/* * Copyright (c) 2016 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 2.1 of the License, * or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avstring.h" #include "libavutil/mem.h" #include "libavutil/common.h" #include "libavutil/cpu.h" #include "libavutil/opt.h" #include "libavutil/eval.h" #include "libavutil/tx.h" #include "audio.h" #include "filters.h" #include "window_func.h" typedef struct AFFTFiltContext { const AVClass *class; char *real_str; char *img_str; int fft_size; AVTXContext **fft, **ifft; av_tx_fn tx_fn, itx_fn; AVComplexFloat **fft_in; AVComplexFloat **fft_out; AVComplexFloat **fft_temp; int nb_exprs; int channels; int window_size; AVExpr **real; AVExpr **imag; int hop_size; float overlap; AVFrame *window; AVFrame *buffer; int win_func; float *window_func_lut; } AFFTFiltContext; static const char *const var_names[] = { "sr", "b", "nb", "ch", "chs", "pts", "re", "im", NULL }; enum { VAR_SAMPLE_RATE, VAR_BIN, VAR_NBBINS, VAR_CHANNEL, VAR_CHANNELS, VAR_PTS, VAR_REAL, VAR_IMAG, VAR_VARS_NB }; #define OFFSET(x) offsetof(AFFTFiltContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption afftfilt_options[] = { { "real", "set channels real expressions", OFFSET(real_str), AV_OPT_TYPE_STRING, {.str = "re" }, 0, 0, A }, { "imag", "set channels imaginary expressions", OFFSET(img_str), AV_OPT_TYPE_STRING, {.str = "im" }, 0, 0, A }, { "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=4096}, 16, 131072, A }, WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, WFUNC_HANNING), { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, A }, { NULL }, }; AVFILTER_DEFINE_CLASS(afftfilt); static inline double getreal(void *priv, double x, double ch) { AFFTFiltContext *s = priv; int ich, ix; ich = av_clip(ch, 0, s->nb_exprs - 1); ix = av_clip(x, 0, s->window_size / 2); return s->fft_out[ich][ix].re; } static inline double getimag(void *priv, double x, double ch) { AFFTFiltContext *s = priv; int ich, ix; ich = av_clip(ch, 0, s->nb_exprs - 1); ix = av_clip(x, 0, s->window_size / 2); return s->fft_out[ich][ix].im; } static double realf(void *priv, double x, double ch) { return getreal(priv, x, ch); } static double imagf(void *priv, double x, double ch) { return getimag(priv, x, ch); } static const char *const func2_names[] = { "real", "imag", NULL }; static double (*const func2[])(void *, double, double) = { realf, imagf, NULL }; static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AFFTFiltContext *s = ctx->priv; char *saveptr = NULL; int ret = 0, ch; float overlap, scale = 1.f; char *args; const char *last_expr = "1"; int buf_size; s->channels = inlink->ch_layout.nb_channels; s->fft = av_calloc(s->channels, sizeof(*s->fft)); s->ifft = av_calloc(s->channels, sizeof(*s->ifft)); if (!s->fft || !s->ifft) return AVERROR(ENOMEM); for (int ch = 0; ch < s->channels; ch++) { ret = av_tx_init(&s->fft[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0); if (ret < 0) return ret; } for (int ch = 0; ch < s->channels; ch++) { ret = av_tx_init(&s->ifft[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0); if (ret < 0) return ret; } s->window_size = s->fft_size; buf_size = FFALIGN(s->window_size, av_cpu_max_align()); s->fft_in = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_in)); if (!s->fft_in) return AVERROR(ENOMEM); s->fft_out = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_out)); if (!s->fft_out) return AVERROR(ENOMEM); s->fft_temp = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_temp)); if (!s->fft_temp) return AVERROR(ENOMEM); for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { s->fft_in[ch] = av_calloc(buf_size, sizeof(**s->fft_in)); if (!s->fft_in[ch]) return AVERROR(ENOMEM); s->fft_out[ch] = av_calloc(buf_size, sizeof(**s->fft_out)); if (!s->fft_out[ch]) return AVERROR(ENOMEM); s->fft_temp[ch] = av_calloc(buf_size, sizeof(**s->fft_temp)); if (!s->fft_temp[ch]) return AVERROR(ENOMEM); } s->real = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->real)); if (!s->real) return AVERROR(ENOMEM); s->imag = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->imag)); if (!s->imag) return AVERROR(ENOMEM); args = av_strdup(s->real_str); if (!args) return AVERROR(ENOMEM); for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr); ret = av_expr_parse(&s->real[ch], arg ? arg : last_expr, var_names, NULL, NULL, func2_names, func2, 0, ctx); if (ret < 0) goto fail; if (arg) last_expr = arg; s->nb_exprs++; } av_freep(&args); args = av_strdup(s->img_str ? s->img_str : s->real_str); if (!args) return AVERROR(ENOMEM); saveptr = NULL; last_expr = "1"; for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr); ret = av_expr_parse(&s->imag[ch], arg ? arg : last_expr, var_names, NULL, NULL, func2_names, func2, 0, ctx); if (ret < 0) goto fail; if (arg) last_expr = arg; } av_freep(&args); s->window_func_lut = av_realloc_f(s->window_func_lut, s->window_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->window_size, s->win_func, &overlap); for (int i = 0; i < s->window_size; i++) s->window_func_lut[i] = sqrtf(s->window_func_lut[i] / s->window_size); if (s->overlap == 1) s->overlap = overlap; s->hop_size = s->window_size * (1 - s->overlap); if (s->hop_size <= 0) return AVERROR(EINVAL); s->window = ff_get_audio_buffer(inlink, s->window_size * 2); if (!s->window) return AVERROR(ENOMEM); s->buffer = ff_get_audio_buffer(inlink, s->window_size * 2); if (!s->buffer) return AVERROR(ENOMEM); fail: av_freep(&args); return ret; } static int tx_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AFFTFiltContext *s = ctx->priv; const int channels = s->channels; const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) { AVComplexFloat *fft_in = s->fft_in[ch]; AVComplexFloat *fft_out = s->fft_out[ch]; s->tx_fn(s->fft[ch], fft_out, fft_in, sizeof(*fft_in)); } return 0; } static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AFFTFiltContext *s = ctx->priv; const int window_size = s->window_size; const float *window_lut = s->window_func_lut; const float f = sqrtf(1.f - s->overlap); const int channels = s->channels; const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; double values[VAR_VARS_NB]; memcpy(values, arg, sizeof(values)); for (int ch = start; ch < end; ch++) { AVComplexFloat *fft_out = s->fft_out[ch]; AVComplexFloat *fft_temp = s->fft_temp[ch]; float *buf = (float *)s->buffer->extended_data[ch]; values[VAR_CHANNEL] = ch; if (ctx->is_disabled) { for (int n = 0; n < window_size; n++) { fft_temp[n].re = fft_out[n].re; fft_temp[n].im = fft_out[n].im; } } else { for (int n = 0; n <= window_size / 2; n++) { float fr, fi; values[VAR_BIN] = n; values[VAR_REAL] = fft_out[n].re; values[VAR_IMAG] = fft_out[n].im; fr = av_expr_eval(s->real[ch], values, s); fi = av_expr_eval(s->imag[ch], values, s); fft_temp[n].re = fr; fft_temp[n].im = fi; } for (int n = window_size / 2 + 1, x = window_size / 2 - 1; n < window_size; n++, x--) { fft_temp[n].re = fft_temp[x].re; fft_temp[n].im = -fft_temp[x].im; } } s->itx_fn(s->ifft[ch], fft_out, fft_temp, sizeof(*fft_temp)); memmove(buf, buf + s->hop_size, window_size * sizeof(float)); for (int i = 0; i < window_size; i++) buf[i] += fft_out[i].re * window_lut[i] * f; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AFFTFiltContext *s = ctx->priv; const int window_size = s->window_size; const float *window_lut = s->window_func_lut; double values[VAR_VARS_NB]; int ch, n, ret; AVFrame *out; for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { const int offset = s->window_size - s->hop_size; float *src = (float *)s->window->extended_data[ch]; AVComplexFloat *fft_in = s->fft_in[ch]; memmove(src, &src[s->hop_size], offset * sizeof(float)); memcpy(&src[offset], in->extended_data[ch], in->nb_samples * sizeof(float)); memset(&src[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float)); for (n = 0; n < window_size; n++) { fft_in[n].re = src[n] * window_lut[n]; fft_in[n].im = 0; } } values[VAR_PTS] = in->pts; values[VAR_SAMPLE_RATE] = inlink->sample_rate; values[VAR_NBBINS] = window_size / 2; values[VAR_CHANNELS] = inlink->ch_layout.nb_channels; ff_filter_execute(ctx, tx_channel, NULL, NULL, FFMIN(s->channels, ff_filter_get_nb_threads(ctx))); ff_filter_execute(ctx, filter_channel, values, NULL, FFMIN(s->channels, ff_filter_get_nb_threads(ctx))); out = ff_get_audio_buffer(outlink, s->hop_size); if (!out) { ret = AVERROR(ENOMEM); goto fail; } av_frame_copy_props(out, in); out->nb_samples = in->nb_samples; for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { float *dst = (float *)out->extended_data[ch]; float *buf = (float *)s->buffer->extended_data[ch]; memcpy(dst, buf, s->hop_size * sizeof(float)); } ret = ff_filter_frame(outlink, out); if (ret < 0) goto fail; fail: av_frame_free(&in); return ret < 0 ? ret : 0; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AFFTFiltContext *s = ctx->priv; AVFrame *in = NULL; int ret = 0, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in); if (ret < 0) return ret; if (ret > 0) ret = filter_frame(inlink, in); if (ret < 0) return ret; if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { ff_outlink_set_status(outlink, status, pts); return 0; } FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { AFFTFiltContext *s = ctx->priv; int i; for (i = 0; i < s->channels; i++) { if (s->ifft) av_tx_uninit(&s->ifft[i]); if (s->fft) av_tx_uninit(&s->fft[i]); if (s->fft_in) av_freep(&s->fft_in[i]); if (s->fft_out) av_freep(&s->fft_out[i]); if (s->fft_temp) av_freep(&s->fft_temp[i]); } av_freep(&s->fft); av_freep(&s->ifft); av_freep(&s->fft_in); av_freep(&s->fft_out); av_freep(&s->fft_temp); for (i = 0; i < s->nb_exprs; i++) { av_expr_free(s->real[i]); av_expr_free(s->imag[i]); } av_freep(&s->real); av_freep(&s->imag); av_frame_free(&s->buffer); av_frame_free(&s->window); av_freep(&s->window_func_lut); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, }; const AVFilter ff_af_afftfilt = { .name = "afftfilt", .description = NULL_IF_CONFIG_SMALL("Apply arbitrary expressions to samples in frequency domain."), .priv_size = sizeof(AFFTFiltContext), .priv_class = &afftfilt_class, FILTER_INPUTS(inputs), FILTER_OUTPUTS(ff_audio_default_filterpad), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), .activate = activate, .uninit = uninit, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };