/* * Copyright (c) 2019 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "libswresample/swresample.h" #include "avfilter.h" #include "audio.h" #include "formats.h" enum ASoftClipTypes { ASC_HARD = -1, ASC_TANH, ASC_ATAN, ASC_CUBIC, ASC_EXP, ASC_ALG, ASC_QUINTIC, ASC_SIN, ASC_ERF, NB_TYPES, }; typedef struct ASoftClipContext { const AVClass *class; int type; int oversample; int64_t delay; double threshold; double output; double param; SwrContext *up_ctx; SwrContext *down_ctx; AVFrame *frame; void (*filter)(struct ASoftClipContext *s, void **dst, const void **src, int nb_samples, int channels, int start, int end); } ASoftClipContext; #define OFFSET(x) offsetof(ASoftClipContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM #define F AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption asoftclip_options[] = { { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, -1, NB_TYPES-1, A, "types" }, { "hard", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_HARD}, 0, 0, A, "types" }, { "tanh", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_TANH}, 0, 0, A, "types" }, { "atan", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ATAN}, 0, 0, A, "types" }, { "cubic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_CUBIC}, 0, 0, A, "types" }, { "exp", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_EXP}, 0, 0, A, "types" }, { "alg", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ALG}, 0, 0, A, "types" }, { "quintic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_QUINTIC},0, 0, A, "types" }, { "sin", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_SIN}, 0, 0, A, "types" }, { "erf", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ERF}, 0, 0, A, "types" }, { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A }, { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A }, { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01, 3, A }, { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, 32, F }, { NULL } }; AVFILTER_DEFINE_CLASS(asoftclip); static int query_formats(AVFilterContext *ctx) { static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE }; int ret = ff_set_common_formats_from_list(ctx, sample_fmts); if (ret < 0) return ret; ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; return ff_set_common_all_samplerates(ctx); } static void filter_flt(ASoftClipContext *s, void **dptr, const void **sptr, int nb_samples, int channels, int start, int end) { float threshold = s->threshold; float gain = s->output * threshold; float factor = 1.f / threshold; float param = s->param; for (int c = start; c < end; c++) { const float *src = sptr[c]; float *dst = dptr[c]; switch (s->type) { case ASC_HARD: for (int n = 0; n < nb_samples; n++) { dst[n] = av_clipf(src[n] * factor, -1.f, 1.f); dst[n] *= gain; } break; case ASC_TANH: for (int n = 0; n < nb_samples; n++) { dst[n] = tanhf(src[n] * factor * param); dst[n] *= gain; } break; case ASC_ATAN: for (int n = 0; n < nb_samples; n++) { dst[n] = 2.f / M_PI * atanf(src[n] * factor * param); dst[n] *= gain; } break; case ASC_CUBIC: for (int n = 0; n < nb_samples; n++) { float sample = src[n] * factor; if (FFABS(sample) >= 1.5f) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.1481f * powf(sample, 3.f); dst[n] *= gain; } break; case ASC_EXP: for (int n = 0; n < nb_samples; n++) { dst[n] = 2.f / (1.f + expf(-2.f * src[n] * factor)) - 1.; dst[n] *= gain; } break; case ASC_ALG: for (int n = 0; n < nb_samples; n++) { float sample = src[n] * factor; dst[n] = sample / (sqrtf(param + sample * sample)); dst[n] *= gain; } break; case ASC_QUINTIC: for (int n = 0; n < nb_samples; n++) { float sample = src[n] * factor; if (FFABS(sample) >= 1.25) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.08192f * powf(sample, 5.f); dst[n] *= gain; } break; case ASC_SIN: for (int n = 0; n < nb_samples; n++) { float sample = src[n] * factor; if (FFABS(sample) >= M_PI_2) dst[n] = FFSIGN(sample); else dst[n] = sinf(sample); dst[n] *= gain; } break; case ASC_ERF: for (int n = 0; n < nb_samples; n++) { dst[n] = erff(src[n] * factor); dst[n] *= gain; } break; default: av_assert0(0); } } } static void filter_dbl(ASoftClipContext *s, void **dptr, const void **sptr, int nb_samples, int channels, int start, int end) { double threshold = s->threshold; double gain = s->output * threshold; double factor = 1. / threshold; double param = s->param; for (int c = start; c < end; c++) { const double *src = sptr[c]; double *dst = dptr[c]; switch (s->type) { case ASC_HARD: for (int n = 0; n < nb_samples; n++) { dst[n] = av_clipd(src[n] * factor, -1., 1.); dst[n] *= gain; } break; case ASC_TANH: for (int n = 0; n < nb_samples; n++) { dst[n] = tanh(src[n] * factor * param); dst[n] *= gain; } break; case ASC_ATAN: for (int n = 0; n < nb_samples; n++) { dst[n] = 2. / M_PI * atan(src[n] * factor * param); dst[n] *= gain; } break; case ASC_CUBIC: for (int n = 0; n < nb_samples; n++) { double sample = src[n] * factor; if (FFABS(sample) >= 1.5) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.1481 * pow(sample, 3.); dst[n] *= gain; } break; case ASC_EXP: for (int n = 0; n < nb_samples; n++) { dst[n] = 2. / (1. + exp(-2. * src[n] * factor)) - 1.; dst[n] *= gain; } break; case ASC_ALG: for (int n = 0; n < nb_samples; n++) { double sample = src[n] * factor; dst[n] = sample / (sqrt(param + sample * sample)); dst[n] *= gain; } break; case ASC_QUINTIC: for (int n = 0; n < nb_samples; n++) { double sample = src[n] * factor; if (FFABS(sample) >= 1.25) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.08192 * pow(sample, 5.); dst[n] *= gain; } break; case ASC_SIN: for (int n = 0; n < nb_samples; n++) { double sample = src[n] * factor; if (FFABS(sample) >= M_PI_2) dst[n] = FFSIGN(sample); else dst[n] = sin(sample); dst[n] *= gain; } break; case ASC_ERF: for (int n = 0; n < nb_samples; n++) { dst[n] = erf(src[n] * factor); dst[n] *= gain; } break; default: av_assert0(0); } } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ASoftClipContext *s = ctx->priv; int ret; switch (inlink->format) { case AV_SAMPLE_FMT_FLT: case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break; case AV_SAMPLE_FMT_DBL: case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break; default: av_assert0(0); } if (s->oversample <= 1) return 0; s->up_ctx = swr_alloc(); s->down_ctx = swr_alloc(); if (!s->up_ctx || !s->down_ctx) return AVERROR(ENOMEM); av_opt_set_int(s->up_ctx, "in_channel_layout", inlink->channel_layout, 0); av_opt_set_int(s->up_ctx, "in_sample_rate", inlink->sample_rate, 0); av_opt_set_sample_fmt(s->up_ctx, "in_sample_fmt", inlink->format, 0); av_opt_set_int(s->up_ctx, "out_channel_layout", inlink->channel_layout, 0); av_opt_set_int(s->up_ctx, "out_sample_rate", inlink->sample_rate * s->oversample, 0); av_opt_set_sample_fmt(s->up_ctx, "out_sample_fmt", inlink->format, 0); av_opt_set_int(s->down_ctx, "in_channel_layout", inlink->channel_layout, 0); av_opt_set_int(s->down_ctx, "in_sample_rate", inlink->sample_rate * s->oversample, 0); av_opt_set_sample_fmt(s->down_ctx, "in_sample_fmt", inlink->format, 0); av_opt_set_int(s->down_ctx, "out_channel_layout", inlink->channel_layout, 0); av_opt_set_int(s->down_ctx, "out_sample_rate", inlink->sample_rate, 0); av_opt_set_sample_fmt(s->down_ctx, "out_sample_fmt", inlink->format, 0); ret = swr_init(s->up_ctx); if (ret < 0) return ret; ret = swr_init(s->down_ctx); if (ret < 0) return ret; return 0; } typedef struct ThreadData { AVFrame *in, *out; int nb_samples; int channels; } ThreadData; static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ASoftClipContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *in = td->in; const int channels = td->channels; const int nb_samples = td->nb_samples; const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; s->filter(s, (void **)out->extended_data, (const void **)in->extended_data, nb_samples, channels, start, end); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; ASoftClipContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int ret, nb_samples, channels; ThreadData td; AVFrame *out; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } if (av_sample_fmt_is_planar(in->format)) { nb_samples = in->nb_samples; channels = in->channels; } else { nb_samples = in->channels * in->nb_samples; channels = 1; } if (s->oversample > 1) { s->frame = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample); if (!s->frame) { ret = AVERROR(ENOMEM); goto fail; } ret = swr_convert(s->up_ctx, (uint8_t**)s->frame->extended_data, in->nb_samples * s->oversample, (const uint8_t **)in->extended_data, in->nb_samples); if (ret < 0) goto fail; td.in = s->frame; td.out = s->frame; td.nb_samples = av_sample_fmt_is_planar(in->format) ? ret : ret * in->channels; td.channels = channels; ff_filter_execute(ctx, filter_channels, &td, NULL, FFMIN(channels, ff_filter_get_nb_threads(ctx))); ret = swr_convert(s->down_ctx, (uint8_t**)out->extended_data, out->nb_samples, (const uint8_t **)s->frame->extended_data, ret); if (ret < 0) goto fail; if (out->pts) out->pts -= s->delay; s->delay += in->nb_samples - ret; out->nb_samples = ret; av_frame_free(&s->frame); } else { td.in = in; td.out = out; td.nb_samples = nb_samples; td.channels = channels; ff_filter_execute(ctx, filter_channels, &td, NULL, FFMIN(channels, ff_filter_get_nb_threads(ctx))); } if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); fail: if (out != in) av_frame_free(&out); av_frame_free(&in); av_frame_free(&s->frame); return ret; } static av_cold void uninit(AVFilterContext *ctx) { ASoftClipContext *s = ctx->priv; swr_free(&s->up_ctx); swr_free(&s->down_ctx); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; const AVFilter ff_af_asoftclip = { .name = "asoftclip", .description = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."), .query_formats = query_formats, .priv_size = sizeof(ASoftClipContext), .priv_class = &asoftclip_class, .inputs = inputs, .outputs = outputs, .uninit = uninit, .process_command = ff_filter_process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };