/* * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Audio (Sidechain) Compressor filter */ #include "libavutil/audio_fifo.h" #include "libavutil/channel_layout.h" #include "libavutil/common.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "hermite.h" #include "internal.h" typedef struct SidechainCompressContext { const AVClass *class; double level_in; double level_sc; double attack, attack_coeff; double release, release_coeff; double lin_slope; double ratio; double threshold; double makeup; double mix; double thres; double knee; double knee_start; double knee_stop; double lin_knee_start; double lin_knee_stop; double adj_knee_start; double adj_knee_stop; double compressed_knee_start; double compressed_knee_stop; int link; int detection; int mode; AVAudioFifo *fifo[2]; int64_t pts; } SidechainCompressContext; #define OFFSET(x) offsetof(SidechainCompressContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM #define F AV_OPT_FLAG_FILTERING_PARAM #define R AV_OPT_FLAG_RUNTIME_PARAM static const AVOption options[] = { { "level_in", "set input gain", OFFSET(level_in), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.015625, 64, A|F|R }, { "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A|F|R, "mode" }, { "downward",0, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, A|F|R, "mode" }, { "upward", 0, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, A|F|R, "mode" }, { "threshold", "set threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=0.125}, 0.000976563, 1, A|F|R }, { "ratio", "set ratio", OFFSET(ratio), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 1, 20, A|F|R }, { "attack", "set attack", OFFSET(attack), AV_OPT_TYPE_DOUBLE, {.dbl=20}, 0.01, 2000, A|F|R }, { "release", "set release", OFFSET(release), AV_OPT_TYPE_DOUBLE, {.dbl=250}, 0.01, 9000, A|F|R }, { "makeup", "set make up gain", OFFSET(makeup), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 1, 64, A|F|R }, { "knee", "set knee", OFFSET(knee), AV_OPT_TYPE_DOUBLE, {.dbl=2.82843}, 1, 8, A|F|R }, { "link", "set link type", OFFSET(link), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A|F|R, "link" }, { "average", 0, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, A|F|R, "link" }, { "maximum", 0, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, A|F|R, "link" }, { "detection", "set detection", OFFSET(detection), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, A|F|R, "detection" }, { "peak", 0, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, A|F|R, "detection" }, { "rms", 0, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, A|F|R, "detection" }, { "level_sc", "set sidechain gain", OFFSET(level_sc), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.015625, 64, A|F|R }, { "mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, A|F|R }, { NULL } }; AVFILTER_DEFINE_CLASS_EXT(sidechaincompress_acompressor, "acompressor/sidechaincompress", options); // A fake infinity value (because real infinity may break some hosts) #define FAKE_INFINITY (65536.0 * 65536.0) // Check for infinity (with appropriate-ish tolerance) #define IS_FAKE_INFINITY(value) (fabs(value-FAKE_INFINITY) < 1.0) static double output_gain(double lin_slope, double ratio, double thres, double knee, double knee_start, double knee_stop, double compressed_knee_start, double compressed_knee_stop, int detection, int mode) { double slope = log(lin_slope); double gain = 0.0; double delta = 0.0; if (detection) slope *= 0.5; if (IS_FAKE_INFINITY(ratio)) { gain = thres; delta = 0.0; } else { gain = (slope - thres) / ratio + thres; delta = 1.0 / ratio; } if (mode) { if (knee > 1.0 && slope > knee_start) gain = hermite_interpolation(slope, knee_stop, knee_start, knee_stop, compressed_knee_start, 1.0, delta); } else { if (knee > 1.0 && slope < knee_stop) gain = hermite_interpolation(slope, knee_start, knee_stop, knee_start, compressed_knee_stop, 1.0, delta); } return exp(gain - slope); } static int compressor_config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SidechainCompressContext *s = ctx->priv; s->thres = log(s->threshold); s->lin_knee_start = s->threshold / sqrt(s->knee); s->lin_knee_stop = s->threshold * sqrt(s->knee); s->adj_knee_start = s->lin_knee_start * s->lin_knee_start; s->adj_knee_stop = s->lin_knee_stop * s->lin_knee_stop; s->knee_start = log(s->lin_knee_start); s->knee_stop = log(s->lin_knee_stop); s->compressed_knee_start = (s->knee_start - s->thres) / s->ratio + s->thres; s->compressed_knee_stop = (s->knee_stop - s->thres) / s->ratio + s->thres; s->attack_coeff = FFMIN(1., 1. / (s->attack * outlink->sample_rate / 4000.)); s->release_coeff = FFMIN(1., 1. / (s->release * outlink->sample_rate / 4000.)); return 0; } static void compressor(SidechainCompressContext *s, const double *src, double *dst, const double *scsrc, int nb_samples, double level_in, double level_sc, AVFilterLink *inlink, AVFilterLink *sclink) { const double makeup = s->makeup; const double mix = s->mix; int i, c; for (i = 0; i < nb_samples; i++) { double abs_sample, gain = 1.0; double detector; int detected; abs_sample = fabs(scsrc[0] * level_sc); if (s->link == 1) { for (c = 1; c < sclink->channels; c++) abs_sample = FFMAX(fabs(scsrc[c] * level_sc), abs_sample); } else { for (c = 1; c < sclink->channels; c++) abs_sample += fabs(scsrc[c] * level_sc); abs_sample /= sclink->channels; } if (s->detection) abs_sample *= abs_sample; s->lin_slope += (abs_sample - s->lin_slope) * (abs_sample > s->lin_slope ? s->attack_coeff : s->release_coeff); if (s->mode) { detector = (s->detection ? s->adj_knee_stop : s->lin_knee_stop); detected = s->lin_slope < detector; } else { detector = (s->detection ? s->adj_knee_start : s->lin_knee_start); detected = s->lin_slope > detector; } if (s->lin_slope > 0.0 && detected) gain = output_gain(s->lin_slope, s->ratio, s->thres, s->knee, s->knee_start, s->knee_stop, s->compressed_knee_start, s->compressed_knee_stop, s->detection, s->mode); for (c = 0; c < inlink->channels; c++) dst[c] = src[c] * level_in * (gain * makeup * mix + (1. - mix)); src += inlink->channels; dst += inlink->channels; scsrc += sclink->channels; } } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; compressor_config_output(ctx->outputs[0]); return 0; } #if CONFIG_SIDECHAINCOMPRESS_FILTER static int activate(AVFilterContext *ctx) { SidechainCompressContext *s = ctx->priv; AVFrame *out = NULL, *in[2] = { NULL }; int ret, i, nb_samples; double *dst; FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx); if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &in[0])) > 0) { av_audio_fifo_write(s->fifo[0], (void **)in[0]->extended_data, in[0]->nb_samples); av_frame_free(&in[0]); } if (ret < 0) return ret; if ((ret = ff_inlink_consume_frame(ctx->inputs[1], &in[1])) > 0) { av_audio_fifo_write(s->fifo[1], (void **)in[1]->extended_data, in[1]->nb_samples); av_frame_free(&in[1]); } if (ret < 0) return ret; nb_samples = FFMIN(av_audio_fifo_size(s->fifo[0]), av_audio_fifo_size(s->fifo[1])); if (nb_samples) { out = ff_get_audio_buffer(ctx->outputs[0], nb_samples); if (!out) return AVERROR(ENOMEM); for (i = 0; i < 2; i++) { in[i] = ff_get_audio_buffer(ctx->inputs[i], nb_samples); if (!in[i]) { av_frame_free(&in[0]); av_frame_free(&in[1]); av_frame_free(&out); return AVERROR(ENOMEM); } av_audio_fifo_read(s->fifo[i], (void **)in[i]->data, nb_samples); } dst = (double *)out->data[0]; out->pts = s->pts; s->pts += av_rescale_q(nb_samples, (AVRational){1, ctx->outputs[0]->sample_rate}, ctx->outputs[0]->time_base); compressor(s, (double *)in[0]->data[0], dst, (double *)in[1]->data[0], nb_samples, s->level_in, s->level_sc, ctx->inputs[0], ctx->inputs[1]); av_frame_free(&in[0]); av_frame_free(&in[1]); ret = ff_filter_frame(ctx->outputs[0], out); if (ret < 0) return ret; } FF_FILTER_FORWARD_STATUS(ctx->inputs[0], ctx->outputs[0]); FF_FILTER_FORWARD_STATUS(ctx->inputs[1], ctx->outputs[0]); if (ff_outlink_frame_wanted(ctx->outputs[0])) { if (!av_audio_fifo_size(s->fifo[0])) ff_inlink_request_frame(ctx->inputs[0]); if (!av_audio_fifo_size(s->fifo[1])) ff_inlink_request_frame(ctx->inputs[1]); } return 0; } static int query_formats(AVFilterContext *ctx) { AVFilterChannelLayouts *layouts = NULL; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; int ret, i; if (!ctx->inputs[0]->incfg.channel_layouts || !ctx->inputs[0]->incfg.channel_layouts->nb_channel_layouts) { av_log(ctx, AV_LOG_WARNING, "No channel layout for input 1\n"); return AVERROR(EAGAIN); } if ((ret = ff_add_channel_layout(&layouts, ctx->inputs[0]->incfg.channel_layouts->channel_layouts[0])) < 0 || (ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->incfg.channel_layouts)) < 0) return ret; for (i = 0; i < 2; i++) { layouts = ff_all_channel_counts(); if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[i]->outcfg.channel_layouts)) < 0) return ret; } if ((ret = ff_set_common_formats_from_list(ctx, sample_fmts)) < 0) return ret; return ff_set_common_all_samplerates(ctx); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SidechainCompressContext *s = ctx->priv; if (ctx->inputs[0]->sample_rate != ctx->inputs[1]->sample_rate) { av_log(ctx, AV_LOG_ERROR, "Inputs must have the same sample rate " "%d for in0 vs %d for in1\n", ctx->inputs[0]->sample_rate, ctx->inputs[1]->sample_rate); return AVERROR(EINVAL); } outlink->sample_rate = ctx->inputs[0]->sample_rate; outlink->time_base = ctx->inputs[0]->time_base; outlink->channel_layout = ctx->inputs[0]->channel_layout; outlink->channels = ctx->inputs[0]->channels; s->fifo[0] = av_audio_fifo_alloc(ctx->inputs[0]->format, ctx->inputs[0]->channels, 1024); s->fifo[1] = av_audio_fifo_alloc(ctx->inputs[1]->format, ctx->inputs[1]->channels, 1024); if (!s->fifo[0] || !s->fifo[1]) return AVERROR(ENOMEM); compressor_config_output(outlink); return 0; } static av_cold void uninit(AVFilterContext *ctx) { SidechainCompressContext *s = ctx->priv; av_audio_fifo_free(s->fifo[0]); av_audio_fifo_free(s->fifo[1]); } static const AVFilterPad sidechaincompress_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_AUDIO, },{ .name = "sidechain", .type = AVMEDIA_TYPE_AUDIO, }, }; static const AVFilterPad sidechaincompress_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, }; const AVFilter ff_af_sidechaincompress = { .name = "sidechaincompress", .description = NULL_IF_CONFIG_SMALL("Sidechain compressor."), .priv_class = &sidechaincompress_acompressor_class, .priv_size = sizeof(SidechainCompressContext), .query_formats = query_formats, .activate = activate, .uninit = uninit, FILTER_INPUTS(sidechaincompress_inputs), FILTER_OUTPUTS(sidechaincompress_outputs), .process_command = process_command, }; #endif /* CONFIG_SIDECHAINCOMPRESS_FILTER */ #if CONFIG_ACOMPRESSOR_FILTER static int acompressor_filter_frame(AVFilterLink *inlink, AVFrame *in) { const double *src = (const double *)in->data[0]; AVFilterContext *ctx = inlink->dst; SidechainCompressContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; double *dst; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } dst = (double *)out->data[0]; compressor(s, src, dst, src, in->nb_samples, s->level_in, s->level_in, inlink, inlink); if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int acompressor_query_formats(AVFilterContext *ctx) { static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; int ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; ret = ff_set_common_formats_from_list(ctx, sample_fmts); if (ret < 0) return ret; return ff_set_common_all_samplerates(ctx); } static const AVFilterPad acompressor_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = acompressor_filter_frame, }, }; static const AVFilterPad acompressor_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = compressor_config_output, }, }; const AVFilter ff_af_acompressor = { .name = "acompressor", .description = NULL_IF_CONFIG_SMALL("Audio compressor."), .priv_class = &sidechaincompress_acompressor_class, .priv_size = sizeof(SidechainCompressContext), .query_formats = acompressor_query_formats, FILTER_INPUTS(acompressor_inputs), FILTER_OUTPUTS(acompressor_outputs), .process_command = process_command, }; #endif /* CONFIG_ACOMPRESSOR_FILTER */