/* * Copyright (c) 2020 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "libavutil/avassert.h" #include "libavutil/opt.h" #include "avfilter.h" #include "audio.h" #include "filters.h" enum WaveletTypes { SYM2, SYM4, RBIOR68, DEB10, SYM10, COIF5, BL3, NB_WAVELET_TYPES, }; /* * All wavelets coefficients are taken from: http://wavelets.pybytes.com/ */ static const double bl3_lp[42] = { 0.000146098, -0.000232304, -0.000285414, 0.000462093, 0.000559952, -0.000927187, -0.001103748, 0.00188212, 0.002186714, -0.003882426, -0.00435384, 0.008201477, 0.008685294, -0.017982291, -0.017176331, 0.042068328, 0.032080869, -0.110036987, -0.050201753, 0.433923147, 0.766130398, 0.433923147, -0.050201753, -0.110036987, 0.032080869, 0.042068328, -0.017176331, -0.017982291, 0.008685294, 0.008201477, -0.00435384, -0.003882426, 0.002186714, 0.00188212, -0.001103748, -0.000927187, 0.000559952, 0.000462093, -0.000285414, -0.000232304, 0.000146098, 0.0, }; static const double bl3_hp[42] = { 0.0, 0.000146098, 0.000232304, -0.000285414, -0.000462093, 0.000559952, 0.000927187, -0.001103748, -0.00188212, 0.002186714, 0.003882426, -0.00435384, -0.008201477, 0.008685294, 0.017982291, -0.017176331, -0.042068328, 0.032080869, 0.110036987, -0.050201753, -0.433923147, 0.766130398, -0.433923147, -0.050201753, 0.110036987, 0.032080869, -0.042068328, -0.017176331, 0.017982291, 0.008685294, -0.008201477, -0.00435384, 0.003882426, 0.002186714, -0.00188212, -0.001103748, 0.000927187, 0.000559952, -0.000462093, -0.000285414, 0.000232304, 0.000146098, }; static const double bl3_ilp[42] = { 0.0, 0.000146098, -0.000232304, -0.000285414, 0.000462093, 0.000559952, -0.000927187, -0.001103748, 0.00188212, 0.002186714, -0.003882426, -0.00435384, 0.008201477, 0.008685294, -0.017982291, -0.017176331, 0.042068328, 0.032080869, -0.110036987, -0.050201753, 0.433923147, 0.766130398, 0.433923147, -0.050201753, -0.110036987, 0.032080869, 0.042068328, -0.017176331, -0.017982291, 0.008685294, 0.008201477, -0.00435384, -0.003882426, 0.002186714, 0.00188212, -0.001103748, -0.000927187, 0.000559952, 0.000462093, -0.000285414, -0.000232304, 0.000146098, }; static const double bl3_ihp[42] = { 0.000146098, 0.000232304, -0.000285414, -0.000462093, 0.000559952, 0.000927187, -0.001103748, -0.00188212, 0.002186714, 0.003882426, -0.00435384, -0.008201477, 0.008685294, 0.017982291, -0.017176331, -0.042068328, 0.032080869, 0.110036987, -0.050201753, -0.433923147, 0.766130398, -0.433923147, -0.050201753, 0.110036987, 0.032080869, -0.042068328, -0.017176331, 0.017982291, 0.008685294, -0.008201477, -0.00435384, 0.003882426, 0.002186714, -0.00188212, -0.001103748, 0.000927187, 0.000559952, -0.000462093, -0.000285414, 0.000232304, 0.000146098, }; static const double sym10_lp[20] = { 0.0007701598091144901, 9.563267072289475e-05, -0.008641299277022422, -0.0014653825813050513, 0.0459272392310922, 0.011609893903711381, -0.15949427888491757, -0.07088053578324385, 0.47169066693843925, 0.7695100370211071, 0.38382676106708546, -0.03553674047381755, -0.0319900568824278, 0.04999497207737669, 0.005764912033581909, -0.02035493981231129, -0.0008043589320165449, 0.004593173585311828, 5.7036083618494284e-05, -0.0004593294210046588, }; static const double sym10_hp[20] = { 0.0004593294210046588, 5.7036083618494284e-05, -0.004593173585311828, -0.0008043589320165449, 0.02035493981231129, 0.005764912033581909, -0.04999497207737669, -0.0319900568824278, 0.03553674047381755, 0.38382676106708546, -0.7695100370211071, 0.47169066693843925, 0.07088053578324385, -0.15949427888491757, -0.011609893903711381, 0.0459272392310922, 0.0014653825813050513, -0.008641299277022422, -9.563267072289475e-05, 0.0007701598091144901, }; static const double sym10_ilp[20] = { -0.0004593294210046588, 5.7036083618494284e-05, 0.004593173585311828, -0.0008043589320165449, -0.02035493981231129, 0.005764912033581909, 0.04999497207737669, -0.0319900568824278, -0.03553674047381755, 0.38382676106708546, 0.7695100370211071, 0.47169066693843925, -0.07088053578324385, -0.15949427888491757, 0.011609893903711381, 0.0459272392310922, -0.0014653825813050513, -0.008641299277022422, 9.563267072289475e-05, 0.0007701598091144901, }; static const double sym10_ihp[20] = { 0.0007701598091144901, -9.563267072289475e-05, -0.008641299277022422, 0.0014653825813050513, 0.0459272392310922, -0.011609893903711381, -0.15949427888491757, 0.07088053578324385, 0.47169066693843925, -0.7695100370211071, 0.38382676106708546, 0.03553674047381755, -0.0319900568824278, -0.04999497207737669, 0.005764912033581909, 0.02035493981231129, -0.0008043589320165449, -0.004593173585311828, 5.7036083618494284e-05, 0.0004593294210046588, }; static const double rbior68_lp[18] = { 0.0, 0.0, 0.0, 0.0, 0.014426282505624435, 0.014467504896790148, -0.07872200106262882, -0.04036797903033992, 0.41784910915027457, 0.7589077294536541, 0.41784910915027457, -0.04036797903033992, -0.07872200106262882, 0.014467504896790148, 0.014426282505624435, 0.0, 0.0, 0.0, }; static const double rbior68_hp[18] = { -0.0019088317364812906, -0.0019142861290887667, 0.016990639867602342, 0.01193456527972926, -0.04973290349094079, -0.07726317316720414, 0.09405920349573646, 0.4207962846098268, -0.8259229974584023, 0.4207962846098268, 0.09405920349573646, -0.07726317316720414, -0.04973290349094079, 0.01193456527972926, 0.016990639867602342, -0.0019142861290887667, -0.0019088317364812906, 0.0, }; static const double rbior68_ilp[18] = { 0.0019088317364812906, -0.0019142861290887667, -0.016990639867602342, 0.01193456527972926, 0.04973290349094079, -0.07726317316720414, -0.09405920349573646, 0.4207962846098268, 0.8259229974584023, 0.4207962846098268, -0.09405920349573646, -0.07726317316720414, 0.04973290349094079, 0.01193456527972926, -0.016990639867602342, -0.0019142861290887667, 0.0019088317364812906, 0.0, }; static const double rbior68_ihp[18] = { 0.0, 0.0, 0.0, 0.0, 0.014426282505624435, -0.014467504896790148, -0.07872200106262882, 0.04036797903033992, 0.41784910915027457, -0.7589077294536541, 0.41784910915027457, 0.04036797903033992, -0.07872200106262882, -0.014467504896790148, 0.014426282505624435, 0.0, 0.0, 0.0, }; static const double coif5_lp[30] = { -9.517657273819165e-08, -1.6744288576823017e-07, 2.0637618513646814e-06, 3.7346551751414047e-06, -2.1315026809955787e-05, -4.134043227251251e-05, 0.00014054114970203437, 0.00030225958181306315, -0.0006381313430451114, -0.0016628637020130838, 0.0024333732126576722, 0.006764185448053083, -0.009164231162481846, -0.01976177894257264, 0.03268357426711183, 0.0412892087501817, -0.10557420870333893, -0.06203596396290357, 0.4379916261718371, 0.7742896036529562, 0.4215662066908515, -0.05204316317624377, -0.09192001055969624, 0.02816802897093635, 0.023408156785839195, -0.010131117519849788, -0.004159358781386048, 0.0021782363581090178, 0.00035858968789573785, -0.00021208083980379827, }; static const double coif5_hp[30] = { 0.00021208083980379827, 0.00035858968789573785, -0.0021782363581090178, -0.004159358781386048, 0.010131117519849788, 0.023408156785839195, -0.02816802897093635, -0.09192001055969624, 0.05204316317624377, 0.4215662066908515, -0.7742896036529562, 0.4379916261718371, 0.06203596396290357, -0.10557420870333893, -0.0412892087501817, 0.03268357426711183, 0.01976177894257264, -0.009164231162481846, -0.006764185448053083, 0.0024333732126576722, 0.0016628637020130838, -0.0006381313430451114, -0.00030225958181306315, 0.00014054114970203437, 4.134043227251251e-05, -2.1315026809955787e-05, -3.7346551751414047e-06, 2.0637618513646814e-06, 1.6744288576823017e-07, -9.517657273819165e-08, }; static const double coif5_ilp[30] = { -0.00021208083980379827, 0.00035858968789573785, 0.0021782363581090178, -0.004159358781386048, -0.010131117519849788, 0.023408156785839195, 0.02816802897093635, -0.09192001055969624, -0.05204316317624377, 0.4215662066908515, 0.7742896036529562, 0.4379916261718371, -0.06203596396290357, -0.10557420870333893, 0.0412892087501817, 0.03268357426711183, -0.01976177894257264, -0.009164231162481846, 0.006764185448053083, 0.0024333732126576722, -0.0016628637020130838, -0.0006381313430451114, 0.00030225958181306315, 0.00014054114970203437, -4.134043227251251e-05, -2.1315026809955787e-05, 3.7346551751414047e-06, 2.0637618513646814e-06, -1.6744288576823017e-07, -9.517657273819165e-08, }; static const double coif5_ihp[30] = { -9.517657273819165e-08, 1.6744288576823017e-07, 2.0637618513646814e-06, -3.7346551751414047e-06, -2.1315026809955787e-05, 4.134043227251251e-05, 0.00014054114970203437, -0.00030225958181306315, -0.0006381313430451114, 0.0016628637020130838, 0.0024333732126576722, -0.006764185448053083, -0.009164231162481846, 0.01976177894257264, 0.03268357426711183, -0.0412892087501817, -0.10557420870333893, 0.06203596396290357, 0.4379916261718371, -0.7742896036529562, 0.4215662066908515, 0.05204316317624377, -0.09192001055969624, -0.02816802897093635, 0.023408156785839195, 0.010131117519849788, -0.004159358781386048, -0.0021782363581090178, 0.00035858968789573785, 0.00021208083980379827, }; static const double deb10_lp[20] = { -1.326420300235487e-05, 9.358867000108985e-05, -0.0001164668549943862, -0.0006858566950046825, 0.00199240529499085, 0.0013953517469940798, -0.010733175482979604, 0.0036065535669883944, 0.03321267405893324, -0.02945753682194567, -0.07139414716586077, 0.09305736460380659, 0.12736934033574265, -0.19594627437659665, -0.24984642432648865, 0.2811723436604265, 0.6884590394525921, 0.5272011889309198, 0.18817680007762133, 0.026670057900950818, }; static const double deb10_hp[20] = { -0.026670057900950818, 0.18817680007762133, -0.5272011889309198, 0.6884590394525921, -0.2811723436604265, -0.24984642432648865, 0.19594627437659665, 0.12736934033574265, -0.09305736460380659, -0.07139414716586077, 0.02945753682194567, 0.03321267405893324, -0.0036065535669883944, -0.010733175482979604, -0.0013953517469940798, 0.00199240529499085, 0.0006858566950046825, -0.0001164668549943862, -9.358867000108985e-05, -1.326420300235487e-05, }; static const double deb10_ilp[20] = { 0.026670057900950818, 0.18817680007762133, 0.5272011889309198, 0.6884590394525921, 0.2811723436604265, -0.24984642432648865, -0.19594627437659665, 0.12736934033574265, 0.09305736460380659, -0.07139414716586077, -0.02945753682194567, 0.03321267405893324, 0.0036065535669883944, -0.010733175482979604, 0.0013953517469940798, 0.00199240529499085, -0.0006858566950046825, -0.0001164668549943862, 9.358867000108985e-05, -1.326420300235487e-05, }; static const double deb10_ihp[20] = { -1.326420300235487e-05, -9.358867000108985e-05, -0.0001164668549943862, 0.0006858566950046825, 0.00199240529499085, -0.0013953517469940798, -0.010733175482979604, -0.0036065535669883944, 0.03321267405893324, 0.02945753682194567, -0.07139414716586077, -0.09305736460380659, 0.12736934033574265, 0.19594627437659665, -0.24984642432648865, -0.2811723436604265, 0.6884590394525921, -0.5272011889309198, 0.18817680007762133, -0.026670057900950818, }; static const double sym4_lp[8] = { -0.07576571478927333, -0.02963552764599851, 0.49761866763201545, 0.8037387518059161, 0.29785779560527736, -0.09921954357684722, -0.012603967262037833, 0.0322231006040427, }; static const double sym4_hp[8] = { -0.0322231006040427, -0.012603967262037833, 0.09921954357684722, 0.29785779560527736, -0.8037387518059161, 0.49761866763201545, 0.02963552764599851, -0.07576571478927333, }; static const double sym4_ilp[8] = { 0.0322231006040427, -0.012603967262037833, -0.09921954357684722, 0.29785779560527736, 0.8037387518059161, 0.49761866763201545, -0.02963552764599851, -0.07576571478927333, }; static const double sym4_ihp[8] = { -0.07576571478927333, 0.02963552764599851, 0.49761866763201545, -0.8037387518059161, 0.29785779560527736, 0.09921954357684722, -0.012603967262037833, -0.0322231006040427, }; static const double sym2_lp[4] = { -0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025, }; static const double sym2_hp[4] = { -0.48296291314469025, 0.836516303737469, -0.22414386804185735, -0.12940952255092145, }; static const double sym2_ilp[4] = { 0.48296291314469025, 0.836516303737469, 0.22414386804185735, -0.12940952255092145, }; static const double sym2_ihp[4] = { -0.12940952255092145, -0.22414386804185735, 0.836516303737469, -0.48296291314469025, }; #define MAX_LEVELS 13 typedef struct ChannelParams { int *output_length; int *filter_length; double **output_coefs; double **subbands_to_free; double **filter_coefs; int tempa_length; int tempa_len_max; int temp_in_length; int temp_in_max_length; int buffer_length; int min_left_ext; int max_left_ext; double *tempa; double *tempd; double *temp_in; double *buffer; double *buffer2; double *prev; double *overlap; } ChannelParams; typedef struct AudioFWTDNContext { const AVClass *class; double sigma; double percent; double softness; uint64_t sn; int64_t eof_pts; int eof; int wavelet_type; int channels; int nb_samples; int levels; int wavelet_length; int need_profile; int got_profile; int adaptive; int delay; int drop_samples; int padd_samples; int overlap_length; int prev_length; ChannelParams *cp; const double *lp, *hp; const double *ilp, *ihp; AVFrame *stddev, *absmean, *filter; AVFrame *new_stddev, *new_absmean; int (*filter_channel)(AVFilterContext *ctx, void *arg, int ch, int nb_jobs); } AudioFWTDNContext; #define OFFSET(x) offsetof(AudioFWTDNContext, x) #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption afwtdn_options[] = { { "sigma", "set noise sigma", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 1, AFR }, { "levels", "set number of wavelet levels", OFFSET(levels), AV_OPT_TYPE_INT, {.i64=10}, 1, MAX_LEVELS-1, AF }, { "wavet", "set wavelet type", OFFSET(wavelet_type), AV_OPT_TYPE_INT, {.i64=SYM10}, 0, NB_WAVELET_TYPES - 1, AF, "wavet" }, { "sym2", "sym2", 0, AV_OPT_TYPE_CONST, {.i64=SYM2}, 0, 0, AF, "wavet" }, { "sym4", "sym4", 0, AV_OPT_TYPE_CONST, {.i64=SYM4}, 0, 0, AF, "wavet" }, { "rbior68", "rbior68", 0, AV_OPT_TYPE_CONST, {.i64=RBIOR68}, 0, 0, AF, "wavet" }, { "deb10", "deb10", 0, AV_OPT_TYPE_CONST, {.i64=DEB10}, 0, 0, AF, "wavet" }, { "sym10", "sym10", 0, AV_OPT_TYPE_CONST, {.i64=SYM10}, 0, 0, AF, "wavet" }, { "coif5", "coif5", 0, AV_OPT_TYPE_CONST, {.i64=COIF5}, 0, 0, AF, "wavet" }, { "bl3", "bl3", 0, AV_OPT_TYPE_CONST, {.i64=BL3}, 0, 0, AF, "wavet" }, { "percent", "set percent of full denoising", OFFSET(percent),AV_OPT_TYPE_DOUBLE, {.dbl=85}, 0, 100, AFR }, { "profile", "profile noise", OFFSET(need_profile), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AFR }, { "adaptive", "adaptive profiling of noise", OFFSET(adaptive), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AFR }, { "samples", "set frame size in number of samples", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64=8192}, 512, 65536, AF }, { "softness", "set thresholding softness", OFFSET(softness), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 10, AFR }, { NULL } }; AVFILTER_DEFINE_CLASS(afwtdn); #define pow2(x) (1U << (x)) #define mod_pow2(x, power_of_two) ((x) & ((power_of_two) - 1)) static void conv_down(double *in, int in_length, double *low, double *high, int out_length, const double *lp, const double *hp, int wavelet_length, int skip, double *buffer, int buffer_length) { double thigh = 0.0, tlow = 0.0; int buff_idx = 1 + skip; memcpy(buffer, in, buff_idx * sizeof(*buffer)); memset(buffer + buff_idx, 0, (buffer_length - buff_idx) * sizeof(*buffer)); for (int i = 0; i < out_length - 1; i++) { double thigh = 0.0, tlow = 0.0; for (int j = 0; j < wavelet_length; j++) { const int idx = mod_pow2(-j + buff_idx - 1, buffer_length); const double btemp = buffer[idx]; thigh += btemp * hp[j]; tlow += btemp * lp[j]; } high[i] = thigh; low[i] = tlow; buffer[buff_idx++] = in[2 * i + 1 + skip]; buffer[buff_idx++] = in[2 * i + 2 + skip]; buff_idx = mod_pow2(buff_idx, buffer_length); } for (int i = 0; i < wavelet_length; i++) { const int idx = mod_pow2(-i + buff_idx - 1, buffer_length); const double btemp = buffer[idx]; thigh += btemp * hp[i]; tlow += btemp * lp[i]; } high[out_length - 1] = thigh; low[out_length - 1] = tlow; } static int left_ext(int wavelet_length, int levels, uint64_t sn) { if (!sn) return 0; return (pow2(levels) - 1) * (wavelet_length - 2) + mod_pow2(sn, pow2(levels)); } static int nb_coefs(int length, int level, uint64_t sn) { const int pow2_level = pow2(level); return (sn + length) / pow2_level - sn / pow2_level; } static int reallocate_inputs(double **out, int *out_length, int in_length, int levels, int ch, uint64_t sn) { const int temp_length = nb_coefs(in_length, levels, sn); for (int level = 0; level < levels; level++) { const int temp_length = nb_coefs(in_length, level + 1, sn); if (temp_length > out_length[level]) { av_freep(&out[level]); out_length[level] = 0; out[level] = av_calloc(temp_length + 1, sizeof(**out)); if (!out[level]) return AVERROR(ENOMEM); out_length[level] = temp_length + 1; } memset(out[level] + temp_length, 0, (out_length[level] - temp_length) * sizeof(**out)); out_length[level] = temp_length; } if (temp_length > out_length[levels]) { av_freep(&out[levels]); out_length[levels] = 0; out[levels] = av_calloc(temp_length + 1, sizeof(**out)); if (!out[levels]) return AVERROR(ENOMEM); out_length[levels] = temp_length + 1; } memset(out[levels] + temp_length, 0, (out_length[levels] - temp_length) * sizeof(**out)); out_length[levels] = temp_length; return 0; } static int max_left_zeros_inverse(int levels, int level, int wavelet_length) { return (pow2(levels - level) - 1) * (wavelet_length - 1); } static int reallocate_outputs(AudioFWTDNContext *s, double **out, int *out_length, int in_length, int levels, int ch, uint64_t sn) { ChannelParams *cp = &s->cp[ch]; int temp_length = 0; int add = 0; for (int level = 0; level < levels; level++) { temp_length = nb_coefs(in_length, level + 1, sn); if (temp_length > out_length[level]) { av_freep(&cp->subbands_to_free[level]); out_length[level] = 0; add = max_left_zeros_inverse(levels, level + 1, s->wavelet_length); cp->subbands_to_free[level] = av_calloc(add + temp_length + 1, sizeof(**out)); if (!cp->subbands_to_free[level]) return AVERROR(ENOMEM); out_length[level] = add + temp_length + 1; out[level] = cp->subbands_to_free[level] + add; } memset(out[level] + temp_length, 0, FFMAX(out_length[level] - temp_length - add, 0) * sizeof(**out)); out_length[level] = temp_length; } temp_length = nb_coefs(in_length, levels, sn); if (temp_length > out_length[levels]) { av_freep(&cp->subbands_to_free[levels]); out_length[levels] = 0; cp->subbands_to_free[levels] = av_calloc(temp_length + 1, sizeof(**out)); if (!cp->subbands_to_free[levels]) return AVERROR(ENOMEM); out_length[levels] = temp_length + 1; out[levels] = cp->subbands_to_free[levels]; } memset(out[levels] + temp_length, 0, (out_length[levels] - temp_length) * sizeof(**out)); out_length[levels] = temp_length; return 0; } static int discard_left_ext(int wavelet_length, int levels, int level, uint64_t sn) { if (levels == level || sn == 0) return 0; return (pow2(levels - level) - 1) * (wavelet_length - 2) + mod_pow2(sn, pow2(levels)) / pow2(level); } static int forward(AudioFWTDNContext *s, const double *in, int in_length, double **out, int *out_length, int ch, uint64_t sn) { ChannelParams *cp = &s->cp[ch]; int levels = s->levels; int skip = sn ? s->wavelet_length - 1 : 1; int leftext, ret; ret = reallocate_inputs(out, out_length, in_length, levels, ch, sn); if (ret < 0) return ret; ret = reallocate_outputs(s, cp->filter_coefs, cp->filter_length, in_length, levels, ch, sn); if (ret < 0) return ret; leftext = left_ext(s->wavelet_length, levels, sn); if (cp->temp_in_max_length < in_length + cp->max_left_ext + skip) { av_freep(&cp->temp_in); cp->temp_in_max_length = in_length + cp->max_left_ext + skip; cp->temp_in = av_calloc(cp->temp_in_max_length, sizeof(*cp->temp_in)); if (!cp->temp_in) { cp->temp_in_max_length = 0; return AVERROR(ENOMEM); } } memset(cp->temp_in, 0, cp->temp_in_max_length * sizeof(*cp->temp_in)); cp->temp_in_length = in_length + leftext; if (leftext) memcpy(cp->temp_in, cp->prev + s->prev_length - leftext, leftext * sizeof(*cp->temp_in)); memcpy(cp->temp_in + leftext, in, in_length * sizeof(*in)); if (levels == 1) { conv_down(cp->temp_in, cp->temp_in_length, out[1], out[0], out_length[1], s->lp, s->hp, s->wavelet_length, skip, cp->buffer, cp->buffer_length); } else { int discard = discard_left_ext(s->wavelet_length, levels, 1, sn); int tempa_length_prev; if (cp->tempa_len_max < (in_length + cp->max_left_ext + s->wavelet_length - 1) / 2) { av_freep(&cp->tempa); av_freep(&cp->tempd); cp->tempa_len_max = (in_length + cp->max_left_ext + s->wavelet_length - 1) / 2; cp->tempa = av_calloc(cp->tempa_len_max, sizeof(*cp->tempa)); cp->tempd = av_calloc(cp->tempa_len_max, sizeof(*cp->tempd)); if (!cp->tempa || !cp->tempd) { cp->tempa_len_max = 0; return AVERROR(ENOMEM); } } memset(cp->tempa, 0, cp->tempa_len_max * sizeof(*cp->tempa)); memset(cp->tempd, 0, cp->tempa_len_max * sizeof(*cp->tempd)); cp->tempa_length = out_length[0] + discard; conv_down(cp->temp_in, cp->temp_in_length, cp->tempa, cp->tempd, cp->tempa_length, s->lp, s->hp, s->wavelet_length, skip, cp->buffer, cp->buffer_length); memcpy(out[0], cp->tempd + discard, out_length[0] * sizeof(**out)); tempa_length_prev = cp->tempa_length; for (int level = 1; level < levels - 1; level++) { if (out_length[level] == 0) return 0; discard = discard_left_ext(s->wavelet_length, levels, level + 1, sn); cp->tempa_length = out_length[level] + discard; conv_down(cp->tempa, tempa_length_prev, cp->tempa, cp->tempd, cp->tempa_length, s->lp, s->hp, s->wavelet_length, skip, cp->buffer, cp->buffer_length); memcpy(out[level], cp->tempd + discard, out_length[level] * sizeof(**out)); tempa_length_prev = cp->tempa_length; } if (out_length[levels] == 0) return 0; conv_down(cp->tempa, cp->tempa_length, out[levels], out[levels - 1], out_length[levels], s->lp, s->hp, s->wavelet_length, skip, cp->buffer, cp->buffer_length); } if (s->prev_length < in_length) { memcpy(cp->prev, in + in_length - cp->max_left_ext, cp->max_left_ext * sizeof(*cp->prev)); } else { memmove(cp->prev, cp->prev + in_length, (s->prev_length - in_length) * sizeof(*cp->prev)); memcpy(cp->prev + s->prev_length - in_length, in, in_length * sizeof(*cp->prev)); } return 0; } static void conv_up(double *low, double *high, int in_length, double *out, int out_length, const double *lp, const double *hp, int filter_length, double *buffer, double *buffer2, int buffer_length) { int shift = 0, buff_idx = 0, in_idx = 0; memset(buffer, 0, buffer_length * sizeof(*buffer)); memset(buffer2, 0, buffer_length * sizeof(*buffer2)); for (int i = 0; i < out_length; i++) { double sum = 0.0; if ((i & 1) == 0) { if (in_idx < in_length) { buffer[buff_idx] = low[in_idx]; buffer2[buff_idx] = high[in_idx++]; } else { buffer[buff_idx] = 0; buffer2[buff_idx] = 0; } buff_idx++; if (buff_idx >= buffer_length) buff_idx = 0; shift = 0; } for (int j = 0; j < (filter_length - shift + 1) / 2; j++) { const int idx = mod_pow2(-j + buff_idx - 1, buffer_length); sum += buffer[idx] * lp[j * 2 + shift] + buffer2[idx] * hp[j * 2 + shift]; } out[i] = sum; shift = 1; } } static int append_left_ext(int wavelet_length, int levels, int level, uint64_t sn) { if (levels == level) return 0; return (pow2(levels - level) - 1) * (wavelet_length - 2) + mod_pow2(sn, pow2(levels)) / pow2(level); } static int inverse(AudioFWTDNContext *s, double **in, int *in_length, double *out, int out_length, int ch, uint64_t sn) { ChannelParams *cp = &s->cp[ch]; const int levels = s->levels; int leftext = left_ext(s->wavelet_length, levels, sn); int temp_skip = 0; if (sn == 0) temp_skip = cp->min_left_ext; memset(out, 0, out_length * sizeof(*out)); if (cp->temp_in_max_length < out_length + cp->max_left_ext + s->wavelet_length - 1) { av_freep(&cp->temp_in); cp->temp_in_max_length = out_length + cp->max_left_ext + s->wavelet_length - 1; cp->temp_in = av_calloc(cp->temp_in_max_length, sizeof(*cp->temp_in)); if (!cp->temp_in) { cp->temp_in_max_length = 0; return AVERROR(ENOMEM); } } memset(cp->temp_in, 0, cp->temp_in_max_length * sizeof(*cp->temp_in)); cp->temp_in_length = out_length + cp->max_left_ext; if (levels == 1) { conv_up(in[1], in[0], in_length[1], cp->temp_in, cp->temp_in_length, s->ilp, s->ihp, s->wavelet_length, cp->buffer, cp->buffer2, cp->buffer_length); memcpy(out + cp->max_left_ext - leftext, cp->temp_in + temp_skip, FFMAX(0, out_length - (cp->max_left_ext - leftext)) * sizeof(*out)); } else { double *hp1, *hp2; int add, add2; if (cp->tempa_len_max < (out_length + cp->max_left_ext + s->wavelet_length - 1) / 2) { av_freep(&cp->tempa); cp->tempa_len_max = (out_length + cp->max_left_ext + s->wavelet_length - 1) / 2; cp->tempa = av_calloc(cp->tempa_len_max, sizeof(*cp->tempa)); if (!cp->tempa) { cp->tempa_len_max = 0; return AVERROR(ENOMEM); } } memset(cp->tempa, 0, cp->tempa_len_max * sizeof(*cp->tempa)); hp1 = levels & 1 ? cp->temp_in : cp->tempa; hp2 = levels & 1 ? cp->tempa : cp->temp_in; add = append_left_ext(s->wavelet_length, levels, levels - 1, sn); conv_up(in[levels], in[levels - 1], in_length[levels], hp1, in_length[levels - 2] + add, s->ilp, s->ihp, s->wavelet_length, cp->buffer, cp->buffer2, cp->buffer_length); for (int level = levels - 1; level > 1; level--) { add2 = append_left_ext(s->wavelet_length, levels, level - 1, sn); add = append_left_ext(s->wavelet_length, levels, level, sn); conv_up(hp1, in[level - 1] - add, in_length[level - 1] + add, hp2, in_length[level - 2] + add2, s->ilp, s->ihp, s->wavelet_length, cp->buffer, cp->buffer2, cp->buffer_length); FFSWAP(double *, hp1, hp2); } add = append_left_ext(s->wavelet_length, levels, 1, sn); conv_up(hp1, in[0] - add, in_length[0] + add, cp->temp_in, cp->temp_in_length, s->ilp, s->ihp, s->wavelet_length, cp->buffer, cp->buffer2, cp->buffer_length); } memset(cp->temp_in, 0, temp_skip * sizeof(*cp->temp_in)); if (s->overlap_length <= out_length) { memcpy(out + cp->max_left_ext - leftext, cp->temp_in + temp_skip, FFMAX(0, out_length - (cp->max_left_ext - leftext)) * sizeof(*out)); for (int i = 0;i < FFMIN(s->overlap_length, out_length); i++) out[i] += cp->overlap[i]; memcpy(cp->overlap, cp->temp_in + out_length - (cp->max_left_ext - leftext), s->overlap_length * sizeof(*cp->overlap)); } else { for (int i = 0;i < s->overlap_length - (cp->max_left_ext - leftext); i++) cp->overlap[i + cp->max_left_ext - leftext] += cp->temp_in[i]; memcpy(out, cp->overlap, out_length * sizeof(*out)); memmove(cp->overlap, cp->overlap + out_length, (s->overlap_length - out_length) * sizeof(*cp->overlap)); memcpy(cp->overlap + s->overlap_length - out_length, cp->temp_in + leftext, out_length * sizeof(*cp->overlap)); } return 0; } static int next_pow2(int in) { return 1 << (av_log2(in) + 1); } static void denoise_level(double *out, const double *in, const double *filter, double percent, int length) { const double x = percent * 0.01; const double y = 1.0 - x; for (int i = 0; i < length; i++) out[i] = x * filter[i] + in[i] * y; } static double sqr(double in) { return in * in; } static double measure_mean(const double *in, int length) { double sum = 0.0; for (int i = 0; i < length; i++) sum += in[i]; return sum / length; } static double measure_absmean(const double *in, int length) { double sum = 0.0; for (int i = 0; i < length; i++) sum += fabs(in[i]); return sum / length; } static double measure_stddev(const double *in, int length, double mean) { double sum = 0.; for (int i = 0; i < length; i++) { sum += sqr(in[i] - mean); } return sqrt(sum / length); } static void noise_filter(const double stddev, const double *in, double *out, double absmean, double softness, double new_stddev, int length) { for (int i = 0; i < length; i++) { if (new_stddev <= stddev) out[i] = 0.0; else if (fabs(in[i]) <= absmean) out[i] = 0.0; else out[i] = in[i] - FFSIGN(in[i]) * absmean / exp(3.0 * softness * (fabs(in[i]) - absmean) / absmean); } } typedef struct ThreadData { AVFrame *in, *out; } ThreadData; static int filter_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) { AudioFWTDNContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; ChannelParams *cp = &s->cp[ch]; const double *src = (const double *)(in->extended_data[ch]); double *dst = (double *)out->extended_data[ch]; double *absmean = (double *)s->absmean->extended_data[ch]; double *new_absmean = (double *)s->new_absmean->extended_data[ch]; double *stddev = (double *)s->stddev->extended_data[ch]; double *new_stddev = (double *)s->new_stddev->extended_data[ch]; double *filter = (double *)s->filter->extended_data[ch]; double is_noise = 0.0; int ret; ret = forward(s, src, in->nb_samples, cp->output_coefs, cp->output_length, ch, s->sn); if (ret < 0) return ret; if (!s->got_profile && s->need_profile) { for (int level = 0; level <= s->levels; level++) { const int length = cp->output_length[level]; const double scale = sqrt(2.0 * log(length)); stddev[level] = measure_stddev(cp->output_coefs[level], length, measure_mean(cp->output_coefs[level], length)) * scale; absmean[level] = measure_absmean(cp->output_coefs[level], length) * scale; } } else if (!s->got_profile && !s->need_profile && !s->adaptive) { for (int level = 0; level <= s->levels; level++) { const int length = cp->output_length[level]; const double scale = sqrt(2.0 * log(length)); stddev[level] = 0.5 * s->sigma * scale; absmean[level] = 0.5 * s->sigma * scale; } } for (int level = 0; level <= s->levels; level++) { const int length = cp->output_length[level]; double vad; new_stddev[level] = measure_stddev(cp->output_coefs[level], length, measure_mean(cp->output_coefs[level], length)); new_absmean[level] = measure_absmean(cp->output_coefs[level], length); if (new_absmean[level] <= FLT_EPSILON) vad = 1.0; else vad = new_stddev[level] / new_absmean[level]; if (level < s->levels) is_noise += sqr(vad - 1.232); } is_noise *= in->sample_rate; is_noise /= s->nb_samples; for (int level = 0; level <= s->levels; level++) { const double percent = ctx->is_disabled ? 0. : s->percent; const int length = cp->output_length[level]; const double scale = sqrt(2.0 * log(length)); if (is_noise < 0.05 && s->adaptive) { stddev[level] = new_stddev[level] * scale; absmean[level] = new_absmean[level] * scale; } noise_filter(stddev[level], cp->output_coefs[level], filter, absmean[level], s->softness, new_stddev[level], length); denoise_level(cp->filter_coefs[level], cp->output_coefs[level], filter, percent, length); } ret = inverse(s, cp->filter_coefs, cp->filter_length, dst, out->nb_samples, ch, s->sn); if (ret < 0) return ret; return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AudioFWTDNContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; ThreadData td; AVFrame *out; int eof = in == NULL; out = ff_get_audio_buffer(outlink, s->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } if (in) { av_frame_copy_props(out, in); s->eof_pts = in->pts + in->nb_samples; } if (eof) out->pts = s->eof_pts - s->padd_samples; if (!in || in->nb_samples < s->nb_samples) { AVFrame *new_in = ff_get_audio_buffer(outlink, s->nb_samples); if (!new_in) { av_frame_free(&in); av_frame_free(&out); return AVERROR(ENOMEM); } if (in) av_frame_copy_props(new_in, in); s->padd_samples -= s->nb_samples - (in ? in->nb_samples: 0); if (in) av_samples_copy(new_in->extended_data, in->extended_data, 0, 0, in->nb_samples, in->ch_layout.nb_channels, in->format); av_frame_free(&in); in = new_in; } td.in = in; td.out = out; ff_filter_execute(ctx, s->filter_channel, &td, NULL, inlink->ch_layout.nb_channels); if (s->need_profile) s->got_profile = 1; s->sn += s->nb_samples; if (s->drop_samples >= in->nb_samples) { s->drop_samples -= in->nb_samples; s->delay += in->nb_samples; av_frame_free(&in); av_frame_free(&out); FF_FILTER_FORWARD_STATUS(inlink, outlink); FF_FILTER_FORWARD_WANTED(outlink, inlink); return 0; } else if (s->drop_samples > 0) { for (int ch = 0; ch < out->ch_layout.nb_channels; ch++) { memmove(out->extended_data[ch], out->extended_data[ch] + s->drop_samples * sizeof(double), (in->nb_samples - s->drop_samples) * sizeof(double)); } out->nb_samples = in->nb_samples - s->drop_samples; out->pts = in->pts - av_rescale_q(s->delay, (AVRational){1, outlink->sample_rate}, outlink->time_base); s->delay += s->drop_samples; s->drop_samples = 0; } else { if (s->padd_samples < 0 && eof) { out->nb_samples = FFMAX(0, out->nb_samples + s->padd_samples); s->padd_samples = 0; } if (!eof) out->pts = in->pts - av_rescale_q(s->delay, (AVRational){1, outlink->sample_rate}, outlink->time_base); } av_frame_free(&in); return ff_filter_frame(outlink, out); } static int max_left_ext(int wavelet_length, int levels) { return (pow2(levels) - 1) * (wavelet_length - 1); } static int min_left_ext(int wavelet_length, int levels) { return (pow2(levels) - 1) * (wavelet_length - 2); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioFWTDNContext *s = ctx->priv; switch (s->wavelet_type) { case SYM2: s->wavelet_length = 4; s->lp = sym2_lp; s->hp = sym2_hp; s->ilp = sym2_ilp; s->ihp = sym2_ihp; break; case SYM4: s->wavelet_length = 8; s->lp = sym4_lp; s->hp = sym4_hp; s->ilp = sym4_ilp; s->ihp = sym4_ihp; break; case RBIOR68: s->wavelet_length = 18; s->lp = rbior68_lp; s->hp = rbior68_hp; s->ilp = rbior68_ilp; s->ihp = rbior68_ihp; break; case DEB10: s->wavelet_length = 20; s->lp = deb10_lp; s->hp = deb10_hp; s->ilp = deb10_ilp; s->ihp = deb10_ihp; break; case SYM10: s->wavelet_length = 20; s->lp = sym10_lp; s->hp = sym10_hp; s->ilp = sym10_ilp; s->ihp = sym10_ihp; break; case COIF5: s->wavelet_length = 30; s->lp = coif5_lp; s->hp = coif5_hp; s->ilp = coif5_ilp; s->ihp = coif5_ihp; break; case BL3: s->wavelet_length = 42; s->lp = bl3_lp; s->hp = bl3_hp; s->ilp = bl3_ilp; s->ihp = bl3_ihp; break; default: av_assert0(0); } s->levels = FFMIN(s->levels, lrint(log(s->nb_samples / (s->wavelet_length - 1.0)) / M_LN2)); av_log(ctx, AV_LOG_VERBOSE, "levels: %d\n", s->levels); s->filter_channel = filter_channel; s->stddev = ff_get_audio_buffer(outlink, MAX_LEVELS); s->new_stddev = ff_get_audio_buffer(outlink, MAX_LEVELS); s->filter = ff_get_audio_buffer(outlink, s->nb_samples); s->absmean = ff_get_audio_buffer(outlink, MAX_LEVELS); s->new_absmean = ff_get_audio_buffer(outlink, MAX_LEVELS); if (!s->stddev || !s->absmean || !s->filter || !s->new_stddev || !s->new_absmean) return AVERROR(ENOMEM); s->channels = outlink->ch_layout.nb_channels; s->overlap_length = max_left_ext(s->wavelet_length, s->levels); s->prev_length = s->overlap_length; s->drop_samples = s->overlap_length; s->padd_samples = s->overlap_length; s->sn = 1; s->cp = av_calloc(s->channels, sizeof(*s->cp)); if (!s->cp) return AVERROR(ENOMEM); for (int ch = 0; ch < s->channels; ch++) { ChannelParams *cp = &s->cp[ch]; cp->output_coefs = av_calloc(s->levels + 1, sizeof(*cp->output_coefs)); cp->filter_coefs = av_calloc(s->levels + 1, sizeof(*cp->filter_coefs)); cp->output_length = av_calloc(s->levels + 1, sizeof(*cp->output_length)); cp->filter_length = av_calloc(s->levels + 1, sizeof(*cp->filter_length)); cp->buffer_length = next_pow2(s->wavelet_length); cp->buffer = av_calloc(cp->buffer_length, sizeof(*cp->buffer)); cp->buffer2 = av_calloc(cp->buffer_length, sizeof(*cp->buffer2)); cp->subbands_to_free = av_calloc(s->levels + 1, sizeof(*cp->subbands_to_free)); cp->prev = av_calloc(s->prev_length, sizeof(*cp->prev)); cp->overlap = av_calloc(s->overlap_length, sizeof(*cp->overlap)); cp->max_left_ext = max_left_ext(s->wavelet_length, s->levels); cp->min_left_ext = min_left_ext(s->wavelet_length, s->levels); if (!cp->output_coefs || !cp->filter_coefs || !cp->output_length || !cp->filter_length || !cp->subbands_to_free || !cp->prev || !cp->overlap || !cp->buffer || !cp->buffer2) return AVERROR(ENOMEM); } return 0; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AudioFWTDNContext *s = ctx->priv; AVFrame *in = NULL; int ret, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (!s->eof) { ret = ff_inlink_consume_samples(inlink, s->nb_samples, s->nb_samples, &in); if (ret < 0) return ret; if (ret > 0) return filter_frame(inlink, in); } if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { if (status == AVERROR_EOF) s->eof = 1; } if (s->eof && s->padd_samples != 0) { return filter_frame(inlink, NULL); } else if (s->eof) { ff_outlink_set_status(outlink, AVERROR_EOF, s->eof_pts); return 0; } FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { AudioFWTDNContext *s = ctx->priv; av_frame_free(&s->filter); av_frame_free(&s->new_stddev); av_frame_free(&s->stddev); av_frame_free(&s->new_absmean); av_frame_free(&s->absmean); for (int ch = 0; s->cp && ch < s->channels; ch++) { ChannelParams *cp = &s->cp[ch]; av_freep(&cp->tempa); av_freep(&cp->tempd); av_freep(&cp->temp_in); av_freep(&cp->buffer); av_freep(&cp->buffer2); av_freep(&cp->prev); av_freep(&cp->overlap); av_freep(&cp->output_length); av_freep(&cp->filter_length); if (cp->output_coefs) { for (int level = 0; level <= s->levels; level++) av_freep(&cp->output_coefs[level]); } if (cp->subbands_to_free) { for (int level = 0; level <= s->levels; level++) av_freep(&cp->subbands_to_free[level]); } av_freep(&cp->subbands_to_free); av_freep(&cp->output_coefs); av_freep(&cp->filter_coefs); } av_freep(&s->cp); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { AudioFWTDNContext *s = ctx->priv; int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; if (!strcmp(cmd, "profile") && s->need_profile) s->got_profile = 0; return 0; } static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, }; const AVFilter ff_af_afwtdn = { .name = "afwtdn", .description = NULL_IF_CONFIG_SMALL("Denoise audio stream using Wavelets."), .priv_size = sizeof(AudioFWTDNContext), .priv_class = &afwtdn_class, .activate = activate, .uninit = uninit, FILTER_INPUTS(ff_audio_default_filterpad), FILTER_OUTPUTS(outputs), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_DBLP), .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };