/* * Copyright (c) 2011 Pascal Getreuer * Copyright (c) 2016 Paul B Mahol * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "gblur.h" #include "internal.h" #include "video.h" #define OFFSET(x) offsetof(GBlurContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption gblur_options[] = { { "sigma", "set sigma", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.0, 1024, FLAGS }, { "steps", "set number of steps", OFFSET(steps), AV_OPT_TYPE_INT, {.i64=1}, 1, 6, FLAGS }, { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=0xF}, 0, 0xF, FLAGS }, { "sigmaV", "set vertical sigma", OFFSET(sigmaV), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 1024, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(gblur); typedef struct ThreadData { int height; int width; } ThreadData; static void horiz_slice_c(float *buffer, int width, int height, int steps, float nu, float bscale) { int step, x, y; float *ptr; for (y = 0; y < height; y++) { for (step = 0; step < steps; step++) { ptr = buffer + width * y; ptr[0] *= bscale; /* Filter rightwards */ for (x = 1; x < width; x++) ptr[x] += nu * ptr[x - 1]; ptr[x = width - 1] *= bscale; /* Filter leftwards */ for (; x > 0; x--) ptr[x - 1] += nu * ptr[x]; } } } static int filter_horizontally(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { GBlurContext *s = ctx->priv; ThreadData *td = arg; const int height = td->height; const int width = td->width; const int slice_start = (height * jobnr ) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; const float boundaryscale = s->boundaryscale; const int steps = s->steps; const float nu = s->nu; float *buffer = s->buffer; s->horiz_slice(buffer + width * slice_start, width, slice_end - slice_start, steps, nu, boundaryscale); emms_c(); return 0; } static void do_vertical_columns(float *buffer, int width, int height, int column_begin, int column_end, int steps, float nu, float boundaryscale, int column_step) { const int numpixels = width * height; int i, x, k, step; float *ptr; for (x = column_begin; x < column_end;) { for (step = 0; step < steps; step++) { ptr = buffer + x; for (k = 0; k < column_step; k++) { ptr[k] *= boundaryscale; } /* Filter downwards */ for (i = width; i < numpixels; i += width) { for (k = 0; k < column_step; k++) { ptr[i + k] += nu * ptr[i - width + k]; } } i = numpixels - width; for (k = 0; k < column_step; k++) ptr[i + k] *= boundaryscale; /* Filter upwards */ for (; i > 0; i -= width) { for (k = 0; k < column_step; k++) ptr[i - width + k] += nu * ptr[i + k]; } } x += column_step; } } static int filter_vertically(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { GBlurContext *s = ctx->priv; ThreadData *td = arg; const int height = td->height; const int width = td->width; const int slice_start = (width * jobnr ) / nb_jobs; const int slice_end = (width * (jobnr+1)) / nb_jobs; const float boundaryscale = s->boundaryscaleV; const int steps = s->steps; const float nu = s->nuV; float *buffer = s->buffer; int aligned_end; aligned_end = slice_start + (((slice_end - slice_start) >> 3) << 3); /* Filter vertically along columns (process 8 columns in each step) */ do_vertical_columns(buffer, width, height, slice_start, aligned_end, steps, nu, boundaryscale, 8); /* Filter un-aligned columns one by one */ do_vertical_columns(buffer, width, height, aligned_end, slice_end, steps, nu, boundaryscale, 1); return 0; } static int filter_postscale(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { GBlurContext *s = ctx->priv; ThreadData *td = arg; const float max = s->flt ? FLT_MAX : (1 << s->depth) - 1; const float min = s->flt ? -FLT_MAX : 0.f; const int height = td->height; const int width = td->width; const int64_t numpixels = width * (int64_t)height; const unsigned slice_start = (numpixels * jobnr ) / nb_jobs; const unsigned slice_end = (numpixels * (jobnr+1)) / nb_jobs; const float postscale = s->postscale * s->postscaleV; float *buffer = s->buffer; unsigned i; for (i = slice_start; i < slice_end; i++) { buffer[i] *= postscale; buffer[i] = av_clipf(buffer[i], min, max); } return 0; } static void gaussianiir2d(AVFilterContext *ctx, int plane) { GBlurContext *s = ctx->priv; const int width = s->planewidth[plane]; const int height = s->planeheight[plane]; const int nb_threads = ff_filter_get_nb_threads(ctx); ThreadData td; if (s->sigma <= 0 || s->steps < 0) return; td.width = width; td.height = height; ctx->internal->execute(ctx, filter_horizontally, &td, NULL, FFMIN(height, nb_threads)); ctx->internal->execute(ctx, filter_vertically, &td, NULL, FFMIN(width, nb_threads)); ctx->internal->execute(ctx, filter_postscale, &td, NULL, FFMIN(width * height, nb_threads)); } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32, AV_PIX_FMT_GRAYF32, AV_PIX_FMT_NONE }; return ff_set_common_formats(ctx, ff_make_format_list(pix_fmts)); } void ff_gblur_init(GBlurContext *s) { s->horiz_slice = horiz_slice_c; if (ARCH_X86_64) ff_gblur_init_x86(s); } static int config_input(AVFilterLink *inlink) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); GBlurContext *s = inlink->dst->priv; s->depth = desc->comp[0].depth; s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT); s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->buffer = av_malloc_array(FFALIGN(inlink->w, 16), FFALIGN(inlink->h, 16) * sizeof(*s->buffer)); if (!s->buffer) return AVERROR(ENOMEM); if (s->sigmaV < 0) { s->sigmaV = s->sigma; } ff_gblur_init(s); return 0; } static void set_params(float sigma, int steps, float *postscale, float *boundaryscale, float *nu) { double dnu, lambda; lambda = (sigma * sigma) / (2.0 * steps); dnu = (1.0 + 2.0 * lambda - sqrt(1.0 + 4.0 * lambda)) / (2.0 * lambda); *postscale = pow(dnu / lambda, steps); *boundaryscale = 1.0 / (1.0 - dnu); *nu = (float)dnu; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; GBlurContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; int plane; set_params(s->sigma, s->steps, &s->postscale, &s->boundaryscale, &s->nu); set_params(s->sigmaV, s->steps, &s->postscaleV, &s->boundaryscaleV, &s->nuV); if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } for (plane = 0; plane < s->nb_planes; plane++) { const int height = s->planeheight[plane]; const int width = s->planewidth[plane]; float *bptr = s->buffer; const uint8_t *src = in->data[plane]; const uint16_t *src16 = (const uint16_t *)in->data[plane]; uint8_t *dst = out->data[plane]; uint16_t *dst16 = (uint16_t *)out->data[plane]; int y, x; if (!s->sigma || !(s->planes & (1 << plane))) { if (out != in) av_image_copy_plane(out->data[plane], out->linesize[plane], in->data[plane], in->linesize[plane], width * ((s->depth + 7) / 8), height); continue; } if (s->flt) { av_image_copy_plane((uint8_t *)bptr, width * sizeof(float), in->data[plane], in->linesize[plane], width * sizeof(float), height); } else if (s->depth == 8) { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { bptr[x] = src[x]; } bptr += width; src += in->linesize[plane]; } } else { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { bptr[x] = src16[x]; } bptr += width; src16 += in->linesize[plane] / 2; } } gaussianiir2d(ctx, plane); bptr = s->buffer; if (s->flt) { av_image_copy_plane(out->data[plane], out->linesize[plane], (uint8_t *)bptr, width * sizeof(float), width * sizeof(float), height); } else if (s->depth == 8) { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { dst[x] = bptr[x]; } bptr += width; dst += out->linesize[plane]; } } else { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { dst16[x] = bptr[x]; } bptr += width; dst16 += out->linesize[plane] / 2; } } } if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { GBlurContext *s = ctx->priv; av_freep(&s->buffer); } static const AVFilterPad gblur_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad gblur_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_gblur = { .name = "gblur", .description = NULL_IF_CONFIG_SMALL("Apply Gaussian Blur filter."), .priv_size = sizeof(GBlurContext), .priv_class = &gblur_class, .uninit = uninit, .query_formats = query_formats, .inputs = gblur_inputs, .outputs = gblur_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = ff_filter_process_command, };