/* * H.264/HEVC hardware encoding using nvidia nvenc * Copyright (c) 2016 Timo Rothenpieler * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "nvenc.h" #include "libavutil/hwcontext_cuda.h" #include "libavutil/hwcontext.h" #include "libavutil/cuda_check.h" #include "libavutil/imgutils.h" #include "libavutil/avassert.h" #include "libavutil/mem.h" #include "libavutil/pixdesc.h" #include "internal.h" #include "packet_internal.h" #define CHECK_CU(x) FF_CUDA_CHECK_DL(avctx, dl_fn->cuda_dl, x) #define NVENC_CAP 0x30 #define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR || \ rc == NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ || \ rc == NV_ENC_PARAMS_RC_CBR_HQ) const enum AVPixelFormat ff_nvenc_pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NV12, AV_PIX_FMT_P010, AV_PIX_FMT_YUV444P, AV_PIX_FMT_P016, // Truncated to 10bits AV_PIX_FMT_YUV444P16, // Truncated to 10bits AV_PIX_FMT_0RGB32, AV_PIX_FMT_0BGR32, AV_PIX_FMT_CUDA, #if CONFIG_D3D11VA AV_PIX_FMT_D3D11, #endif AV_PIX_FMT_NONE }; const AVCodecHWConfigInternal *ff_nvenc_hw_configs[] = { HW_CONFIG_ENCODER_FRAMES(CUDA, CUDA), HW_CONFIG_ENCODER_DEVICE(NONE, CUDA), #if CONFIG_D3D11VA HW_CONFIG_ENCODER_FRAMES(D3D11, D3D11VA), HW_CONFIG_ENCODER_DEVICE(NONE, D3D11VA), #endif NULL, }; #define IS_10BIT(pix_fmt) (pix_fmt == AV_PIX_FMT_P010 || \ pix_fmt == AV_PIX_FMT_P016 || \ pix_fmt == AV_PIX_FMT_YUV444P16) #define IS_YUV444(pix_fmt) (pix_fmt == AV_PIX_FMT_YUV444P || \ pix_fmt == AV_PIX_FMT_YUV444P16) static const struct { NVENCSTATUS nverr; int averr; const char *desc; } nvenc_errors[] = { { NV_ENC_SUCCESS, 0, "success" }, { NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" }, { NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" }, { NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" }, { NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" }, { NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" }, { NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" }, { NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" }, { NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" }, { NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" }, { NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" }, { NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" }, { NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" }, { NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" }, { NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR_BUFFER_TOO_SMALL, "not enough buffer"}, { NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" }, { NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" }, { NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" }, { NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" }, { NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" }, { NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" }, { NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" }, { NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" }, { NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" }, { NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" }, { NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" }, }; static int nvenc_map_error(NVENCSTATUS err, const char **desc) { int i; for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) { if (nvenc_errors[i].nverr == err) { if (desc) *desc = nvenc_errors[i].desc; return nvenc_errors[i].averr; } } if (desc) *desc = "unknown error"; return AVERROR_UNKNOWN; } static int nvenc_print_error(AVCodecContext *avctx, NVENCSTATUS err, const char *error_string) { const char *desc; const char *details = "(no details)"; int ret = nvenc_map_error(err, &desc); #ifdef NVENC_HAVE_GETLASTERRORSTRING NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; if (p_nvenc && ctx->nvencoder) details = p_nvenc->nvEncGetLastErrorString(ctx->nvencoder); #endif av_log(avctx, AV_LOG_ERROR, "%s: %s (%d): %s\n", error_string, desc, err, details); return ret; } static void nvenc_print_driver_requirement(AVCodecContext *avctx, int level) { #if NVENCAPI_CHECK_VERSION(9, 2) const char *minver = "(unknown)"; #elif NVENCAPI_CHECK_VERSION(9, 1) # if defined(_WIN32) || defined(__CYGWIN__) const char *minver = "436.15"; # else const char *minver = "435.21"; # endif #elif NVENCAPI_CHECK_VERSION(9, 0) # if defined(_WIN32) || defined(__CYGWIN__) const char *minver = "418.81"; # else const char *minver = "418.30"; # endif #elif NVENCAPI_CHECK_VERSION(8, 2) # if defined(_WIN32) || defined(__CYGWIN__) const char *minver = "397.93"; # else const char *minver = "396.24"; #endif #elif NVENCAPI_CHECK_VERSION(8, 1) # if defined(_WIN32) || defined(__CYGWIN__) const char *minver = "390.77"; # else const char *minver = "390.25"; # endif #else # if defined(_WIN32) || defined(__CYGWIN__) const char *minver = "378.66"; # else const char *minver = "378.13"; # endif #endif av_log(avctx, level, "The minimum required Nvidia driver for nvenc is %s or newer\n", minver); } static av_cold int nvenc_load_libraries(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NVENCSTATUS err; uint32_t nvenc_max_ver; int ret; ret = cuda_load_functions(&dl_fn->cuda_dl, avctx); if (ret < 0) return ret; ret = nvenc_load_functions(&dl_fn->nvenc_dl, avctx); if (ret < 0) { nvenc_print_driver_requirement(avctx, AV_LOG_ERROR); return ret; } err = dl_fn->nvenc_dl->NvEncodeAPIGetMaxSupportedVersion(&nvenc_max_ver); if (err != NV_ENC_SUCCESS) return nvenc_print_error(avctx, err, "Failed to query nvenc max version"); av_log(avctx, AV_LOG_VERBOSE, "Loaded Nvenc version %d.%d\n", nvenc_max_ver >> 4, nvenc_max_ver & 0xf); if ((NVENCAPI_MAJOR_VERSION << 4 | NVENCAPI_MINOR_VERSION) > nvenc_max_ver) { av_log(avctx, AV_LOG_ERROR, "Driver does not support the required nvenc API version. " "Required: %d.%d Found: %d.%d\n", NVENCAPI_MAJOR_VERSION, NVENCAPI_MINOR_VERSION, nvenc_max_ver >> 4, nvenc_max_ver & 0xf); nvenc_print_driver_requirement(avctx, AV_LOG_ERROR); return AVERROR(ENOSYS); } dl_fn->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER; err = dl_fn->nvenc_dl->NvEncodeAPICreateInstance(&dl_fn->nvenc_funcs); if (err != NV_ENC_SUCCESS) return nvenc_print_error(avctx, err, "Failed to create nvenc instance"); av_log(avctx, AV_LOG_VERBOSE, "Nvenc initialized successfully\n"); return 0; } static int nvenc_push_context(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; if (ctx->d3d11_device) return 0; return CHECK_CU(dl_fn->cuda_dl->cuCtxPushCurrent(ctx->cu_context)); } static int nvenc_pop_context(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; CUcontext dummy; if (ctx->d3d11_device) return 0; return CHECK_CU(dl_fn->cuda_dl->cuCtxPopCurrent(&dummy)); } static av_cold int nvenc_open_session(AVCodecContext *avctx) { NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 }; NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; NVENCSTATUS ret; params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER; params.apiVersion = NVENCAPI_VERSION; if (ctx->d3d11_device) { params.device = ctx->d3d11_device; params.deviceType = NV_ENC_DEVICE_TYPE_DIRECTX; } else { params.device = ctx->cu_context; params.deviceType = NV_ENC_DEVICE_TYPE_CUDA; } ret = p_nvenc->nvEncOpenEncodeSessionEx(¶ms, &ctx->nvencoder); if (ret != NV_ENC_SUCCESS) { ctx->nvencoder = NULL; return nvenc_print_error(avctx, ret, "OpenEncodeSessionEx failed"); } return 0; } static int nvenc_check_codec_support(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; int i, ret, count = 0; GUID *guids = NULL; ret = p_nvenc->nvEncGetEncodeGUIDCount(ctx->nvencoder, &count); if (ret != NV_ENC_SUCCESS || !count) return AVERROR(ENOSYS); guids = av_malloc(count * sizeof(GUID)); if (!guids) return AVERROR(ENOMEM); ret = p_nvenc->nvEncGetEncodeGUIDs(ctx->nvencoder, guids, count, &count); if (ret != NV_ENC_SUCCESS) { ret = AVERROR(ENOSYS); goto fail; } ret = AVERROR(ENOSYS); for (i = 0; i < count; i++) { if (!memcmp(&guids[i], &ctx->init_encode_params.encodeGUID, sizeof(*guids))) { ret = 0; break; } } fail: av_free(guids); return ret; } static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap) { NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; NV_ENC_CAPS_PARAM params = { 0 }; int ret, val = 0; params.version = NV_ENC_CAPS_PARAM_VER; params.capsToQuery = cap; ret = p_nvenc->nvEncGetEncodeCaps(ctx->nvencoder, ctx->init_encode_params.encodeGUID, ¶ms, &val); if (ret == NV_ENC_SUCCESS) return val; return 0; } static int nvenc_check_capabilities(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int ret; ret = nvenc_check_codec_support(avctx); if (ret < 0) { av_log(avctx, AV_LOG_WARNING, "Codec not supported\n"); return ret; } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE); if (IS_YUV444(ctx->data_pix_fmt) && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "YUV444P not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOSSLESS_ENCODE); if (ctx->preset >= PRESET_LOSSLESS_DEFAULT && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "Lossless encoding not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX); if (ret < avctx->width) { av_log(avctx, AV_LOG_WARNING, "Width %d exceeds %d\n", avctx->width, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX); if (ret < avctx->height) { av_log(avctx, AV_LOG_WARNING, "Height %d exceeds %d\n", avctx->height, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES); if (ret < avctx->max_b_frames) { av_log(avctx, AV_LOG_WARNING, "Max B-frames %d exceed %d\n", avctx->max_b_frames, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_FIELD_ENCODING); if (ret < 1 && avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { av_log(avctx, AV_LOG_WARNING, "Interlaced encoding is not supported. Supported level: %d\n", ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_10BIT_ENCODE); if (IS_10BIT(ctx->data_pix_fmt) && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "10 bit encode not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOOKAHEAD); if (ctx->rc_lookahead > 0 && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "RC lookahead not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_TEMPORAL_AQ); if (ctx->temporal_aq > 0 && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "Temporal AQ not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_WEIGHTED_PREDICTION); if (ctx->weighted_pred > 0 && ret <= 0) { av_log (avctx, AV_LOG_WARNING, "Weighted Prediction not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_CABAC); if (ctx->coder == NV_ENC_H264_ENTROPY_CODING_MODE_CABAC && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "CABAC entropy coding not supported\n"); return AVERROR(ENOSYS); } #ifdef NVENC_HAVE_BFRAME_REF_MODE ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_BFRAME_REF_MODE); if (ctx->b_ref_mode == NV_ENC_BFRAME_REF_MODE_EACH && ret != 1) { av_log(avctx, AV_LOG_WARNING, "Each B frame as reference is not supported\n"); return AVERROR(ENOSYS); } else if (ctx->b_ref_mode != NV_ENC_BFRAME_REF_MODE_DISABLED && ret == 0) { av_log(avctx, AV_LOG_WARNING, "B frames as references are not supported\n"); return AVERROR(ENOSYS); } #else if (ctx->b_ref_mode != 0) { av_log(avctx, AV_LOG_WARNING, "B frames as references need SDK 8.1 at build time\n"); return AVERROR(ENOSYS); } #endif #ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_MULTIPLE_REF_FRAMES); if(avctx->refs != NV_ENC_NUM_REF_FRAMES_AUTOSELECT && ret <= 0) { av_log(avctx, AV_LOG_WARNING, "Multiple reference frames are not supported by the device\n"); return AVERROR(ENOSYS); } #else if(avctx->refs != 0) { av_log(avctx, AV_LOG_WARNING, "Multiple reference frames need SDK 9.1 at build time\n"); return AVERROR(ENOSYS); } #endif ctx->support_dyn_bitrate = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_DYN_BITRATE_CHANGE); return 0; } static av_cold int nvenc_check_device(AVCodecContext *avctx, int idx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; char name[128] = { 0}; int major, minor, ret; CUdevice cu_device; int loglevel = AV_LOG_VERBOSE; if (ctx->device == LIST_DEVICES) loglevel = AV_LOG_INFO; ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceGet(&cu_device, idx)); if (ret < 0) return ret; ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceGetName(name, sizeof(name), cu_device)); if (ret < 0) return ret; ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceComputeCapability(&major, &minor, cu_device)); if (ret < 0) return ret; av_log(avctx, loglevel, "[ GPU #%d - < %s > has Compute SM %d.%d ]\n", idx, name, major, minor); if (((major << 4) | minor) < NVENC_CAP) { av_log(avctx, loglevel, "does not support NVENC\n"); goto fail; } if (ctx->device != idx && ctx->device != ANY_DEVICE) return -1; ret = CHECK_CU(dl_fn->cuda_dl->cuCtxCreate(&ctx->cu_context_internal, 0, cu_device)); if (ret < 0) goto fail; ctx->cu_context = ctx->cu_context_internal; ctx->cu_stream = NULL; if ((ret = nvenc_pop_context(avctx)) < 0) goto fail2; if ((ret = nvenc_open_session(avctx)) < 0) goto fail2; if ((ret = nvenc_check_capabilities(avctx)) < 0) goto fail3; av_log(avctx, loglevel, "supports NVENC\n"); dl_fn->nvenc_device_count++; if (ctx->device == idx || ctx->device == ANY_DEVICE) return 0; fail3: if ((ret = nvenc_push_context(avctx)) < 0) return ret; p_nvenc->nvEncDestroyEncoder(ctx->nvencoder); ctx->nvencoder = NULL; if ((ret = nvenc_pop_context(avctx)) < 0) return ret; fail2: CHECK_CU(dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal)); ctx->cu_context_internal = NULL; fail: return AVERROR(ENOSYS); } static av_cold int nvenc_setup_device(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; switch (avctx->codec->id) { case AV_CODEC_ID_H264: ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_H264_GUID; break; case AV_CODEC_ID_HEVC: ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_HEVC_GUID; break; default: return AVERROR_BUG; } if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11 || avctx->hw_frames_ctx || avctx->hw_device_ctx) { AVHWFramesContext *frames_ctx; AVHWDeviceContext *hwdev_ctx; AVCUDADeviceContext *cuda_device_hwctx = NULL; #if CONFIG_D3D11VA AVD3D11VADeviceContext *d3d11_device_hwctx = NULL; #endif int ret; if (avctx->hw_frames_ctx) { frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; if (frames_ctx->format == AV_PIX_FMT_CUDA) cuda_device_hwctx = frames_ctx->device_ctx->hwctx; #if CONFIG_D3D11VA else if (frames_ctx->format == AV_PIX_FMT_D3D11) d3d11_device_hwctx = frames_ctx->device_ctx->hwctx; #endif else return AVERROR(EINVAL); } else if (avctx->hw_device_ctx) { hwdev_ctx = (AVHWDeviceContext*)avctx->hw_device_ctx->data; if (hwdev_ctx->type == AV_HWDEVICE_TYPE_CUDA) cuda_device_hwctx = hwdev_ctx->hwctx; #if CONFIG_D3D11VA else if (hwdev_ctx->type == AV_HWDEVICE_TYPE_D3D11VA) d3d11_device_hwctx = hwdev_ctx->hwctx; #endif else return AVERROR(EINVAL); } else { return AVERROR(EINVAL); } if (cuda_device_hwctx) { ctx->cu_context = cuda_device_hwctx->cuda_ctx; ctx->cu_stream = cuda_device_hwctx->stream; } #if CONFIG_D3D11VA else if (d3d11_device_hwctx) { ctx->d3d11_device = d3d11_device_hwctx->device; ID3D11Device_AddRef(ctx->d3d11_device); } #endif ret = nvenc_open_session(avctx); if (ret < 0) return ret; ret = nvenc_check_capabilities(avctx); if (ret < 0) { av_log(avctx, AV_LOG_FATAL, "Provided device doesn't support required NVENC features\n"); return ret; } } else { int i, nb_devices = 0; if (CHECK_CU(dl_fn->cuda_dl->cuInit(0)) < 0) return AVERROR_UNKNOWN; if (CHECK_CU(dl_fn->cuda_dl->cuDeviceGetCount(&nb_devices)) < 0) return AVERROR_UNKNOWN; if (!nb_devices) { av_log(avctx, AV_LOG_FATAL, "No CUDA capable devices found\n"); return AVERROR_EXTERNAL; } av_log(avctx, AV_LOG_VERBOSE, "%d CUDA capable devices found\n", nb_devices); dl_fn->nvenc_device_count = 0; for (i = 0; i < nb_devices; ++i) { if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES) return 0; } if (ctx->device == LIST_DEVICES) return AVERROR_EXIT; if (!dl_fn->nvenc_device_count) { av_log(avctx, AV_LOG_FATAL, "No capable devices found\n"); return AVERROR_EXTERNAL; } av_log(avctx, AV_LOG_FATAL, "Requested GPU %d, but only %d GPUs are available!\n", ctx->device, nb_devices); return AVERROR(EINVAL); } return 0; } typedef struct GUIDTuple { const GUID guid; int flags; } GUIDTuple; #define PRESET_ALIAS(alias, name, ...) \ [PRESET_ ## alias] = { NV_ENC_PRESET_ ## name ## _GUID, __VA_ARGS__ } #define PRESET(name, ...) PRESET_ALIAS(name, name, __VA_ARGS__) static void nvenc_map_preset(NvencContext *ctx) { GUIDTuple presets[] = { PRESET(DEFAULT), PRESET(HP), PRESET(HQ), PRESET(BD), PRESET_ALIAS(SLOW, HQ, NVENC_TWO_PASSES), PRESET_ALIAS(MEDIUM, HQ, NVENC_ONE_PASS), PRESET_ALIAS(FAST, HP, NVENC_ONE_PASS), PRESET(LOW_LATENCY_DEFAULT, NVENC_LOWLATENCY), PRESET(LOW_LATENCY_HP, NVENC_LOWLATENCY), PRESET(LOW_LATENCY_HQ, NVENC_LOWLATENCY), PRESET(LOSSLESS_DEFAULT, NVENC_LOSSLESS), PRESET(LOSSLESS_HP, NVENC_LOSSLESS), }; GUIDTuple *t = &presets[ctx->preset]; ctx->init_encode_params.presetGUID = t->guid; ctx->flags = t->flags; } #undef PRESET #undef PRESET_ALIAS static av_cold void set_constqp(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; if (ctx->init_qp_p >= 0) { rc->constQP.qpInterP = ctx->init_qp_p; if (ctx->init_qp_i >= 0 && ctx->init_qp_b >= 0) { rc->constQP.qpIntra = ctx->init_qp_i; rc->constQP.qpInterB = ctx->init_qp_b; } else if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) { rc->constQP.qpIntra = av_clip( rc->constQP.qpInterP * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, 51); rc->constQP.qpInterB = av_clip( rc->constQP.qpInterP * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, 51); } else { rc->constQP.qpIntra = rc->constQP.qpInterP; rc->constQP.qpInterB = rc->constQP.qpInterP; } } else if (ctx->cqp >= 0) { rc->constQP.qpInterP = rc->constQP.qpInterB = rc->constQP.qpIntra = ctx->cqp; if (avctx->b_quant_factor != 0.0) rc->constQP.qpInterB = av_clip(ctx->cqp * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, 51); if (avctx->i_quant_factor != 0.0) rc->constQP.qpIntra = av_clip(ctx->cqp * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, 51); } avctx->qmin = -1; avctx->qmax = -1; } static av_cold void set_vbr(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; int qp_inter_p; if (avctx->qmin >= 0 && avctx->qmax >= 0) { rc->enableMinQP = 1; rc->enableMaxQP = 1; rc->minQP.qpInterB = avctx->qmin; rc->minQP.qpInterP = avctx->qmin; rc->minQP.qpIntra = avctx->qmin; rc->maxQP.qpInterB = avctx->qmax; rc->maxQP.qpInterP = avctx->qmax; rc->maxQP.qpIntra = avctx->qmax; qp_inter_p = (avctx->qmax + 3 * avctx->qmin) / 4; // biased towards Qmin } else if (avctx->qmin >= 0) { rc->enableMinQP = 1; rc->minQP.qpInterB = avctx->qmin; rc->minQP.qpInterP = avctx->qmin; rc->minQP.qpIntra = avctx->qmin; qp_inter_p = avctx->qmin; } else { qp_inter_p = 26; // default to 26 } rc->enableInitialRCQP = 1; if (ctx->init_qp_p < 0) { rc->initialRCQP.qpInterP = qp_inter_p; } else { rc->initialRCQP.qpInterP = ctx->init_qp_p; } if (ctx->init_qp_i < 0) { if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) { rc->initialRCQP.qpIntra = av_clip( rc->initialRCQP.qpInterP * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, 51); } else { rc->initialRCQP.qpIntra = rc->initialRCQP.qpInterP; } } else { rc->initialRCQP.qpIntra = ctx->init_qp_i; } if (ctx->init_qp_b < 0) { if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) { rc->initialRCQP.qpInterB = av_clip( rc->initialRCQP.qpInterP * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, 51); } else { rc->initialRCQP.qpInterB = rc->initialRCQP.qpInterP; } } else { rc->initialRCQP.qpInterB = ctx->init_qp_b; } } static av_cold void set_lossless(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; rc->constQP.qpInterB = 0; rc->constQP.qpInterP = 0; rc->constQP.qpIntra = 0; avctx->qmin = -1; avctx->qmax = -1; } static void nvenc_override_rate_control(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams; switch (ctx->rc) { case NV_ENC_PARAMS_RC_CONSTQP: set_constqp(avctx); return; case NV_ENC_PARAMS_RC_VBR_MINQP: if (avctx->qmin < 0) { av_log(avctx, AV_LOG_WARNING, "The variable bitrate rate-control requires " "the 'qmin' option set.\n"); set_vbr(avctx); return; } /* fall through */ case NV_ENC_PARAMS_RC_VBR_HQ: case NV_ENC_PARAMS_RC_VBR: set_vbr(avctx); break; case NV_ENC_PARAMS_RC_CBR: case NV_ENC_PARAMS_RC_CBR_HQ: case NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ: break; } rc->rateControlMode = ctx->rc; } static av_cold int nvenc_recalc_surfaces(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; // default minimum of 4 surfaces // multiply by 2 for number of NVENCs on gpu (hardcode to 2) // another multiply by 2 to avoid blocking next PBB group int nb_surfaces = FFMAX(4, ctx->encode_config.frameIntervalP * 2 * 2); // lookahead enabled if (ctx->rc_lookahead > 0) { // +1 is to account for lkd_bound calculation later // +4 is to allow sufficient pipelining with lookahead nb_surfaces = FFMAX(1, FFMAX(nb_surfaces, ctx->rc_lookahead + ctx->encode_config.frameIntervalP + 1 + 4)); if (nb_surfaces > ctx->nb_surfaces && ctx->nb_surfaces > 0) { av_log(avctx, AV_LOG_WARNING, "Defined rc_lookahead requires more surfaces, " "increasing used surfaces %d -> %d\n", ctx->nb_surfaces, nb_surfaces); } ctx->nb_surfaces = FFMAX(nb_surfaces, ctx->nb_surfaces); } else { if (ctx->encode_config.frameIntervalP > 1 && ctx->nb_surfaces < nb_surfaces && ctx->nb_surfaces > 0) { av_log(avctx, AV_LOG_WARNING, "Defined b-frame requires more surfaces, " "increasing used surfaces %d -> %d\n", ctx->nb_surfaces, nb_surfaces); ctx->nb_surfaces = FFMAX(ctx->nb_surfaces, nb_surfaces); } else if (ctx->nb_surfaces <= 0) ctx->nb_surfaces = nb_surfaces; // otherwise use user specified value } ctx->nb_surfaces = FFMAX(1, FFMIN(MAX_REGISTERED_FRAMES, ctx->nb_surfaces)); ctx->async_depth = FFMIN(ctx->async_depth, ctx->nb_surfaces - 1); return 0; } static av_cold void nvenc_setup_rate_control(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; if (avctx->global_quality > 0) av_log(avctx, AV_LOG_WARNING, "Using global_quality with nvenc is deprecated. Use qp instead.\n"); if (ctx->cqp < 0 && avctx->global_quality > 0) ctx->cqp = avctx->global_quality; if (avctx->bit_rate > 0) { ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate; } else if (ctx->encode_config.rcParams.averageBitRate > 0) { ctx->encode_config.rcParams.maxBitRate = ctx->encode_config.rcParams.averageBitRate; } if (avctx->rc_max_rate > 0) ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate; if (ctx->rc < 0) { if (ctx->flags & NVENC_ONE_PASS) ctx->twopass = 0; if (ctx->flags & NVENC_TWO_PASSES) ctx->twopass = 1; if (ctx->twopass < 0) ctx->twopass = (ctx->flags & NVENC_LOWLATENCY) != 0; if (ctx->cbr) { if (ctx->twopass) { ctx->rc = NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ; } else { ctx->rc = NV_ENC_PARAMS_RC_CBR; } } else if (ctx->cqp >= 0) { ctx->rc = NV_ENC_PARAMS_RC_CONSTQP; } else if (ctx->twopass) { ctx->rc = NV_ENC_PARAMS_RC_VBR_HQ; } else if (avctx->qmin >= 0 && avctx->qmax >= 0) { ctx->rc = NV_ENC_PARAMS_RC_VBR_MINQP; } } if (ctx->rc >= 0 && ctx->rc & RC_MODE_DEPRECATED) { av_log(avctx, AV_LOG_WARNING, "Specified rc mode is deprecated.\n"); av_log(avctx, AV_LOG_WARNING, "\tll_2pass_quality -> cbr_ld_hq\n"); av_log(avctx, AV_LOG_WARNING, "\tll_2pass_size -> cbr_hq\n"); av_log(avctx, AV_LOG_WARNING, "\tvbr_2pass -> vbr_hq\n"); av_log(avctx, AV_LOG_WARNING, "\tvbr_minqp -> (no replacement)\n"); ctx->rc &= ~RC_MODE_DEPRECATED; } if (ctx->flags & NVENC_LOSSLESS) { set_lossless(avctx); } else if (ctx->rc >= 0) { nvenc_override_rate_control(avctx); } else { ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR; set_vbr(avctx); } if (avctx->rc_buffer_size > 0) { ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size; } else if (ctx->encode_config.rcParams.averageBitRate > 0) { avctx->rc_buffer_size = ctx->encode_config.rcParams.vbvBufferSize = 2 * ctx->encode_config.rcParams.averageBitRate; } if (ctx->aq) { ctx->encode_config.rcParams.enableAQ = 1; ctx->encode_config.rcParams.aqStrength = ctx->aq_strength; av_log(avctx, AV_LOG_VERBOSE, "AQ enabled.\n"); } if (ctx->temporal_aq) { ctx->encode_config.rcParams.enableTemporalAQ = 1; av_log(avctx, AV_LOG_VERBOSE, "Temporal AQ enabled.\n"); } if (ctx->rc_lookahead > 0) { int lkd_bound = FFMIN(ctx->nb_surfaces, ctx->async_depth) - ctx->encode_config.frameIntervalP - 4; if (lkd_bound < 0) { av_log(avctx, AV_LOG_WARNING, "Lookahead not enabled. Increase buffer delay (-delay).\n"); } else { ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = av_clip(ctx->rc_lookahead, 0, lkd_bound); ctx->encode_config.rcParams.disableIadapt = ctx->no_scenecut; ctx->encode_config.rcParams.disableBadapt = !ctx->b_adapt; av_log(avctx, AV_LOG_VERBOSE, "Lookahead enabled: depth %d, scenecut %s, B-adapt %s.\n", ctx->encode_config.rcParams.lookaheadDepth, ctx->encode_config.rcParams.disableIadapt ? "disabled" : "enabled", ctx->encode_config.rcParams.disableBadapt ? "disabled" : "enabled"); } } if (ctx->strict_gop) { ctx->encode_config.rcParams.strictGOPTarget = 1; av_log(avctx, AV_LOG_VERBOSE, "Strict GOP target enabled.\n"); } if (ctx->nonref_p) ctx->encode_config.rcParams.enableNonRefP = 1; if (ctx->zerolatency) ctx->encode_config.rcParams.zeroReorderDelay = 1; if (ctx->quality) { //convert from float to fixed point 8.8 int tmp_quality = (int)(ctx->quality * 256.0f); ctx->encode_config.rcParams.targetQuality = (uint8_t)(tmp_quality >> 8); ctx->encode_config.rcParams.targetQualityLSB = (uint8_t)(tmp_quality & 0xff); av_log(avctx, AV_LOG_VERBOSE, "CQ(%d) mode enabled.\n", tmp_quality); //CQ mode shall discard max & avg bitrate; avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate = 0; avctx->rc_max_rate = ctx->encode_config.rcParams.maxBitRate = 0; } } static av_cold int nvenc_setup_h264_config(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->encode_config; NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config; NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P); vui->colourDescriptionPresentFlag = (avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2); vui->videoSignalTypePresentFlag = (vui->colourDescriptionPresentFlag || vui->videoFormat != 5 || vui->videoFullRangeFlag != 0); h264->sliceMode = 3; h264->sliceModeData = 1; h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; h264->outputAUD = ctx->aud; if (ctx->dpb_size >= 0) { /* 0 means "let the hardware decide" */ h264->maxNumRefFrames = ctx->dpb_size; } if (avctx->gop_size >= 0) { h264->idrPeriod = cc->gopLength; } if (IS_CBR(cc->rcParams.rateControlMode)) { h264->outputBufferingPeriodSEI = 1; } h264->outputPictureTimingSEI = 1; if (cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ || cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_CBR_HQ || cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_VBR_HQ) { h264->adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE; h264->fmoMode = NV_ENC_H264_FMO_DISABLE; } if (ctx->flags & NVENC_LOSSLESS) { h264->qpPrimeYZeroTransformBypassFlag = 1; } else { switch(ctx->profile) { case NV_ENC_H264_PROFILE_BASELINE: cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID; avctx->profile = FF_PROFILE_H264_BASELINE; break; case NV_ENC_H264_PROFILE_MAIN: cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID; avctx->profile = FF_PROFILE_H264_MAIN; break; case NV_ENC_H264_PROFILE_HIGH: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID; avctx->profile = FF_PROFILE_H264_HIGH; break; case NV_ENC_H264_PROFILE_HIGH_444P: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID; avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE; break; } } // force setting profile as high444p if input is AV_PIX_FMT_YUV444P if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P) { cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID; avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE; } h264->chromaFormatIDC = avctx->profile == FF_PROFILE_H264_HIGH_444_PREDICTIVE ? 3 : 1; h264->level = ctx->level; if (ctx->coder >= 0) h264->entropyCodingMode = ctx->coder; #ifdef NVENC_HAVE_BFRAME_REF_MODE h264->useBFramesAsRef = ctx->b_ref_mode; #endif #ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES h264->numRefL0 = avctx->refs; h264->numRefL1 = avctx->refs; #endif return 0; } static av_cold int nvenc_setup_hevc_config(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->encode_config; NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig; NV_ENC_CONFIG_HEVC_VUI_PARAMETERS *vui = &hevc->hevcVUIParameters; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P); vui->colourDescriptionPresentFlag = (avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2); vui->videoSignalTypePresentFlag = (vui->colourDescriptionPresentFlag || vui->videoFormat != 5 || vui->videoFullRangeFlag != 0); hevc->sliceMode = 3; hevc->sliceModeData = 1; hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; hevc->outputAUD = ctx->aud; if (ctx->dpb_size >= 0) { /* 0 means "let the hardware decide" */ hevc->maxNumRefFramesInDPB = ctx->dpb_size; } if (avctx->gop_size >= 0) { hevc->idrPeriod = cc->gopLength; } if (IS_CBR(cc->rcParams.rateControlMode)) { hevc->outputBufferingPeriodSEI = 1; } hevc->outputPictureTimingSEI = 1; switch (ctx->profile) { case NV_ENC_HEVC_PROFILE_MAIN: cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN; break; case NV_ENC_HEVC_PROFILE_MAIN_10: cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN_10; break; case NV_ENC_HEVC_PROFILE_REXT: cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID; avctx->profile = FF_PROFILE_HEVC_REXT; break; } // force setting profile as main10 if input is 10 bit if (IS_10BIT(ctx->data_pix_fmt)) { cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN_10; } // force setting profile as rext if input is yuv444 if (IS_YUV444(ctx->data_pix_fmt)) { cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID; avctx->profile = FF_PROFILE_HEVC_REXT; } hevc->chromaFormatIDC = IS_YUV444(ctx->data_pix_fmt) ? 3 : 1; hevc->pixelBitDepthMinus8 = IS_10BIT(ctx->data_pix_fmt) ? 2 : 0; hevc->level = ctx->level; hevc->tier = ctx->tier; #ifdef NVENC_HAVE_HEVC_BFRAME_REF_MODE hevc->useBFramesAsRef = ctx->b_ref_mode; #endif #ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES hevc->numRefL0 = avctx->refs; hevc->numRefL1 = avctx->refs; #endif return 0; } static av_cold int nvenc_setup_codec_config(AVCodecContext *avctx) { switch (avctx->codec->id) { case AV_CODEC_ID_H264: return nvenc_setup_h264_config(avctx); case AV_CODEC_ID_HEVC: return nvenc_setup_hevc_config(avctx); /* Earlier switch/case will return if unknown codec is passed. */ } return 0; } static void compute_dar(AVCodecContext *avctx, int *dw, int *dh) { int sw, sh; sw = avctx->width; sh = avctx->height; if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0) { sw *= avctx->sample_aspect_ratio.num; sh *= avctx->sample_aspect_ratio.den; } av_reduce(dw, dh, sw, sh, 1024 * 1024); } static av_cold int nvenc_setup_encoder(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NV_ENC_PRESET_CONFIG preset_config = { 0 }; NVENCSTATUS nv_status = NV_ENC_SUCCESS; AVCPBProperties *cpb_props; int res = 0; int dw, dh; ctx->encode_config.version = NV_ENC_CONFIG_VER; ctx->init_encode_params.version = NV_ENC_INITIALIZE_PARAMS_VER; ctx->init_encode_params.encodeHeight = avctx->height; ctx->init_encode_params.encodeWidth = avctx->width; ctx->init_encode_params.encodeConfig = &ctx->encode_config; nvenc_map_preset(ctx); preset_config.version = NV_ENC_PRESET_CONFIG_VER; preset_config.presetCfg.version = NV_ENC_CONFIG_VER; nv_status = p_nvenc->nvEncGetEncodePresetConfig(ctx->nvencoder, ctx->init_encode_params.encodeGUID, ctx->init_encode_params.presetGUID, &preset_config); if (nv_status != NV_ENC_SUCCESS) return nvenc_print_error(avctx, nv_status, "Cannot get the preset configuration"); memcpy(&ctx->encode_config, &preset_config.presetCfg, sizeof(ctx->encode_config)); ctx->encode_config.version = NV_ENC_CONFIG_VER; compute_dar(avctx, &dw, &dh); ctx->init_encode_params.darHeight = dh; ctx->init_encode_params.darWidth = dw; if (avctx->framerate.num > 0 && avctx->framerate.den > 0) { ctx->init_encode_params.frameRateNum = avctx->framerate.num; ctx->init_encode_params.frameRateDen = avctx->framerate.den; } else { ctx->init_encode_params.frameRateNum = avctx->time_base.den; ctx->init_encode_params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame; } ctx->init_encode_params.enableEncodeAsync = 0; ctx->init_encode_params.enablePTD = 1; if (ctx->weighted_pred == 1) ctx->init_encode_params.enableWeightedPrediction = 1; if (ctx->bluray_compat) { ctx->aud = 1; ctx->dpb_size = FFMIN(FFMAX(avctx->refs, 0), 6); avctx->max_b_frames = FFMIN(avctx->max_b_frames, 3); switch (avctx->codec->id) { case AV_CODEC_ID_H264: /* maximum level depends on used resolution */ break; case AV_CODEC_ID_HEVC: ctx->level = NV_ENC_LEVEL_HEVC_51; ctx->tier = NV_ENC_TIER_HEVC_HIGH; break; } } if (avctx->gop_size > 0) { if (avctx->max_b_frames >= 0) { /* 0 is intra-only, 1 is I/P only, 2 is one B-Frame, 3 two B-frames, and so on. */ ctx->encode_config.frameIntervalP = avctx->max_b_frames + 1; } ctx->encode_config.gopLength = avctx->gop_size; } else if (avctx->gop_size == 0) { ctx->encode_config.frameIntervalP = 0; ctx->encode_config.gopLength = 1; } nvenc_recalc_surfaces(avctx); nvenc_setup_rate_control(avctx); if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD; } else { ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME; } res = nvenc_setup_codec_config(avctx); if (res) return res; res = nvenc_push_context(avctx); if (res < 0) return res; nv_status = p_nvenc->nvEncInitializeEncoder(ctx->nvencoder, &ctx->init_encode_params); if (nv_status != NV_ENC_SUCCESS) { nvenc_pop_context(avctx); return nvenc_print_error(avctx, nv_status, "InitializeEncoder failed"); } #ifdef NVENC_HAVE_CUSTREAM_PTR if (ctx->cu_context) { nv_status = p_nvenc->nvEncSetIOCudaStreams(ctx->nvencoder, &ctx->cu_stream, &ctx->cu_stream); if (nv_status != NV_ENC_SUCCESS) { nvenc_pop_context(avctx); return nvenc_print_error(avctx, nv_status, "SetIOCudaStreams failed"); } } #endif res = nvenc_pop_context(avctx); if (res < 0) return res; if (ctx->encode_config.frameIntervalP > 1) avctx->has_b_frames = 2; if (ctx->encode_config.rcParams.averageBitRate > 0) avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate; cpb_props = ff_add_cpb_side_data(avctx); if (!cpb_props) return AVERROR(ENOMEM); cpb_props->max_bitrate = ctx->encode_config.rcParams.maxBitRate; cpb_props->avg_bitrate = avctx->bit_rate; cpb_props->buffer_size = ctx->encode_config.rcParams.vbvBufferSize; return 0; } static NV_ENC_BUFFER_FORMAT nvenc_map_buffer_format(enum AVPixelFormat pix_fmt) { switch (pix_fmt) { case AV_PIX_FMT_YUV420P: return NV_ENC_BUFFER_FORMAT_YV12_PL; case AV_PIX_FMT_NV12: return NV_ENC_BUFFER_FORMAT_NV12_PL; case AV_PIX_FMT_P010: case AV_PIX_FMT_P016: return NV_ENC_BUFFER_FORMAT_YUV420_10BIT; case AV_PIX_FMT_YUV444P: return NV_ENC_BUFFER_FORMAT_YUV444_PL; case AV_PIX_FMT_YUV444P16: return NV_ENC_BUFFER_FORMAT_YUV444_10BIT; case AV_PIX_FMT_0RGB32: return NV_ENC_BUFFER_FORMAT_ARGB; case AV_PIX_FMT_0BGR32: return NV_ENC_BUFFER_FORMAT_ABGR; default: return NV_ENC_BUFFER_FORMAT_UNDEFINED; } } static av_cold int nvenc_alloc_surface(AVCodecContext *avctx, int idx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NvencSurface* tmp_surface = &ctx->surfaces[idx]; NVENCSTATUS nv_status; NV_ENC_CREATE_BITSTREAM_BUFFER allocOut = { 0 }; allocOut.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER; if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) { ctx->surfaces[idx].in_ref = av_frame_alloc(); if (!ctx->surfaces[idx].in_ref) return AVERROR(ENOMEM); } else { NV_ENC_CREATE_INPUT_BUFFER allocSurf = { 0 }; ctx->surfaces[idx].format = nvenc_map_buffer_format(ctx->data_pix_fmt); if (ctx->surfaces[idx].format == NV_ENC_BUFFER_FORMAT_UNDEFINED) { av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n", av_get_pix_fmt_name(ctx->data_pix_fmt)); return AVERROR(EINVAL); } allocSurf.version = NV_ENC_CREATE_INPUT_BUFFER_VER; allocSurf.width = avctx->width; allocSurf.height = avctx->height; allocSurf.bufferFmt = ctx->surfaces[idx].format; nv_status = p_nvenc->nvEncCreateInputBuffer(ctx->nvencoder, &allocSurf); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "CreateInputBuffer failed"); } ctx->surfaces[idx].input_surface = allocSurf.inputBuffer; ctx->surfaces[idx].width = allocSurf.width; ctx->surfaces[idx].height = allocSurf.height; } nv_status = p_nvenc->nvEncCreateBitstreamBuffer(ctx->nvencoder, &allocOut); if (nv_status != NV_ENC_SUCCESS) { int err = nvenc_print_error(avctx, nv_status, "CreateBitstreamBuffer failed"); if (avctx->pix_fmt != AV_PIX_FMT_CUDA && avctx->pix_fmt != AV_PIX_FMT_D3D11) p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[idx].input_surface); av_frame_free(&ctx->surfaces[idx].in_ref); return err; } ctx->surfaces[idx].output_surface = allocOut.bitstreamBuffer; ctx->surfaces[idx].size = allocOut.size; av_fifo_generic_write(ctx->unused_surface_queue, &tmp_surface, sizeof(tmp_surface), NULL); return 0; } static av_cold int nvenc_setup_surfaces(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int i, res = 0, res2; ctx->surfaces = av_mallocz_array(ctx->nb_surfaces, sizeof(*ctx->surfaces)); if (!ctx->surfaces) return AVERROR(ENOMEM); ctx->timestamp_list = av_fifo_alloc(ctx->nb_surfaces * sizeof(int64_t)); if (!ctx->timestamp_list) return AVERROR(ENOMEM); ctx->unused_surface_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*)); if (!ctx->unused_surface_queue) return AVERROR(ENOMEM); ctx->output_surface_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*)); if (!ctx->output_surface_queue) return AVERROR(ENOMEM); ctx->output_surface_ready_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*)); if (!ctx->output_surface_ready_queue) return AVERROR(ENOMEM); res = nvenc_push_context(avctx); if (res < 0) return res; for (i = 0; i < ctx->nb_surfaces; i++) { if ((res = nvenc_alloc_surface(avctx, i)) < 0) goto fail; } fail: res2 = nvenc_pop_context(avctx); if (res2 < 0) return res2; return res; } static av_cold int nvenc_setup_extradata(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NVENCSTATUS nv_status; uint32_t outSize = 0; char tmpHeader[256]; NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 }; payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER; payload.spsppsBuffer = tmpHeader; payload.inBufferSize = sizeof(tmpHeader); payload.outSPSPPSPayloadSize = &outSize; nv_status = p_nvenc->nvEncGetSequenceParams(ctx->nvencoder, &payload); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "GetSequenceParams failed"); } avctx->extradata_size = outSize; avctx->extradata = av_mallocz(outSize + AV_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) { return AVERROR(ENOMEM); } memcpy(avctx->extradata, tmpHeader, outSize); return 0; } av_cold int ff_nvenc_encode_close(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; int i, res; /* the encoder has to be flushed before it can be closed */ if (ctx->nvencoder) { NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER, .encodePicFlags = NV_ENC_PIC_FLAG_EOS }; res = nvenc_push_context(avctx); if (res < 0) return res; p_nvenc->nvEncEncodePicture(ctx->nvencoder, ¶ms); } av_fifo_freep(&ctx->timestamp_list); av_fifo_freep(&ctx->output_surface_ready_queue); av_fifo_freep(&ctx->output_surface_queue); av_fifo_freep(&ctx->unused_surface_queue); if (ctx->surfaces && (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11)) { for (i = 0; i < ctx->nb_registered_frames; i++) { if (ctx->registered_frames[i].mapped) p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->registered_frames[i].in_map.mappedResource); if (ctx->registered_frames[i].regptr) p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr); } ctx->nb_registered_frames = 0; } if (ctx->surfaces) { for (i = 0; i < ctx->nb_surfaces; ++i) { if (avctx->pix_fmt != AV_PIX_FMT_CUDA && avctx->pix_fmt != AV_PIX_FMT_D3D11) p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[i].input_surface); av_frame_free(&ctx->surfaces[i].in_ref); p_nvenc->nvEncDestroyBitstreamBuffer(ctx->nvencoder, ctx->surfaces[i].output_surface); } } av_freep(&ctx->surfaces); ctx->nb_surfaces = 0; if (ctx->nvencoder) { p_nvenc->nvEncDestroyEncoder(ctx->nvencoder); res = nvenc_pop_context(avctx); if (res < 0) return res; } ctx->nvencoder = NULL; if (ctx->cu_context_internal) CHECK_CU(dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal)); ctx->cu_context = ctx->cu_context_internal = NULL; #if CONFIG_D3D11VA if (ctx->d3d11_device) { ID3D11Device_Release(ctx->d3d11_device); ctx->d3d11_device = NULL; } #endif nvenc_free_functions(&dl_fn->nvenc_dl); cuda_free_functions(&dl_fn->cuda_dl); dl_fn->nvenc_device_count = 0; av_log(avctx, AV_LOG_VERBOSE, "Nvenc unloaded\n"); return 0; } av_cold int ff_nvenc_encode_init(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; int ret; if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) { AVHWFramesContext *frames_ctx; if (!avctx->hw_frames_ctx) { av_log(avctx, AV_LOG_ERROR, "hw_frames_ctx must be set when using GPU frames as input\n"); return AVERROR(EINVAL); } frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; if (frames_ctx->format != avctx->pix_fmt) { av_log(avctx, AV_LOG_ERROR, "hw_frames_ctx must match the GPU frame type\n"); return AVERROR(EINVAL); } ctx->data_pix_fmt = frames_ctx->sw_format; } else { ctx->data_pix_fmt = avctx->pix_fmt; } if ((ret = nvenc_load_libraries(avctx)) < 0) return ret; if ((ret = nvenc_setup_device(avctx)) < 0) return ret; if ((ret = nvenc_setup_encoder(avctx)) < 0) return ret; if ((ret = nvenc_setup_surfaces(avctx)) < 0) return ret; if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { if ((ret = nvenc_setup_extradata(avctx)) < 0) return ret; } return 0; } static NvencSurface *get_free_frame(NvencContext *ctx) { NvencSurface *tmp_surf; if (!(av_fifo_size(ctx->unused_surface_queue) > 0)) // queue empty return NULL; av_fifo_generic_read(ctx->unused_surface_queue, &tmp_surf, sizeof(tmp_surf), NULL); return tmp_surf; } static int nvenc_copy_frame(AVCodecContext *avctx, NvencSurface *nv_surface, NV_ENC_LOCK_INPUT_BUFFER *lock_buffer_params, const AVFrame *frame) { int dst_linesize[4] = { lock_buffer_params->pitch, lock_buffer_params->pitch, lock_buffer_params->pitch, lock_buffer_params->pitch }; uint8_t *dst_data[4]; int ret; if (frame->format == AV_PIX_FMT_YUV420P) dst_linesize[1] = dst_linesize[2] >>= 1; ret = av_image_fill_pointers(dst_data, frame->format, nv_surface->height, lock_buffer_params->bufferDataPtr, dst_linesize); if (ret < 0) return ret; if (frame->format == AV_PIX_FMT_YUV420P) FFSWAP(uint8_t*, dst_data[1], dst_data[2]); av_image_copy(dst_data, dst_linesize, (const uint8_t**)frame->data, frame->linesize, frame->format, avctx->width, avctx->height); return 0; } static int nvenc_find_free_reg_resource(AVCodecContext *avctx) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NVENCSTATUS nv_status; int i, first_round; if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) { for (first_round = 1; first_round >= 0; first_round--) { for (i = 0; i < ctx->nb_registered_frames; i++) { if (!ctx->registered_frames[i].mapped) { if (ctx->registered_frames[i].regptr) { if (first_round) continue; nv_status = p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr); if (nv_status != NV_ENC_SUCCESS) return nvenc_print_error(avctx, nv_status, "Failed unregistering unused input resource"); ctx->registered_frames[i].ptr = NULL; ctx->registered_frames[i].regptr = NULL; } return i; } } } } else { return ctx->nb_registered_frames++; } av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n"); return AVERROR(ENOMEM); } static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; AVHWFramesContext *frames_ctx = (AVHWFramesContext*)frame->hw_frames_ctx->data; NV_ENC_REGISTER_RESOURCE reg; int i, idx, ret; for (i = 0; i < ctx->nb_registered_frames; i++) { if (avctx->pix_fmt == AV_PIX_FMT_CUDA && ctx->registered_frames[i].ptr == frame->data[0]) return i; else if (avctx->pix_fmt == AV_PIX_FMT_D3D11 && ctx->registered_frames[i].ptr == frame->data[0] && ctx->registered_frames[i].ptr_index == (intptr_t)frame->data[1]) return i; } idx = nvenc_find_free_reg_resource(avctx); if (idx < 0) return idx; reg.version = NV_ENC_REGISTER_RESOURCE_VER; reg.width = frames_ctx->width; reg.height = frames_ctx->height; reg.pitch = frame->linesize[0]; reg.resourceToRegister = frame->data[0]; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR; } else if (avctx->pix_fmt == AV_PIX_FMT_D3D11) { reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_DIRECTX; reg.subResourceIndex = (intptr_t)frame->data[1]; } reg.bufferFormat = nvenc_map_buffer_format(frames_ctx->sw_format); if (reg.bufferFormat == NV_ENC_BUFFER_FORMAT_UNDEFINED) { av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n", av_get_pix_fmt_name(frames_ctx->sw_format)); return AVERROR(EINVAL); } ret = p_nvenc->nvEncRegisterResource(ctx->nvencoder, ®); if (ret != NV_ENC_SUCCESS) { nvenc_print_error(avctx, ret, "Error registering an input resource"); return AVERROR_UNKNOWN; } ctx->registered_frames[idx].ptr = frame->data[0]; ctx->registered_frames[idx].ptr_index = reg.subResourceIndex; ctx->registered_frames[idx].regptr = reg.registeredResource; return idx; } static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame, NvencSurface *nvenc_frame) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; int res; NVENCSTATUS nv_status; if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) { int reg_idx = nvenc_register_frame(avctx, frame); if (reg_idx < 0) { av_log(avctx, AV_LOG_ERROR, "Could not register an input HW frame\n"); return reg_idx; } res = av_frame_ref(nvenc_frame->in_ref, frame); if (res < 0) return res; if (!ctx->registered_frames[reg_idx].mapped) { ctx->registered_frames[reg_idx].in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER; ctx->registered_frames[reg_idx].in_map.registeredResource = ctx->registered_frames[reg_idx].regptr; nv_status = p_nvenc->nvEncMapInputResource(ctx->nvencoder, &ctx->registered_frames[reg_idx].in_map); if (nv_status != NV_ENC_SUCCESS) { av_frame_unref(nvenc_frame->in_ref); return nvenc_print_error(avctx, nv_status, "Error mapping an input resource"); } } ctx->registered_frames[reg_idx].mapped += 1; nvenc_frame->reg_idx = reg_idx; nvenc_frame->input_surface = ctx->registered_frames[reg_idx].in_map.mappedResource; nvenc_frame->format = ctx->registered_frames[reg_idx].in_map.mappedBufferFmt; nvenc_frame->pitch = frame->linesize[0]; return 0; } else { NV_ENC_LOCK_INPUT_BUFFER lockBufferParams = { 0 }; lockBufferParams.version = NV_ENC_LOCK_INPUT_BUFFER_VER; lockBufferParams.inputBuffer = nvenc_frame->input_surface; nv_status = p_nvenc->nvEncLockInputBuffer(ctx->nvencoder, &lockBufferParams); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "Failed locking nvenc input buffer"); } nvenc_frame->pitch = lockBufferParams.pitch; res = nvenc_copy_frame(avctx, nvenc_frame, &lockBufferParams, frame); nv_status = p_nvenc->nvEncUnlockInputBuffer(ctx->nvencoder, nvenc_frame->input_surface); if (nv_status != NV_ENC_SUCCESS) { return nvenc_print_error(avctx, nv_status, "Failed unlocking input buffer!"); } return res; } } static void nvenc_codec_specific_pic_params(AVCodecContext *avctx, NV_ENC_PIC_PARAMS *params, NV_ENC_SEI_PAYLOAD *sei_data) { NvencContext *ctx = avctx->priv_data; switch (avctx->codec->id) { case AV_CODEC_ID_H264: params->codecPicParams.h264PicParams.sliceMode = ctx->encode_config.encodeCodecConfig.h264Config.sliceMode; params->codecPicParams.h264PicParams.sliceModeData = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData; if (sei_data) { params->codecPicParams.h264PicParams.seiPayloadArray = sei_data; params->codecPicParams.h264PicParams.seiPayloadArrayCnt = 1; } break; case AV_CODEC_ID_HEVC: params->codecPicParams.hevcPicParams.sliceMode = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceMode; params->codecPicParams.hevcPicParams.sliceModeData = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData; if (sei_data) { params->codecPicParams.hevcPicParams.seiPayloadArray = sei_data; params->codecPicParams.hevcPicParams.seiPayloadArrayCnt = 1; } break; } } static inline void timestamp_queue_enqueue(AVFifoBuffer* queue, int64_t timestamp) { av_fifo_generic_write(queue, ×tamp, sizeof(timestamp), NULL); } static inline int64_t timestamp_queue_dequeue(AVFifoBuffer* queue) { int64_t timestamp = AV_NOPTS_VALUE; if (av_fifo_size(queue) > 0) av_fifo_generic_read(queue, ×tamp, sizeof(timestamp), NULL); return timestamp; } static int nvenc_set_timestamp(AVCodecContext *avctx, NV_ENC_LOCK_BITSTREAM *params, AVPacket *pkt) { NvencContext *ctx = avctx->priv_data; pkt->pts = params->outputTimeStamp; pkt->dts = timestamp_queue_dequeue(ctx->timestamp_list); pkt->dts -= FFMAX(avctx->max_b_frames, 0) * FFMIN(avctx->ticks_per_frame, 1); return 0; } static int process_output_surface(AVCodecContext *avctx, AVPacket *pkt, NvencSurface *tmpoutsurf) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; uint32_t slice_mode_data; uint32_t *slice_offsets = NULL; NV_ENC_LOCK_BITSTREAM lock_params = { 0 }; NVENCSTATUS nv_status; int res = 0; enum AVPictureType pict_type; switch (avctx->codec->id) { case AV_CODEC_ID_H264: slice_mode_data = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData; break; case AV_CODEC_ID_H265: slice_mode_data = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown codec name\n"); res = AVERROR(EINVAL); goto error; } slice_offsets = av_mallocz(slice_mode_data * sizeof(*slice_offsets)); if (!slice_offsets) { res = AVERROR(ENOMEM); goto error; } lock_params.version = NV_ENC_LOCK_BITSTREAM_VER; lock_params.doNotWait = 0; lock_params.outputBitstream = tmpoutsurf->output_surface; lock_params.sliceOffsets = slice_offsets; nv_status = p_nvenc->nvEncLockBitstream(ctx->nvencoder, &lock_params); if (nv_status != NV_ENC_SUCCESS) { res = nvenc_print_error(avctx, nv_status, "Failed locking bitstream buffer"); goto error; } res = pkt->data ? ff_alloc_packet2(avctx, pkt, lock_params.bitstreamSizeInBytes, lock_params.bitstreamSizeInBytes) : av_new_packet(pkt, lock_params.bitstreamSizeInBytes); if (res < 0) { p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); goto error; } memcpy(pkt->data, lock_params.bitstreamBufferPtr, lock_params.bitstreamSizeInBytes); nv_status = p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); if (nv_status != NV_ENC_SUCCESS) { res = nvenc_print_error(avctx, nv_status, "Failed unlocking bitstream buffer, expect the gates of mordor to open"); goto error; } if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) { ctx->registered_frames[tmpoutsurf->reg_idx].mapped -= 1; if (ctx->registered_frames[tmpoutsurf->reg_idx].mapped == 0) { nv_status = p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->registered_frames[tmpoutsurf->reg_idx].in_map.mappedResource); if (nv_status != NV_ENC_SUCCESS) { res = nvenc_print_error(avctx, nv_status, "Failed unmapping input resource"); goto error; } } else if (ctx->registered_frames[tmpoutsurf->reg_idx].mapped < 0) { res = AVERROR_BUG; goto error; } av_frame_unref(tmpoutsurf->in_ref); tmpoutsurf->input_surface = NULL; } switch (lock_params.pictureType) { case NV_ENC_PIC_TYPE_IDR: pkt->flags |= AV_PKT_FLAG_KEY; case NV_ENC_PIC_TYPE_I: pict_type = AV_PICTURE_TYPE_I; break; case NV_ENC_PIC_TYPE_P: pict_type = AV_PICTURE_TYPE_P; break; case NV_ENC_PIC_TYPE_B: pict_type = AV_PICTURE_TYPE_B; break; case NV_ENC_PIC_TYPE_BI: pict_type = AV_PICTURE_TYPE_BI; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown picture type encountered, expect the output to be broken.\n"); av_log(avctx, AV_LOG_ERROR, "Please report this error and include as much information on how to reproduce it as possible.\n"); res = AVERROR_EXTERNAL; goto error; } #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->coded_frame->pict_type = pict_type; FF_ENABLE_DEPRECATION_WARNINGS #endif ff_side_data_set_encoder_stats(pkt, (lock_params.frameAvgQP - 1) * FF_QP2LAMBDA, NULL, 0, pict_type); res = nvenc_set_timestamp(avctx, &lock_params, pkt); if (res < 0) goto error2; av_free(slice_offsets); return 0; error: timestamp_queue_dequeue(ctx->timestamp_list); error2: av_free(slice_offsets); return res; } static int output_ready(AVCodecContext *avctx, int flush) { NvencContext *ctx = avctx->priv_data; int nb_ready, nb_pending; nb_ready = av_fifo_size(ctx->output_surface_ready_queue) / sizeof(NvencSurface*); nb_pending = av_fifo_size(ctx->output_surface_queue) / sizeof(NvencSurface*); if (flush) return nb_ready > 0; return (nb_ready > 0) && (nb_ready + nb_pending >= ctx->async_depth); } static void reconfig_encoder(AVCodecContext *avctx, const AVFrame *frame) { NvencContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs; NVENCSTATUS ret; NV_ENC_RECONFIGURE_PARAMS params = { 0 }; int needs_reconfig = 0; int needs_encode_config = 0; int reconfig_bitrate = 0, reconfig_dar = 0; int dw, dh; params.version = NV_ENC_RECONFIGURE_PARAMS_VER; params.reInitEncodeParams = ctx->init_encode_params; compute_dar(avctx, &dw, &dh); if (dw != ctx->init_encode_params.darWidth || dh != ctx->init_encode_params.darHeight) { av_log(avctx, AV_LOG_VERBOSE, "aspect ratio change (DAR): %d:%d -> %d:%d\n", ctx->init_encode_params.darWidth, ctx->init_encode_params.darHeight, dw, dh); params.reInitEncodeParams.darHeight = dh; params.reInitEncodeParams.darWidth = dw; needs_reconfig = 1; reconfig_dar = 1; } if (ctx->rc != NV_ENC_PARAMS_RC_CONSTQP && ctx->support_dyn_bitrate) { if (avctx->bit_rate > 0 && params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate != avctx->bit_rate) { av_log(avctx, AV_LOG_VERBOSE, "avg bitrate change: %d -> %d\n", params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate, (uint32_t)avctx->bit_rate); params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate = avctx->bit_rate; reconfig_bitrate = 1; } if (avctx->rc_max_rate > 0 && ctx->encode_config.rcParams.maxBitRate != avctx->rc_max_rate) { av_log(avctx, AV_LOG_VERBOSE, "max bitrate change: %d -> %d\n", params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate, (uint32_t)avctx->rc_max_rate); params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate = avctx->rc_max_rate; reconfig_bitrate = 1; } if (avctx->rc_buffer_size > 0 && ctx->encode_config.rcParams.vbvBufferSize != avctx->rc_buffer_size) { av_log(avctx, AV_LOG_VERBOSE, "vbv buffer size change: %d -> %d\n", params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize, avctx->rc_buffer_size); params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize = avctx->rc_buffer_size; reconfig_bitrate = 1; } if (reconfig_bitrate) { params.resetEncoder = 1; params.forceIDR = 1; needs_encode_config = 1; needs_reconfig = 1; } } if (!needs_encode_config) params.reInitEncodeParams.encodeConfig = NULL; if (needs_reconfig) { ret = p_nvenc->nvEncReconfigureEncoder(ctx->nvencoder, ¶ms); if (ret != NV_ENC_SUCCESS) { nvenc_print_error(avctx, ret, "failed to reconfigure nvenc"); } else { if (reconfig_dar) { ctx->init_encode_params.darHeight = dh; ctx->init_encode_params.darWidth = dw; } if (reconfig_bitrate) { ctx->encode_config.rcParams.averageBitRate = params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate; ctx->encode_config.rcParams.maxBitRate = params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate; ctx->encode_config.rcParams.vbvBufferSize = params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize; } } } } int ff_nvenc_send_frame(AVCodecContext *avctx, const AVFrame *frame) { NVENCSTATUS nv_status; NvencSurface *tmp_out_surf, *in_surf; int res, res2; NV_ENC_SEI_PAYLOAD *sei_data = NULL; size_t sei_size; NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; NV_ENC_PIC_PARAMS pic_params = { 0 }; pic_params.version = NV_ENC_PIC_PARAMS_VER; if ((!ctx->cu_context && !ctx->d3d11_device) || !ctx->nvencoder) return AVERROR(EINVAL); if (ctx->encoder_flushing) { if (avctx->internal->draining) return AVERROR_EOF; ctx->encoder_flushing = 0; av_fifo_reset(ctx->timestamp_list); } if (frame) { in_surf = get_free_frame(ctx); if (!in_surf) return AVERROR(EAGAIN); res = nvenc_push_context(avctx); if (res < 0) return res; reconfig_encoder(avctx, frame); res = nvenc_upload_frame(avctx, frame, in_surf); res2 = nvenc_pop_context(avctx); if (res2 < 0) return res2; if (res) return res; pic_params.inputBuffer = in_surf->input_surface; pic_params.bufferFmt = in_surf->format; pic_params.inputWidth = in_surf->width; pic_params.inputHeight = in_surf->height; pic_params.inputPitch = in_surf->pitch; pic_params.outputBitstream = in_surf->output_surface; if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { if (frame->top_field_first) pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM; else pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP; } else { pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME; } if (ctx->forced_idr >= 0 && frame->pict_type == AV_PICTURE_TYPE_I) { pic_params.encodePicFlags = ctx->forced_idr ? NV_ENC_PIC_FLAG_FORCEIDR : NV_ENC_PIC_FLAG_FORCEINTRA; } else { pic_params.encodePicFlags = 0; } pic_params.inputTimeStamp = frame->pts; if (ctx->a53_cc && av_frame_get_side_data(frame, AV_FRAME_DATA_A53_CC)) { if (ff_alloc_a53_sei(frame, sizeof(NV_ENC_SEI_PAYLOAD), (void**)&sei_data, &sei_size) < 0) { av_log(ctx, AV_LOG_ERROR, "Not enough memory for closed captions, skipping\n"); } if (sei_data) { sei_data->payloadSize = (uint32_t)sei_size; sei_data->payloadType = 4; sei_data->payload = (uint8_t*)(sei_data + 1); } } nvenc_codec_specific_pic_params(avctx, &pic_params, sei_data); } else { pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS; ctx->encoder_flushing = 1; } res = nvenc_push_context(avctx); if (res < 0) return res; nv_status = p_nvenc->nvEncEncodePicture(ctx->nvencoder, &pic_params); av_free(sei_data); res = nvenc_pop_context(avctx); if (res < 0) return res; if (nv_status != NV_ENC_SUCCESS && nv_status != NV_ENC_ERR_NEED_MORE_INPUT) return nvenc_print_error(avctx, nv_status, "EncodePicture failed!"); if (frame) { av_fifo_generic_write(ctx->output_surface_queue, &in_surf, sizeof(in_surf), NULL); timestamp_queue_enqueue(ctx->timestamp_list, frame->pts); } /* all the pending buffers are now ready for output */ if (nv_status == NV_ENC_SUCCESS) { while (av_fifo_size(ctx->output_surface_queue) > 0) { av_fifo_generic_read(ctx->output_surface_queue, &tmp_out_surf, sizeof(tmp_out_surf), NULL); av_fifo_generic_write(ctx->output_surface_ready_queue, &tmp_out_surf, sizeof(tmp_out_surf), NULL); } } return 0; } int ff_nvenc_receive_packet(AVCodecContext *avctx, AVPacket *pkt) { NvencSurface *tmp_out_surf; int res, res2; NvencContext *ctx = avctx->priv_data; if ((!ctx->cu_context && !ctx->d3d11_device) || !ctx->nvencoder) return AVERROR(EINVAL); if (output_ready(avctx, ctx->encoder_flushing)) { av_fifo_generic_read(ctx->output_surface_ready_queue, &tmp_out_surf, sizeof(tmp_out_surf), NULL); res = nvenc_push_context(avctx); if (res < 0) return res; res = process_output_surface(avctx, pkt, tmp_out_surf); res2 = nvenc_pop_context(avctx); if (res2 < 0) return res2; if (res) return res; av_fifo_generic_write(ctx->unused_surface_queue, &tmp_out_surf, sizeof(tmp_out_surf), NULL); } else if (ctx->encoder_flushing) { return AVERROR_EOF; } else { return AVERROR(EAGAIN); } return 0; } int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { NvencContext *ctx = avctx->priv_data; int res; if (!ctx->encoder_flushing) { res = ff_nvenc_send_frame(avctx, frame); if (res < 0) return res; } res = ff_nvenc_receive_packet(avctx, pkt); if (res == AVERROR(EAGAIN) || res == AVERROR_EOF) { *got_packet = 0; } else if (res < 0) { return res; } else { *got_packet = 1; } return 0; } av_cold void ff_nvenc_encode_flush(AVCodecContext *avctx) { ff_nvenc_send_frame(avctx, NULL); }