = new_vi; } } } /** * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void equirect_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float phi = ((2.f * i) / width - 1.f) * M_PI; const float theta = ((2.f * j) / height - 1.f) * M_PI_2; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); vec[0] = cos_theta * sin_phi; vec[1] = -sin_theta; vec[2] = -cos_theta * cos_phi; } /** * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_equirect(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float phi = atan2f(vec[0], -vec[2]); const float theta = asinf(-vec[1]); float uf, vf; int ui, vi; int i, j; uf = (phi / M_PI + 1.f) * width / 2.f; vf = (theta / M_PI_2 + 1.f) * height / 2.f; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { us[i + 1][j + 1] = mod(ui + j, width); vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1); } } } /** * Prepare data for processing equi-angular cubemap input format. * * @param ctx filter context * @return error code */ static int prepare_eac_in(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->in_cubemap_face_order[RIGHT] = TOP_RIGHT; s->in_cubemap_face_order[LEFT] = TOP_LEFT; s->in_cubemap_face_order[UP] = BOTTOM_RIGHT; s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT; s->in_cubemap_face_order[FRONT] = TOP_MIDDLE; s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE; s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0; s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0; s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; return 0; } /** * Prepare data for processing equi-angular cubemap output format. * * @param ctx filter context * * @return error code */ static int prepare_eac_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; s->out_cubemap_direction_order[TOP_LEFT] = LEFT; s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT; s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT; s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN; s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK; s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP; s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0; s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0; s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0; s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270; s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90; s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void eac_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float pixel_pad = 2; const float u_pad = pixel_pad / width; const float v_pad = pixel_pad / height; int u_face, v_face, face; float l_x, l_y, l_z; float norm; float uf = (float)i / width; float vf = (float)j / height; // EAC has 2-pixel padding on faces except between faces on the same row // Padding pixels seems not to be stretched with tangent as regular pixels // Formulas below approximate original padding as close as I could get experimentally // Horizontal padding uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad); if (uf < 0.f) { u_face = 0; uf -= 0.5f; } else if (uf >= 3.f) { u_face = 2; uf -= 2.5f; } else { u_face = floorf(uf); uf = fmodf(uf, 1.f) - 0.5f; } // Vertical padding v_face = floorf(vf * 2.f); vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f; if (uf >= -0.5f && uf < 0.5f) { uf = tanf(M_PI_2 * uf); } else { uf = 2.f * uf; } if (vf >= -0.5f && vf < 0.5f) { vf = tanf(M_PI_2 * vf); } else { vf = 2.f * vf; } face = u_face + 3 * v_face; switch (face) { case TOP_LEFT: l_x = -1.f; l_y = -vf; l_z = -uf; break; case TOP_MIDDLE: l_x = uf; l_y = -vf; l_z = -1.f; break; case TOP_RIGHT: l_x = 1.f; l_y = -vf; l_z = uf; break; case BOTTOM_LEFT: l_x = -vf; l_y = -1.f; l_z = uf; break; case BOTTOM_MIDDLE: l_x = -vf; l_y = uf; l_z = 1.f; break; case BOTTOM_RIGHT: l_x = -vf; l_y = 1.f; l_z = -uf; break; default: av_assert0(0); } norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z); vec[0] = l_x / norm; vec[1] = l_y / norm; vec[2] = l_z / norm; } /** * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_eac(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float pixel_pad = 2; const float u_pad = pixel_pad / width; const float v_pad = pixel_pad / height; float uf, vf; int ui, vi; int i, j; int direction, face; int u_face, v_face; xyz_to_cube(s, vec, &uf, &vf, &direction); face = s->in_cubemap_face_order[direction]; u_face = face % 3; v_face = face / 3; uf = M_2_PI * atanf(uf) + 0.5f; vf = M_2_PI * atanf(vf) + 0.5f; // These formulas are inversed from eac_to_xyz ones uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad; vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face; uf *= width; vf *= height; ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1); vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1); } } } /** * Prepare data for processing flat output format. * * @param ctx filter context * * @return error code */ static int prepare_flat_out(AVFilterContext *ctx) { V360Context *s = ctx->priv; const float h_angle = 0.5f * s->h_fov * M_PI / 180.f; const float v_angle = 0.5f * s->v_fov * M_PI / 180.f; const float sin_phi = sinf(h_angle); const float cos_phi = cosf(h_angle); const float sin_theta = sinf(v_angle); const float cos_theta = cosf(v_angle); s->flat_range[0] = cos_theta * sin_phi; s->flat_range[1] = sin_theta; s->flat_range[2] = -cos_theta * cos_phi; return 0; } /** * Calculate 3D coordinates on sphere for corresponding frame position in flat format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void flat_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float l_x = s->flat_range[0] * (2.f * i / width - 1.f); const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f); const float l_z = s->flat_range[2]; const float norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z); vec[0] = l_x / norm; vec[1] = l_y / norm; vec[2] = l_z / norm; } /** * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_dfisheye(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float scale = 1.f - s->in_pad; const float ew = width / 2.f; const float eh = height; const float phi = atan2f(-vec[1], -vec[0]); const float theta = acosf(fabsf(vec[2])) / M_PI; float uf = (theta * cosf(phi) * scale + 0.5f) * ew; float vf = (theta * sinf(phi) * scale + 0.5f) * eh; int ui, vi; int u_shift; int i, j; if (vec[2] >= 0) { u_shift = 0; } else { u_shift = ceilf(ew); uf = ew - uf; } ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width - 1); vs[i + 1][j + 1] = av_clip( vi + i, 0, height - 1); } } } /** * Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format. * * @param s filter context * @param i horizontal position on frame [0, height) * @param j vertical position on frame [0, width) * @param width frame width * @param height frame height * @param vec coordinates on sphere */ static void barrel_to_xyz(const V360Context *s, int i, int j, int width, int height, float *vec) { const float scale = 0.99f; float l_x, l_y, l_z; if (i < 4 * width / 5) { const float theta_range = M_PI / 4.f; const int ew = 4 * width / 5; const int eh = height; const float phi = ((2.f * i) / ew - 1.f) * M_PI / scale; const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale; const float sin_phi = sinf(phi); const float cos_phi = cosf(phi); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); l_x = cos_theta * sin_phi; l_y = -sin_theta; l_z = -cos_theta * cos_phi; } else { const int ew = width / 5; const int eh = height / 2; float uf, vf; float norm; if (j < eh) { // UP uf = 2.f * (i - 4 * ew) / ew - 1.f; vf = 2.f * (j ) / eh - 1.f; uf /= scale; vf /= scale; l_x = uf; l_y = 1.f; l_z = -vf; } else { // DOWN uf = 2.f * (i - 4 * ew) / ew - 1.f; vf = 2.f * (j - eh) / eh - 1.f; uf /= scale; vf /= scale; l_x = uf; l_y = -1.f; l_z = vf; } norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z); l_x /= norm; l_y /= norm; l_z /= norm; } vec[0] = l_x; vec[1] = l_y; vec[2] = l_z; } /** * Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere. * * @param s filter context * @param vec coordinates on sphere * @param width frame width * @param height frame height * @param us horizontal coordinates for interpolation window * @param vs vertical coordinates for interpolation window * @param du horizontal relative coordinate * @param dv vertical relative coordinate */ static void xyz_to_barrel(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) { const float scale = 0.99f; const float phi = atan2f(vec[0], -vec[2]); const float theta = asinf(-vec[1]); const float theta_range = M_PI / 4.f; int ew, eh; int u_shift, v_shift; float uf, vf; int ui, vi; int i, j; if (theta > -theta_range && theta < theta_range) { ew = 4 * width / 5; eh = height; u_shift = 0; v_shift = 0; uf = (phi / M_PI * scale + 1.f) * ew / 2.f; vf = (theta / theta_range * scale + 1.f) * eh / 2.f; } else { ew = width / 5; eh = height / 2; u_shift = 4 * ew; if (theta < 0.f) { // UP uf = vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = 0; } else { // DOWN uf = -vec[0] / vec[1]; vf = -vec[2] / vec[1]; v_shift = eh; } uf = 0.5f * ew * (uf * scale + 1.f); vf = 0.5f * eh * (vf * scale + 1.f); } ui = floorf(uf); vi = floorf(vf); *du = uf - ui; *dv = vf - vi; for (i = -1; i < 3; i++) { for (j = -1; j < 3; j++) { us[i + 1][j + 1] = u_shift + av_clip(ui + j, 0, ew - 1); vs[i + 1][j + 1] = v_shift + av_clip(vi + i, 0, eh - 1); } } } static void multiply_matrix(float c[3][3], const float a[3][3], const float b[3][3]) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { float sum = 0; for (int k = 0; k < 3; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } } } /** * Calculate rotation matrix for yaw/pitch/roll angles. */ static inline void calculate_rotation_matrix(float yaw, float pitch, float roll, float rot_mat[3][3], const int rotation_order[3]) { const float yaw_rad = yaw * M_PI / 180.f; const float pitch_rad = pitch * M_PI / 180.f; const float roll_rad = roll * M_PI / 180.f; const float sin_yaw = sinf(-yaw_rad); const float cos_yaw = cosf(-yaw_rad); const float sin_pitch = sinf(pitch_rad); const float cos_pitch = cosf(pitch_rad); const float sin_roll = sinf(roll_rad); const float cos_roll = cosf(roll_rad); float m[3][3][3]; float temp[3][3]; m[0][0][0] = cos_yaw; m[0][0][1] = 0; m[0][0][2] = sin_yaw; m[0][1][0] = 0; m[0][1][1] = 1; m[0][1][2] = 0; m[0][2][0] = -sin_yaw; m[0][2][1] = 0; m[0][2][2] = cos_yaw; m[1][0][0] = 1; m[1][0][1] = 0; m[1][0][2] = 0; m[1][1][0] = 0; m[1][1][1] = cos_pitch; m[1][1][2] = -sin_pitch; m[1][2][0] = 0; m[1][2][1] = sin_pitch; m[1][2][2] = cos_pitch; m[2][0][0] = cos_roll; m[2][0][1] = -sin_roll; m[2][0][2] = 0; m[2][1][0] = sin_roll; m[2][1][1] = cos_roll; m[2][1][2] = 0; m[2][2][0] = 0; m[2][2][1] = 0; m[2][2][2] = 1; multiply_matrix(temp, m[rotation_order[0]], m[rotation_order[1]]); multiply_matrix(rot_mat, temp, m[rotation_order[2]]); } /** * Rotate vector with given rotation matrix. * * @param rot_mat rotation matrix * @param vec vector */ static inline void rotate(const float rot_mat[3][3], float *vec) { const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2]; const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2]; const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2]; vec[0] = x_tmp; vec[1] = y_tmp; vec[2] = z_tmp; } static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip, float *modifier) { modifier[0] = h_flip ? -1.f : 1.f; modifier[1] = v_flip ? -1.f : 1.f; modifier[2] = d_flip ? -1.f : 1.f; } static inline void mirror(const float *modifier, float *vec) { vec[0] *= modifier[0]; vec[1] *= modifier[1]; vec[2] *= modifier[2]; } static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int p) { s->u[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_uv); s->v[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_uv); if (!s->u[p] || !s->v[p]) return AVERROR(ENOMEM); if (sizeof_ker) { s->ker[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_ker); if (!s->ker[p]) return AVERROR(ENOMEM); } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; V360Context *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int depth = desc->comp[0].depth; int sizeof_uv; int sizeof_ker; int elements; int err; int p, h, w; float hf, wf; float mirror_modifier[3]; void (*in_transform)(const V360Context *s, const float *vec, int width, int height, uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv); void (*out_transform)(const V360Context *s, int i, int j, int width, int height, float *vec); void (*calculate_kernel)(float du, float dv, const XYRemap *r_tmp, uint16_t *u, uint16_t *v, int16_t *ker); float rot_mat[3][3]; switch (s->interp) { case NEAREST: calculate_kernel = nearest_kernel; s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice; elements = 1; sizeof_uv = sizeof(uint16_t) * elements; sizeof_ker = 0; break; case BILINEAR: calculate_kernel = bilinear_kernel; s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice; elements = 2 * 2; sizeof_uv = sizeof(uint16_t) * elements; sizeof_ker = sizeof(uint16_t) * elements; break; case BICUBIC: calculate_kernel = bicubic_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; elements = 4 * 4; sizeof_uv = sizeof(uint16_t) * elements; sizeof_ker = sizeof(uint16_t) * elements; break; case LANCZOS: calculate_kernel = lanczos_kernel; s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice; elements = 4 * 4; sizeof_uv = sizeof(uint16_t) * elements; sizeof_ker = sizeof(uint16_t) * elements; break; default: av_assert0(0); } ff_v360_init(s, depth); for (int order = 0; order < NB_RORDERS; order++) { const char c = s->rorder[order]; int rorder; if (c == '\0') { av_log(ctx, AV_LOG_ERROR, "Incomplete rorder option. Direction for all 3 rotation orders should be specified.\n"); return AVERROR(EINVAL); } rorder = get_rorder(c); if (rorder == -1) { av_log(ctx, AV_LOG_ERROR, "Incorrect rotation order symbol '%c' in rorder option.\n", c); return AVERROR(EINVAL); } s->rotation_order[order] = rorder; } switch (s->in) { case EQUIRECTANGULAR: in_transform = xyz_to_equirect; err = 0; wf = inlink->w; hf = inlink->h; break; case CUBEMAP_3_2: in_transform = xyz_to_cube3x2; err = prepare_cube_in(ctx); wf = inlink->w / 3.f * 4.f; hf = inlink->h; break; case CUBEMAP_1_6: in_transform = xyz_to_cube1x6; err = prepare_cube_in(ctx); wf = inlink->w * 4.f; hf = inlink->h / 3.f; break; case CUBEMAP_6_1: in_transform = xyz_to_cube6x1; err = prepare_cube_in(ctx); wf = inlink->w / 3.f * 2.f; hf = inlink->h * 2.f; break; case EQUIANGULAR: in_transform = xyz_to_eac; err = prepare_eac_in(ctx); wf = inlink->w; hf = inlink->h / 9.f * 8.f; break; case FLAT: av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n"); return AVERROR(EINVAL); case DUAL_FISHEYE: in_transform = xyz_to_dfisheye; err = 0; wf = inlink->w; hf = inlink->h; break; case BARREL: in_transform = xyz_to_barrel; err = 0; wf = inlink->w / 5.f * 4.f; hf = inlink->h; break; default: av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n"); return AVERROR_BUG; } if (err != 0) { return err; } switch (s->out) { case EQUIRECTANGULAR: out_transform = equirect_to_xyz; err = 0; w = roundf(wf); h = roundf(hf); break; case CUBEMAP_3_2: out_transform = cube3x2_to_xyz; err = prepare_cube_out(ctx); w = roundf(wf / 4.f * 3.f); h = roundf(hf); break; case CUBEMAP_1_6: out_transform = cube1x6_to_xyz; err = prepare_cube_out(ctx); w = roundf(wf / 4.f); h = roundf(hf * 3.f); break; case CUBEMAP_6_1: out_transform = cube6x1_to_xyz; err = prepare_cube_out(ctx); w = roundf(wf / 2.f * 3.f); h = roundf(hf / 2.f); break; case EQUIANGULAR: out_transform = eac_to_xyz; err = prepare_eac_out(ctx); w = roundf(wf); h = roundf(hf / 8.f * 9.f); break; case FLAT: out_transform = flat_to_xyz; err = prepare_flat_out(ctx); w = roundf(wf * s->flat_range[0] / s->flat_range[1] / 2.f); h = roundf(hf); break; case DUAL_FISHEYE: av_log(ctx, AV_LOG_ERROR, "Dual fisheye format is not accepted as output.\n"); return AVERROR(EINVAL); case BARREL: out_transform = barrel_to_xyz; err = 0; w = roundf(wf / 4.f * 5.f); h = roundf(hf); break; default: av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n"); return AVERROR_BUG; } if (err != 0) { return err; } // Override resolution with user values if specified if (s->width > 0 && s->height > 0) { w = s->width; h = s->height; } else if (s->width > 0 || s->height > 0) { av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n"); return AVERROR(EINVAL); } s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = h; s->planewidth[1] = s->planewidth[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = w; outlink->h = h; outlink->w = w; s->inplaneheight[1] = s->inplaneheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->inplaneheight[0] = s->inplaneheight[3] = inlink->h; s->inplanewidth[1] = s->inplanewidth[2] = FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->inplanewidth[0] = s->inplanewidth[3] = inlink->w; s->nb_planes = av_pix_fmt_count_planes(inlink->format); if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) { s->nb_allocated = 1; s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0; allocate_plane(s, sizeof_uv, sizeof_ker, 0); } else if (desc->log2_chroma_h == desc->log2_chroma_w) { s->nb_allocated = 2; s->map[0] = 0; s->map[1] = s->map[2] = 1; s->map[3] = 0; allocate_plane(s, sizeof_uv, sizeof_ker, 0); allocate_plane(s, sizeof_uv, sizeof_ker, 1); } else { s->nb_allocated = 3; s->map[0] = 0; s->map[1] = 1; s->map[2] = 2; s->map[3] = 0; allocate_plane(s, sizeof_uv, sizeof_ker, 0); allocate_plane(s, sizeof_uv, sizeof_ker, 1); allocate_plane(s, sizeof_uv, sizeof_ker, 2); } calculate_rotation_matrix(s->yaw, s->pitch, s->roll, rot_mat, s->rotation_order); set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, mirror_modifier); // Calculate remap data for (p = 0; p < s->nb_allocated; p++) { const int width = s->planewidth[p]; const int height = s->planeheight[p]; const int in_width = s->inplanewidth[p]; const int in_height = s->inplaneheight[p]; float du, dv; float vec[3]; XYRemap r_tmp; int i, j; for (i = 0; i < width; i++) { for (j = 0; j < height; j++) { uint16_t *u = s->u[p] + (j * width + i) * elements; uint16_t *v = s->v[p] + (j * width + i) * elements; int16_t *ker = s->ker[p] + (j * width + i) * elements; out_transform(s, i, j, width, height, vec); rotate(rot_mat, vec); mirror(mirror_modifier, vec); in_transform(s, vec, in_width, in_height, r_tmp.u, r_tmp.v, &du, &dv); calculate_kernel(du, dv, &r_tmp, u, v, ker); } } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; V360Context *s = ctx->priv; AVFrame *out; ThreadData td; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); td.in = in; td.out = out; ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { V360Context *s = ctx->priv; int p; for (p = 0; p < s->nb_allocated; p++) { av_freep(&s->u[p]); av_freep(&s->v[p]); av_freep(&s->ker[p]); } } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_v360 = { .name = "v360", .description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."), .priv_size = sizeof(V360Context), .uninit = uninit, .query_formats = query_formats, .inputs = inputs, .outputs = outputs, .priv_class = &v360_class, .flags = AVFILTER_FLAG_SLICE_THREADS, };