/* * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <float.h> #include <math.h> #include "libavcodec/avfft.h" #include "libavutil/audio_fifo.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "audio.h" #include "filters.h" #include "video.h" #include "avfilter.h" #include "internal.h" #include "window_func.h" enum DisplayMode { LINE, BAR, DOT, NB_MODES }; enum ChannelMode { COMBINED, SEPARATE, NB_CMODES }; enum FrequencyScale { FS_LINEAR, FS_LOG, FS_RLOG, NB_FSCALES }; enum AmplitudeScale { AS_LINEAR, AS_SQRT, AS_CBRT, AS_LOG, NB_ASCALES }; typedef struct ShowFreqsContext { const AVClass *class; int w, h; int mode; int cmode; int fft_size; int fft_bits; int ascale, fscale; int avg; int win_func; FFTContext *fft; FFTComplex **fft_data; float **avg_data; float *window_func_lut; float overlap; float minamp; int hop_size; int nb_channels; int nb_freq; int win_size; float scale; char *colors; AVAudioFifo *fifo; int64_t pts; } ShowFreqsContext; #define OFFSET(x) offsetof(ShowFreqsContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption showfreqs_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS }, { "mode", "set display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BAR}, 0, NB_MODES-1, FLAGS, "mode" }, { "line", "show lines", 0, AV_OPT_TYPE_CONST, {.i64=LINE}, 0, 0, FLAGS, "mode" }, { "bar", "show bars", 0, AV_OPT_TYPE_CONST, {.i64=BAR}, 0, 0, FLAGS, "mode" }, { "dot", "show dots", 0, AV_OPT_TYPE_CONST, {.i64=DOT}, 0, 0, FLAGS, "mode" }, { "ascale", "set amplitude scale", OFFSET(ascale), AV_OPT_TYPE_INT, {.i64=AS_LOG}, 0, NB_ASCALES-1, FLAGS, "ascale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=AS_LINEAR}, 0, 0, FLAGS, "ascale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=AS_SQRT}, 0, 0, FLAGS, "ascale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=AS_CBRT}, 0, 0, FLAGS, "ascale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=AS_LOG}, 0, 0, FLAGS, "ascale" }, { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=FS_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=FS_LINEAR}, 0, 0, FLAGS, "fscale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_LOG}, 0, 0, FLAGS, "fscale" }, { "rlog", "reverse logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_RLOG}, 0, 0, FLAGS, "fscale" }, { "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=2048}, 16, 65536, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64=WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" }, { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" }, { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" }, { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" }, { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" }, { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" }, { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" }, { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" }, { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" }, { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" }, { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" }, { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" }, { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" }, { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" }, { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" }, { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" }, { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" }, { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN} , 0, 0, FLAGS, "win_func" }, { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1.}, 0., 1., FLAGS }, { "averaging", "set time averaging", OFFSET(avg), AV_OPT_TYPE_INT, {.i64=1}, 0, INT32_MAX, FLAGS }, { "colors", "set channels colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, FLAGS }, { "cmode", "set channel mode", OFFSET(cmode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_CMODES-1, FLAGS, "cmode" }, { "combined", "show all channels in same window", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "cmode" }, { "separate", "show each channel in own window", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "cmode" }, { "minamp", "set minimum amplitude", OFFSET(minamp), AV_OPT_TYPE_FLOAT, {.dbl=1e-6}, FLT_MIN, 1e-6, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showfreqs); static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0) return ret; layouts = ff_all_channel_layouts(); if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) return ret; return 0; } static av_cold int init(AVFilterContext *ctx) { ShowFreqsContext *s = ctx->priv; s->pts = AV_NOPTS_VALUE; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowFreqsContext *s = ctx->priv; float overlap; int i; s->fft_bits = av_log2(s->fft_size); s->nb_freq = 1 << (s->fft_bits - 1); s->win_size = s->nb_freq << 1; av_audio_fifo_free(s->fifo); av_fft_end(s->fft); s->fft = av_fft_init(s->fft_bits, 0); if (!s->fft) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return AVERROR(ENOMEM); } /* FFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_channels; i++) { av_freep(&s->fft_data[i]); av_freep(&s->avg_data[i]); } av_freep(&s->fft_data); av_freep(&s->avg_data); s->nb_channels = inlink->channels; s->fft_data = av_calloc(s->nb_channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); s->avg_data = av_calloc(s->nb_channels, sizeof(*s->avg_data)); if (!s->avg_data) return AVERROR(ENOMEM); for (i = 0; i < s->nb_channels; i++) { s->fft_data[i] = av_calloc(s->win_size, sizeof(**s->fft_data)); s->avg_data[i] = av_calloc(s->nb_freq, sizeof(**s->avg_data)); if (!s->fft_data[i] || !s->avg_data[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1.) s->overlap = overlap; s->hop_size = (1. - s->overlap) * s->win_size; if (s->hop_size < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); } for (s->scale = 0, i = 0; i < s->win_size; i++) { s->scale += s->window_func_lut[i] * s->window_func_lut[i]; } outlink->frame_rate = av_make_q(inlink->sample_rate, s->win_size * (1.-s->overlap)); outlink->sample_aspect_ratio = (AVRational){1,1}; outlink->w = s->w; outlink->h = s->h; s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size); if (!s->fifo) return AVERROR(ENOMEM); return 0; } static inline void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4]) { uint32_t color = AV_RL32(out->data[0] + y * out->linesize[0] + x * 4); if ((color & 0xffffff) != 0) AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg) | color); else AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg)); } static int get_sx(ShowFreqsContext *s, int f) { switch (s->fscale) { case FS_LINEAR: return (s->w/(float)s->nb_freq)*f; case FS_LOG: return s->w-pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.)); case FS_RLOG: return pow(s->w, f/(s->nb_freq-1.)); } return 0; } static float get_bsize(ShowFreqsContext *s, int f) { switch (s->fscale) { case FS_LINEAR: return s->w/(float)s->nb_freq; case FS_LOG: return pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.))- pow(s->w, (s->nb_freq-f-2)/(s->nb_freq-1.)); case FS_RLOG: return pow(s->w, (f+1)/(s->nb_freq-1.))- pow(s->w, f /(s->nb_freq-1.)); } return 1.; } static inline void plot_freq(ShowFreqsContext *s, int ch, double a, int f, uint8_t fg[4], int *prev_y, AVFrame *out, AVFilterLink *outlink) { const int w = s->w; const float min = s->minamp; const float avg = s->avg_data[ch][f]; const float bsize = get_bsize(s, f); const int sx = get_sx(s, f); int end = outlink->h; int x, y, i; switch(s->ascale) { case AS_SQRT: a = 1.0 - sqrt(a); break; case AS_CBRT: a = 1.0 - cbrt(a); break; case AS_LOG: a = log(av_clipd(a, min, 1)) / log(min); break; case AS_LINEAR: a = 1.0 - a; break; } switch (s->cmode) { case COMBINED: y = a * outlink->h - 1; break; case SEPARATE: end = (outlink->h / s->nb_channels) * (ch + 1); y = (outlink->h / s->nb_channels) * ch + a * (outlink->h / s->nb_channels) - 1; break; default: av_assert0(0); } if (y < 0) return; switch (s->avg) { case 0: y = s->avg_data[ch][f] = !outlink->frame_count_in ? y : FFMIN(avg, y); break; case 1: break; default: s->avg_data[ch][f] = avg + y * (y - avg) / (FFMIN(outlink->frame_count_in + 1, s->avg) * y); y = s->avg_data[ch][f]; break; } switch(s->mode) { case LINE: if (*prev_y == -1) { *prev_y = y; } if (y <= *prev_y) { for (x = sx + 1; x < sx + bsize && x < w; x++) draw_dot(out, x, y, fg); for (i = y; i <= *prev_y; i++) draw_dot(out, sx, i, fg); } else { for (i = *prev_y; i <= y; i++) draw_dot(out, sx, i, fg); for (x = sx + 1; x < sx + bsize && x < w; x++) draw_dot(out, x, i - 1, fg); } *prev_y = y; break; case BAR: for (x = sx; x < sx + bsize && x < w; x++) for (i = y; i < end; i++) draw_dot(out, x, i, fg); break; case DOT: for (x = sx; x < sx + bsize && x < w; x++) draw_dot(out, x, y, fg); break; } } static int plot_freqs(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowFreqsContext *s = ctx->priv; const int win_size = s->win_size; char *colors, *color, *saveptr = NULL; AVFrame *out; int ch, n; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return AVERROR(ENOMEM); for (n = 0; n < outlink->h; n++) memset(out->data[0] + out->linesize[0] * n, 0, outlink->w * 4); /* fill FFT input with the number of samples available */ for (ch = 0; ch < s->nb_channels; ch++) { const float *p = (float *)in->extended_data[ch]; for (n = 0; n < in->nb_samples; n++) { s->fft_data[ch][n].re = p[n] * s->window_func_lut[n]; s->fft_data[ch][n].im = 0; } for (; n < win_size; n++) { s->fft_data[ch][n].re = 0; s->fft_data[ch][n].im = 0; } } /* run FFT on each samples set */ for (ch = 0; ch < s->nb_channels; ch++) { av_fft_permute(s->fft, s->fft_data[ch]); av_fft_calc(s->fft, s->fft_data[ch]); } #define RE(x, ch) s->fft_data[ch][x].re #define IM(x, ch) s->fft_data[ch][x].im #define M(a, b) (sqrt((a) * (a) + (b) * (b))) colors = av_strdup(s->colors); if (!colors) { av_frame_free(&out); return AVERROR(ENOMEM); } for (ch = 0; ch < s->nb_channels; ch++) { uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff }; int prev_y = -1, f; double a; color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr); if (color) av_parse_color(fg, color, -1, ctx); a = av_clipd(M(RE(0, ch), 0) / s->scale, 0, 1); plot_freq(s, ch, a, 0, fg, &prev_y, out, outlink); for (f = 1; f < s->nb_freq; f++) { a = av_clipd(M(RE(f, ch), IM(f, ch)) / s->scale, 0, 1); plot_freq(s, ch, a, f, fg, &prev_y, out, outlink); } } av_free(colors); out->pts = in->pts; out->sample_aspect_ratio = (AVRational){1,1}; return ff_filter_frame(outlink, out); } static int filter_frame(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ShowFreqsContext *s = ctx->priv; AVFrame *fin = NULL; int ret = 0; fin = ff_get_audio_buffer(inlink, s->win_size); if (!fin) { ret = AVERROR(ENOMEM); goto fail; } fin->pts = s->pts; s->pts += s->hop_size; ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size); if (ret < 0) goto fail; ret = plot_freqs(inlink, fin); av_frame_free(&fin); av_audio_fifo_drain(s->fifo, s->hop_size); fail: av_frame_free(&fin); return ret; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; ShowFreqsContext *s = ctx->priv; AVFrame *in = NULL; int ret = 0; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (av_audio_fifo_size(s->fifo) < s->win_size) ret = ff_inlink_consume_samples(inlink, s->win_size, s->win_size, &in); if (ret < 0) return ret; if (ret > 0) { av_audio_fifo_write(s->fifo, (void **)in->extended_data, in->nb_samples); if (s->pts == AV_NOPTS_VALUE) s->pts = in->pts; av_frame_free(&in); } if (av_audio_fifo_size(s->fifo) >= s->win_size) { ret = filter_frame(inlink); if (ret <= 0) return ret; } FF_FILTER_FORWARD_STATUS(inlink, outlink); FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { ShowFreqsContext *s = ctx->priv; int i; av_fft_end(s->fft); for (i = 0; i < s->nb_channels; i++) { if (s->fft_data) av_freep(&s->fft_data[i]); if (s->avg_data) av_freep(&s->avg_data[i]); } av_freep(&s->fft_data); av_freep(&s->avg_data); av_freep(&s->window_func_lut); av_audio_fifo_free(s->fifo); } static const AVFilterPad showfreqs_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; static const AVFilterPad showfreqs_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_avf_showfreqs = { .name = "showfreqs", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a frequencies video output."), .init = init, .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowFreqsContext), .activate = activate, .inputs = showfreqs_inputs, .outputs = showfreqs_outputs, .priv_class = &showfreqs_class, };