/* * Copyright (C) 2004 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/intmath.h" #include "libavutil/log.h" #include "libavutil/opt.h" #include "avcodec.h" #include "dsputil.h" #include "dwt.h" #include "snow.h" #include "rangecoder.h" #include "mathops.h" #include "mpegvideo.h" #include "h263.h" #undef NDEBUG #include #define QUANTIZE2 0 #if QUANTIZE2==1 #define Q2_STEP 8 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){ SubBand *b= &p->band[level][orientation]; int x, y; int xo=0; int yo=0; int step= 1 << (s->spatial_decomposition_count - level); if(orientation&1) xo= step>>1; if(orientation&2) yo= step>>1; //FIXME bias for nonzero ? //FIXME optimize memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP)); for(y=0; yheight; y++){ for(x=0; xwidth; x++){ int sx= (x-xo + step/2) / step / Q2_STEP; int sy= (y-yo + step/2) / step / Q2_STEP; int v= r0[x + y*p->width] - r1[x + y*p->width]; assert(sx>=0 && sy>=0 && sx < score_stride); v= ((v+8)>>4)<<4; score[sx + sy*score_stride] += v*v; assert(score[sx + sy*score_stride] >= 0); } } } static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){ int level, orientation; for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer); dequantize(s, b, dst, b->stride); } } } static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){ int level, orientation, ys, xs, x, y, pass; IDWTELEM best_dequant[height * stride]; IDWTELEM idwt2_buffer[height * stride]; const int score_stride= (width + 10)/Q2_STEP; int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size int threshold= (s->m.lambda * s->m.lambda) >> 6; //FIXME pass the copy cleanly ? // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM)); ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count); for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer); assert(src == b->buf); // code does not depend on this but it is true currently quantize(s, b, dst, src, b->stride, s->qbias); } } for(pass=0; pass<1; pass++){ if(s->qbias == 0) //keyframe continue; for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer); IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); for(ys= 0; ystemp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count); find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); for(y=ys; yheight; y+= Q2_STEP){ for(x=xs; xwidth; x+= Q2_STEP){ if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++; if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--; //FIXME try more than just -- } } dequantize_all(s, p, idwt2_buffer, width, height); ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count); find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); for(y=ys; yheight; y+= Q2_STEP){ for(x=xs; xwidth; x+= Q2_STEP){ int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride; if(score[score_idx] <= best_score[score_idx] + threshold){ best_score[score_idx]= score[score_idx]; if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++; if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--; //FIXME copy instead } } } } } } } } memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end } #endif /* QUANTIZE2==1 */ static av_cold int encode_init(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; int plane_index, ret; if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){ av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n" "Use vstrict=-2 / -strict -2 to use it anyway.\n"); return -1; } if(avctx->prediction_method == DWT_97 && (avctx->flags & CODEC_FLAG_QSCALE) && avctx->global_quality == 0){ av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n"); return -1; } s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4; s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0; for(plane_index=0; plane_index<3; plane_index++){ s->plane[plane_index].diag_mc= 1; s->plane[plane_index].htaps= 6; s->plane[plane_index].hcoeff[0]= 40; s->plane[plane_index].hcoeff[1]= -10; s->plane[plane_index].hcoeff[2]= 2; s->plane[plane_index].fast_mc= 1; } if ((ret = ff_snow_common_init(avctx)) < 0) { ff_snow_common_end(avctx->priv_data); return ret; } ff_snow_alloc_blocks(s); s->version=0; s->m.avctx = avctx; s->m.flags = avctx->flags; s->m.bit_rate= avctx->bit_rate; s->m.me.temp = s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t)); ff_h263_encode_init(&s->m); //mv_penalty s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1); if(avctx->flags&CODEC_FLAG_PASS1){ if(!avctx->stats_out) avctx->stats_out = av_mallocz(256); } if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){ if(ff_rate_control_init(&s->m) < 0) return -1; } s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2)); avctx->coded_frame= &s->current_picture; switch(avctx->pix_fmt){ // case PIX_FMT_YUV444P: // case PIX_FMT_YUV422P: case PIX_FMT_YUV420P: case PIX_FMT_GRAY8: // case PIX_FMT_YUV411P: // case PIX_FMT_YUV410P: s->colorspace_type= 0; break; /* case PIX_FMT_RGB32: s->colorspace= 1; break;*/ default: av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n"); return -1; } // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); s->chroma_h_shift= 1; s->chroma_v_shift= 1; ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp); ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp); s->avctx->get_buffer(s->avctx, &s->input_picture); if(s->avctx->me_method == ME_ITER){ int i; int size= s->b_width * s->b_height << 2*s->block_max_depth; for(i=0; imax_ref_frames; i++){ s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2])); s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t)); } } return 0; } //near copy & paste from dsputil, FIXME static int pix_sum(uint8_t * pix, int line_size, int w) { int s, i, j; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j++) { s += pix[0]; pix ++; } pix += line_size - w; } return s; } //near copy & paste from dsputil, FIXME static int pix_norm1(uint8_t * pix, int line_size, int w) { int s, i, j; uint32_t *sq = ff_squareTbl + 256; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j ++) { s += sq[pix[0]]; pix ++; } pix += line_size - w; } return s; } //FIXME copy&paste #define P_LEFT P[1] #define P_TOP P[2] #define P_TOPRIGHT P[3] #define P_MEDIAN P[4] #define P_MV1 P[9] #define FLAG_QPEL 1 //must be 1 static int encode_q_branch(SnowContext *s, int level, int x, int y){ uint8_t p_buffer[1024]; uint8_t i_buffer[1024]; uint8_t p_state[sizeof(s->block_state)]; uint8_t i_state[sizeof(s->block_state)]; RangeCoder pc, ic; uint8_t *pbbak= s->c.bytestream; uint8_t *pbbak_start= s->c.bytestream_start; int score, score2, iscore, i_len, p_len, block_s, sum, base_bits; const int w= s->b_width << s->block_max_depth; const int h= s->b_height << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<<(LOG2_MB_SIZE - level); int trx= (x+1)<block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *right = trxblock[index+1] : &null_block; const BlockNode *bottom= tryblock[index+w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trxblock[index-w+(1<color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int mx=0, my=0; int l,cr,cb; const int stride= s->current_picture.linesize[0]; const int uvstride= s->current_picture.linesize[1]; uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w, s->input_picture.data[1] + (x + y*uvstride)*block_w/2, s->input_picture.data[2] + (x + y*uvstride)*block_w/2}; int P[10][2]; int16_t last_mv[3][2]; int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused const int shift= 1+qpel; MotionEstContext *c= &s->m.me; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)); int my_context= av_log2(2*FFABS(left->my - top->my)); int s_context= 2*left->level + 2*top->level + tl->level + tr->level; int ref, best_ref, ref_score, ref_mx, ref_my; assert(sizeof(s->block_state) >= 256); if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return 0; } // clip predictors / edge ? P_LEFT[0]= left->mx; P_LEFT[1]= left->my; P_TOP [0]= top->mx; P_TOP [1]= top->my; P_TOPRIGHT[0]= tr->mx; P_TOPRIGHT[1]= tr->my; last_mv[0][0]= s->block[index].mx; last_mv[0][1]= s->block[index].my; last_mv[1][0]= right->mx; last_mv[1][1]= right->my; last_mv[2][0]= bottom->mx; last_mv[2][1]= bottom->my; s->m.mb_stride=2; s->m.mb_x= s->m.mb_y= 0; c->skip= 0; assert(c-> stride == stride); assert(c->uvstride == uvstride); c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV; c->xmin = - x*block_w - 16+3; c->ymin = - y*block_w - 16+3; c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; if(P_LEFT[0] > (c->xmax<xmax< (c->ymax<ymax< (c->xmax<xmax< (c->ymax<ymax<xmin<xmin< (c->xmax<xmax< (c->ymax<ymax<pred_x= P_LEFT[0]; c->pred_y= P_LEFT[1]; } else { c->pred_x = P_MEDIAN[0]; c->pred_y = P_MEDIAN[1]; } score= INT_MAX; best_ref= 0; for(ref=0; refref_frames; ref++){ init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0); ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv, (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); assert(ref_mx >= c->xmin); assert(ref_mx <= c->xmax); assert(ref_my >= c->ymin); assert(ref_my <= c->ymax); ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w); ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); ref_score+= 2*av_log2(2*ref)*c->penalty_factor; if(s->ref_mvs[ref]){ s->ref_mvs[ref][index][0]= ref_mx; s->ref_mvs[ref][index][1]= ref_my; s->ref_scores[ref][index]= ref_score; } if(score > ref_score){ score= ref_score; best_ref= ref; mx= ref_mx; my= ref_my; } } //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2 // subpel search base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start); pc= s->c; pc.bytestream_start= pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo memcpy(p_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&pc, &p_state[4 + s_context], 1); put_rac(&pc, &p_state[1 + left->type + top->type], 0); if(s->ref_frames > 1) put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0); pred_mv(s, &pmx, &pmy, best_ref, left, top, tr); put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1); put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1); p_len= pc.bytestream - pc.bytestream_start; score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT; block_s= block_w*block_w; sum = pix_sum(current_data[0], stride, block_w); l= (sum + block_s/2)/block_s; iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; block_s= block_w*block_w>>2; sum = pix_sum(current_data[1], uvstride, block_w>>1); cb= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; sum = pix_sum(current_data[2], uvstride, block_w>>1); cr= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; ic= s->c; ic.bytestream_start= ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo memcpy(i_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&ic, &i_state[4 + s_context], 1); put_rac(&ic, &i_state[1 + left->type + top->type], 1); put_symbol(&ic, &i_state[32], l-pl , 1); put_symbol(&ic, &i_state[64], cb-pcb, 1); put_symbol(&ic, &i_state[96], cr-pcr, 1); i_len= ic.bytestream - ic.bytestream_start; iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT; // assert(score==256*256*256*64-1); assert(iscore < 255*255*256 + s->lambda2*10); assert(iscore >= 0); assert(l>=0 && l<=255); assert(pl>=0 && pl<=255); if(level==0){ int varc= iscore >> 8; int vard= score >> 8; if (vard <= 64 || vard < varc) c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); else c->scene_change_score+= s->m.qscale; } if(level!=s->block_max_depth){ put_rac(&s->c, &s->block_state[4 + s_context], 0); score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead if(score2 < score && score2 < iscore) return score2; } if(iscore < score){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); memcpy(pbbak, i_buffer, i_len); s->c= ic; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + i_len; set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA); memcpy(s->block_state, i_state, sizeof(s->block_state)); return iscore; }else{ memcpy(pbbak, p_buffer, p_len); s->c= pc; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + p_len; set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0); memcpy(s->block_state, p_state, sizeof(s->block_state)); return score; } } static void encode_q_branch2(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trxblock[index-w+(1<color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref; int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref; int s_context= 2*left->level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return; } if(level!=s->block_max_depth){ if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ put_rac(&s->c, &s->block_state[4 + s_context], 1); }else{ put_rac(&s->c, &s->block_state[4 + s_context], 0); encode_q_branch2(s, level+1, 2*x+0, 2*y+0); encode_q_branch2(s, level+1, 2*x+1, 2*y+0); encode_q_branch2(s, level+1, 2*x+0, 2*y+1); encode_q_branch2(s, level+1, 2*x+1, 2*y+1); return; } } if(b->type & BLOCK_INTRA){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA); }else{ pred_mv(s, &pmx, &pmy, b->ref, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); if(s->ref_frames > 1) put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0); put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0); } } static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, x2, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int index= mb_x + mb_y*b_stride; BlockNode *b= &s->block[index]; BlockNode backup= *b; int ab=0; int aa=0; b->type|= BLOCK_INTRA; b->color[plane_index]= 0; memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM)); for(i=0; i<4; i++){ int mb_x2= mb_x + (i &1) - 1; int mb_y2= mb_y + (i>>1) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc, x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index); for(y2= FFMAX(y, 0); y2h) obmc_v += obmc[index - block_w*obmc_stride]; if(x+block_w>w) obmc_v += obmc[index - block_w]; //FIXME precalculate this or simplify it somehow else d = -dst[index] + (1<<(FRAC_BITS-1)); dst[index] = d; ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v; aa += obmc_v * obmc_v; //FIXME precalculate this } } } *b= backup; return av_clip(((ab<b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; int index= x + y*b_stride; const BlockNode *b = &s->block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-b_stride] : &null_block; const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; const BlockNode *tr = y && x+wblock[index-b_stride+w] : tl; int dmx, dmy; // int mx_context= av_log2(2*FFABS(left->mx - top->mx)); // int my_context= av_log2(2*FFABS(left->my - top->my)); if(x<0 || x>=b_stride || y>=b_height) return 0; /* 1 0 0 01X 1-2 1 001XX 3-6 2-3 0001XXX 7-14 4-7 00001XXXX 15-30 8-15 */ //FIXME try accurate rate //FIXME intra and inter predictors if surrounding blocks are not the same type if(b->type & BLOCK_INTRA){ return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0])) + av_log2(2*FFABS(left->color[1] - b->color[1])) + av_log2(2*FFABS(left->color[2] - b->color[2]))); }else{ pred_mv(s, &dmx, &dmy, b->ref, left, top, tr); dmx-= b->mx; dmy-= b->my; return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda + av_log2(2*FFABS(dmy)) + av_log2(2*b->ref)); } } static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){ Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; uint8_t *cur = s->scratchbuf; uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)]; const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; const int w= p->width; const int h= p->height; int distortion; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); int sx= block_w*mb_x - block_w/2; int sy= block_w*mb_y - block_w/2; int x0= FFMAX(0,-sx); int y0= FFMAX(0,-sy); int x1= FFMIN(block_w*2, w-sx); int y1= FFMIN(block_w*2, h-sy); int i,x,y; ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h); for(y=y0; y= LOG2_OBMC_MAX int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX); #else int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS); #endif v = (v + pred1[x]) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst1[x] = v; } } /* copy the regions where obmc[] = (uint8_t)256 */ if(LOG2_OBMC_MAX == 8 && (mb_x == 0 || mb_x == b_stride-1) && (mb_y == 0 || mb_y == b_height-1)){ if(mb_x == 0) x1 = block_w; else x0 = block_w; if(mb_y == 0) y1 = block_w; else y0 = block_w; for(y=y0; yavctx->me_cmp == FF_CMP_W97) distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else if(s->avctx->me_cmp == FF_CMP_W53) distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else{ distortion = 0; for(i=0; i<4; i++){ int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride; distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16); } } }else{ assert(block_w==8); distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2); } if(plane_index==0){ for(i=0; i<4; i++){ /* ..RRr * .RXx. * rxx.. */ rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1); } if(mb_x == b_stride-2) rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1); } return distortion + rate*penalty_factor; } static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst // const has only been removed from zero_dst to suppress a warning static IDWTELEM zero_dst[4096]; //FIXME const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int distortion= 0; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); for(i=0; i<9; i++){ int mb_x2= mb_x + (i%3) - 1; int mb_y2= mb_y + (i/3) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, 0, NULL, zero_dst, dst, obmc, x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index); //FIXME find a cleaner/simpler way to skip the outside stuff for(y2= y; y2<0; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); for(y2= h; y2 w){ for(y2= y; y2dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w); } if(plane_index==0){ BlockNode *b= &s->block[mb_x+mb_y*b_stride]; int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1); /* ..RRRr * .RXXx. * .RXXx. * rxxx. */ if(merged) rate = get_block_bits(s, mb_x, mb_y, 2); for(i=merged?4:0; i<9; i++){ static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}}; rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1); } } return distortion + rate*penalty_factor; } static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ const int w= b->width; const int h= b->height; int x, y; if(1){ int run=0; int runs[w*h]; int run_index=0; int max_index; for(y=0; y 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(pxparent->width && pyparent->height) p= parent[px + py*2*stride]; } if(!(/*ll|*/l|lt|t|rt|p)){ if(v){ runs[run_index++]= run; run=0; }else{ run++; } } } } max_index= run_index; runs[run_index++]= run; run_index=0; run= runs[run_index++]; put_symbol2(&s->c, b->state[30], max_index, 0); if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); for(y=0; yc.bytestream_end - s->c.bytestream < w*40){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } for(x=0; x 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(pxparent->width && pyparent->height) p= parent[px + py*2*stride]; } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); put_rac(&s->c, &b->state[0][context], !!v); }else{ if(!run){ run= runs[run_index++]; if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); assert(v); }else{ run--; assert(!v); } } if(v){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); int l2= 2*FFABS(l) + (l<0); int t2= 2*FFABS(t) + (t<0); put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4); put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0); } } } } return 0; } static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ // encode_subband_qtree(s, b, src, parent, stride, orientation); // encode_subband_z0run(s, b, src, parent, stride, orientation); return encode_subband_c0run(s, b, src, parent, stride, orientation); // encode_subband_dzr(s, b, src, parent, stride, orientation); } static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup= *block; unsigned value; int rd, index; assert(mb_x>=0 && mb_y>=0); assert(mb_xcolor[0] = p[0]; block->color[1] = p[1]; block->color[2] = p[2]; block->type |= BLOCK_INTRA; }else{ index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p[0]; block->my= p[1]; block->type &= ~BLOCK_INTRA; } rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ *block= backup; return 0; } } /* special case for int[2] args we discard afterwards, * fixes compilation problem with gcc 2.95 */ static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ int p[2] = {p0, p1}; return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd); } static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]}; unsigned value; int rd, index; assert(mb_x>=0 && mb_y>=0); assert(mb_xme_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p0; block->my= p1; block->ref= ref; block->type &= ~BLOCK_INTRA; block[1]= block[b_stride]= block[b_stride+1]= *block; rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ block[0]= backup[0]; block[1]= backup[1]; block[b_stride]= backup[2]; block[b_stride+1]= backup[3]; return 0; } } static void iterative_me(SnowContext *s){ int pass, mb_x, mb_y; const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; int color[3]; { RangeCoder r = s->c; uint8_t state[sizeof(s->block_state)]; memcpy(state, s->block_state, sizeof(s->block_state)); for(mb_y= 0; mb_yb_height; mb_y++) for(mb_x= 0; mb_xb_width; mb_x++) encode_q_branch(s, 0, mb_x, mb_y); s->c = r; memcpy(s->block_state, state, sizeof(s->block_state)); } for(pass=0; pass<25; pass++){ int change= 0; for(mb_y= 0; mb_yblock[index]; BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL; BlockNode *lb = mb_x ? &s->block[index -1] : NULL; BlockNode *rb = mb_x+1block[index +1] : NULL; BlockNode *bb = mb_y+1block[index+b_stride ] : NULL; BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL; BlockNode *trb= mb_x+1block[index-b_stride+1] : NULL; BlockNode *blb= mb_x && mb_y+1block[index+b_stride-1] : NULL; BlockNode *brb= mb_x+1block[index+b_stride+1] : NULL; const int b_w= (MB_SIZE >> s->block_max_depth); uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2]; if(pass && (block->type & BLOCK_OPT)) continue; block->type |= BLOCK_OPT; backup= *block; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; //FIXME precalculate { int x, y; for (y = 0; y < b_w * 2; y++) memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2); if(mb_x==0) for(y=0; y input_picture.data[0]; uint8_t *dst= s->current_picture.data[0]; const int stride= s->current_picture.linesize[0]; const int block_w= MB_SIZE >> s->block_max_depth; const int sx= block_w*mb_x - block_w/2; const int sy= block_w*mb_y - block_w/2; const int w= s->plane[0].width; const int h= s->plane[0].height; int y; for(y=sy; y<0; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); for(y=h; y w){ for(y=sy; y 0 && (block->type&BLOCK_INTRA)){ int color0[3]= {block->color[0], block->color[1], block->color[2]}; check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd); }else check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd); ref_b= *block; ref_rd= best_rd; for(ref=0; ref < s->ref_frames; ref++){ int16_t (*mvr)[2]= &s->ref_mvs[ref][index]; if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold continue; block->ref= ref; best_rd= INT_MAX; check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd); check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd); if(tb) check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd); if(lb) check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd); if(rb) check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd); if(bb) check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd); /* fullpel ME */ //FIXME avoid subpel interpolation / round to nearest integer do{ dia_change=0; for(i=0; iavctx->dia_size, 1); i++){ for(j=0; jmx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd); } } }while(dia_change); /* subpel ME */ do{ static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; dia_change=0; for(i=0; i<8; i++) dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd); }while(dia_change); //FIXME or try the standard 2 pass qpel or similar mvr[0][0]= block->mx; mvr[0][1]= block->my; if(ref_rd > best_rd){ ref_rd= best_rd; ref_b= *block; } } best_rd= ref_rd; *block= ref_b; check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd); //FIXME RD style color selection if(!same_block(block, &backup)){ if(tb ) tb ->type &= ~BLOCK_OPT; if(lb ) lb ->type &= ~BLOCK_OPT; if(rb ) rb ->type &= ~BLOCK_OPT; if(bb ) bb ->type &= ~BLOCK_OPT; if(tlb) tlb->type &= ~BLOCK_OPT; if(trb) trb->type &= ~BLOCK_OPT; if(blb) blb->type &= ~BLOCK_OPT; if(brb) brb->type &= ~BLOCK_OPT; change ++; } } } av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change); if(!change) break; } if(s->block_max_depth == 1){ int change= 0; for(mb_y= 0; mb_yblock[index]; b[1]= b[0]+1; b[2]= b[0]+b_stride; b[3]= b[2]+1; if(same_block(b[0], b[1]) && same_block(b[0], b[2]) && same_block(b[0], b[3])) continue; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME more multiref search? check_4block_inter(s, mb_x, mb_y, (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2, (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd); for(i=0; i<4; i++) if(!(b[i]->type&BLOCK_INTRA)) check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd); if(init_rd != best_rd) change++; } } av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4); } } static void encode_blocks(SnowContext *s, int search){ int x, y; int w= s->b_width; int h= s->b_height; if(s->avctx->me_method == ME_ITER && !s->keyframe && search) iterative_me(s); for(y=0; yc.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return; } for(x=0; xavctx->me_method == ME_ITER || !search) encode_q_branch2(s, 0, x, y); else encode_q_branch (s, 0, x, y); } } } static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS); int x,y, thres1, thres2; if(s->qlog == LOSSLESS_QLOG){ for(y=0; y>3; thres1= ((qmul - bias)>>QEXPSHIFT) - 1; thres2= 2*thres1; if(!bias){ for(y=0; y thres2){ if(i>=0){ i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } }else{ for(y=0; y thres2){ if(i>=0){ i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } } } static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; if(s->qlog == LOSSLESS_QLOG) return; for(y=0; y>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } } static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=h-1; y>=0; y--){ for(x=w-1; x>=0; x--){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1width; const int h= b->height; int x,y; for(y=0; yspatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ if(orientation==2) continue; put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); } } } } static void encode_header(SnowContext *s){ int plane_index, i; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); put_rac(&s->c, kstate, s->keyframe); if(s->keyframe || s->always_reset){ ff_snow_reset_contexts(s); s->last_spatial_decomposition_type= s->last_qlog= s->last_qbias= s->last_mv_scale= s->last_block_max_depth= 0; for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_htaps=0; p->last_diag_mc=0; memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff)); } } if(s->keyframe){ put_symbol(&s->c, s->header_state, s->version, 0); put_rac(&s->c, s->header_state, s->always_reset); put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->colorspace_type, 0); put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); put_rac(&s->c, s->header_state, s->spatial_scalability); // put_rac(&s->c, s->header_state, s->rate_scalability); put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0); encode_qlogs(s); } if(!s->keyframe){ int update_mc=0; for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; update_mc |= p->last_htaps != p->htaps; update_mc |= p->last_diag_mc != p->diag_mc; update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } put_rac(&s->c, s->header_state, update_mc); if(update_mc){ for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; put_rac(&s->c, s->header_state, p->diag_mc); put_symbol(&s->c, s->header_state, p->htaps/2-1, 0); for(i= p->htaps/2; i; i--) put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0); } } if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ put_rac(&s->c, s->header_state, 1); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); encode_qlogs(s); }else put_rac(&s->c, s->header_state, 0); } put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1); put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1); put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1); put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1); put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1); } static void update_last_header_values(SnowContext *s){ int plane_index; if(!s->keyframe){ for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_diag_mc= p->diag_mc; p->last_htaps = p->htaps; memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } } s->last_spatial_decomposition_type = s->spatial_decomposition_type; s->last_qlog = s->qlog; s->last_qbias = s->qbias; s->last_mv_scale = s->mv_scale; s->last_block_max_depth = s->block_max_depth; s->last_spatial_decomposition_count = s->spatial_decomposition_count; } static int qscale2qlog(int qscale){ return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2)) + 61*QROOT/8; ///< 64 > 60 } static int ratecontrol_1pass(SnowContext *s, AVFrame *pict) { /* Estimate the frame's complexity as a sum of weighted dwt coefficients. * FIXME we know exact mv bits at this point, * but ratecontrol isn't set up to include them. */ uint32_t coef_sum= 0; int level, orientation, delta_qlog; for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[0].band[level][orientation]; IDWTELEM *buf= b->ibuf; const int w= b->width; const int h= b->height; const int stride= b->stride; const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qdiv= (1<<16)/qmul; int x, y; //FIXME this is ugly for(y=0; ybuf[x+y*stride]; if(orientation==0) decorrelate(s, b, buf, stride, 1, 0); for(y=0; y> 16; } } /* ugly, ratecontrol just takes a sqrt again */ coef_sum = (uint64_t)coef_sum * coef_sum >> 16; assert(coef_sum < INT_MAX); if(pict->pict_type == AV_PICTURE_TYPE_I){ s->m.current_picture.mb_var_sum= coef_sum; s->m.current_picture.mc_mb_var_sum= 0; }else{ s->m.current_picture.mc_mb_var_sum= coef_sum; s->m.current_picture.mb_var_sum= 0; } pict->quality= ff_rate_estimate_qscale(&s->m, 1); if (pict->quality < 0) return INT_MIN; s->lambda= pict->quality * 3/2; delta_qlog= qscale2qlog(pict->quality) - s->qlog; s->qlog+= delta_qlog; return delta_qlog; } static void calculate_visual_weight(SnowContext *s, Plane *p){ int width = p->width; int height= p->height; int level, orientation, x, y; for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *ibuf= b->ibuf; int64_t error=0; memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height); ibuf[b->width/2 + b->height/2*b->stride]= 256*16; ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); for(y=0; yspatial_idwt_buffer[x + y*width]*16; error += d*d; } } b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5); } } } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; AVFrame *pic = &s->new_picture; const int width= s->avctx->width; const int height= s->avctx->height; int level, orientation, plane_index, i, y, ret; uint8_t rc_header_bak[sizeof(s->header_state)]; uint8_t rc_block_bak[sizeof(s->block_state)]; if (!pkt->data && (ret = av_new_packet(pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } ff_init_range_encoder(c, pkt->data, pkt->size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); for(i=0; i<3; i++){ int shift= !!i; for(y=0; y<(height>>shift); y++) memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]], &pict->data[i][y * pict->linesize[i]], width>>shift); } s->new_picture = *pict; s->m.picture_number= avctx->frame_number; if(avctx->flags&CODEC_FLAG_PASS2){ s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type; s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I; if(!(avctx->flags&CODEC_FLAG_QSCALE)) { pic->quality = ff_rate_estimate_qscale(&s->m, 0); if (pic->quality < 0) return -1; } }else{ s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; } if(s->pass1_rc && avctx->frame_number == 0) pic->quality = 2*FF_QP2LAMBDA; if (pic->quality) { s->qlog = qscale2qlog(pic->quality); s->lambda = pic->quality * 3/2; } if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) { s->qlog= LOSSLESS_QLOG; s->lambda = 0; }//else keep previous frame's qlog until after motion estimation ff_snow_frame_start(s); s->m.current_picture_ptr= &s->m.current_picture; s->m.last_picture.f.pts = s->m.current_picture.f.pts; s->m.current_picture.f.pts = pict->pts; if(pic->pict_type == AV_PICTURE_TYPE_P){ int block_width = (width +15)>>4; int block_height= (height+15)>>4; int stride= s->current_picture.linesize[0]; assert(s->current_picture.data[0]); assert(s->last_picture[0].data[0]); s->m.avctx= s->avctx; s->m.current_picture.f.data[0] = s->current_picture.data[0]; s->m. last_picture.f.data[0] = s->last_picture[0].data[0]; s->m. new_picture.f.data[0] = s-> input_picture.data[0]; s->m. last_picture_ptr= &s->m. last_picture; s->m.linesize= s->m. last_picture.f.linesize[0] = s->m. new_picture.f.linesize[0] = s->m.current_picture.f.linesize[0] = stride; s->m.uvlinesize= s->current_picture.linesize[1]; s->m.width = width; s->m.height= height; s->m.mb_width = block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type = pic->pict_type; s->m.me_method= s->avctx->me_method; s->m.me.scene_change_score=0; s->m.flags= s->avctx->flags; s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0; s->m.out_format= FMT_H263; s->m.unrestricted_mv= 1; s->m.lambda = s->lambda; s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; s->m.dsp= s->dsp; //move ff_init_me(&s->m); s->dsp= s->m.dsp; } if(s->pass1_rc){ memcpy(rc_header_bak, s->header_state, sizeof(s->header_state)); memcpy(rc_block_bak, s->block_state, sizeof(s->block_state)); } redo_frame: if (pic->pict_type == AV_PICTURE_TYPE_I) s->spatial_decomposition_count= 5; else s->spatial_decomposition_count= 5; s->m.pict_type = pic->pict_type; s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0; ff_snow_common_init_after_header(avctx); if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ for(plane_index=0; plane_index<3; plane_index++){ calculate_visual_weight(s, &s->plane[plane_index]); } } encode_header(s); s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); encode_blocks(s, 1); s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; // int bits= put_bits_count(&s->c.pb); if (!s->memc_only) { //FIXME optimize if(pict->data[plane_index]) //FIXME gray hack for(y=0; yspatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<spatial_idwt_buffer, plane_index, 0); if( plane_index==0 && pic->pict_type == AV_PICTURE_TYPE_P && !(avctx->flags&CODEC_FLAG_PASS2) && s->m.me.scene_change_score > s->avctx->scenechange_threshold){ ff_init_range_encoder(c, pkt->data, pkt->size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); pic->pict_type= AV_PICTURE_TYPE_I; s->keyframe=1; s->current_picture.key_frame=1; goto redo_frame; } if(s->qlog == LOSSLESS_QLOG){ for(y=0; yspatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; } } }else{ for(y=0; yspatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type); else*/ ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->pass1_rc && plane_index==0){ int delta_qlog = ratecontrol_1pass(s, pic); if (delta_qlog <= INT_MIN) return -1; if(delta_qlog){ //reordering qlog in the bitstream would eliminate this reset ff_init_range_encoder(c, pkt->data, pkt->size); memcpy(s->header_state, rc_header_bak, sizeof(s->header_state)); memcpy(s->block_state, rc_block_bak, sizeof(s->block_state)); encode_header(s); encode_blocks(s, 0); } } for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; if(!QUANTIZE2) quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias); if(orientation==0) decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0); encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation); assert(b->parent==NULL || b->parent->stride == b->stride*2); if(orientation==0) correlate(s, b, b->ibuf, b->stride, 1, 0); } } for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; dequantize(s, b, b->ibuf, b->stride); } } ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->qlog == LOSSLESS_QLOG){ for(y=0; yspatial_idwt_buffer[y*w + x]<<=FRAC_BITS; } } } predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); }else{ //ME/MC only if(pic->pict_type == AV_PICTURE_TYPE_I){ for(y=0; ycurrent_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]; } } }else{ memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h); predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); } } if(s->avctx->flags&CODEC_FLAG_PSNR){ int64_t error= 0; if(pict->data[plane_index]) //FIXME gray hack for(y=0; ycurrent_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; error += d*d; } } s->avctx->error[plane_index] += error; s->current_picture.error[plane_index] = error; } } update_last_header_values(s); ff_snow_release_buffer(avctx); s->current_picture.coded_picture_number = avctx->frame_number; s->current_picture.pict_type = pict->pict_type; s->current_picture.quality = pict->quality; s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start); s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits; s->m.current_picture.f.display_picture_number = s->m.current_picture.f.coded_picture_number = avctx->frame_number; s->m.current_picture.f.quality = pic->quality; s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); if(s->pass1_rc) if (ff_rate_estimate_qscale(&s->m, 0) < 0) return -1; if(avctx->flags&CODEC_FLAG_PASS1) ff_write_pass1_stats(&s->m); s->m.last_pict_type = s->m.pict_type; avctx->frame_bits = s->m.frame_bits; avctx->mv_bits = s->m.mv_bits; avctx->misc_bits = s->m.misc_bits; avctx->p_tex_bits = s->m.p_tex_bits; emms_c(); pkt->size = ff_rac_terminate(c); if (avctx->coded_frame->key_frame) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; ff_snow_common_end(s); if (s->input_picture.data[0]) avctx->release_buffer(avctx, &s->input_picture); av_free(avctx->stats_out); return 0; } #define OFFSET(x) offsetof(SnowContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE }, { NULL }, }; static const AVClass snowenc_class = { .class_name = "snow encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_snow_encoder = { .name = "snow", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_SNOW, .priv_data_size = sizeof(SnowContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .long_name = NULL_IF_CONFIG_SMALL("Snow"), .priv_class = &snowenc_class, };