/* * Copyright (C) 2013 Wei Gao <weigao@multicorewareinc.com> * Copyright (C) 2013 Lenny Wang * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * unsharp input video */ #include "unsharp_opencl.h" #include "libavutil/common.h" #include "libavutil/opencl_internal.h" #define PLANE_NUM 3 #define ROUND_TO_16(a) (((((a) - 1)/16)+1)*16) static inline void add_mask_counter(uint32_t *dst, uint32_t *counter1, uint32_t *counter2, int len) { int i; for (i = 0; i < len; i++) { dst[i] = counter1[i] + counter2[i]; } } static int compute_mask(int step, uint32_t *mask) { int i, z, ret = 0; int counter_size = sizeof(uint32_t) * (2 * step + 1); uint32_t *temp1_counter, *temp2_counter, **counter = NULL; temp1_counter = av_mallocz(counter_size); if (!temp1_counter) { ret = AVERROR(ENOMEM); goto end; } temp2_counter = av_mallocz(counter_size); if (!temp2_counter) { ret = AVERROR(ENOMEM); goto end; } counter = av_mallocz_array(2 * step + 1, sizeof(uint32_t *)); if (!counter) { ret = AVERROR(ENOMEM); goto end; } for (i = 0; i < 2 * step + 1; i++) { counter[i] = av_mallocz(counter_size); if (!counter[i]) { ret = AVERROR(ENOMEM); goto end; } } for (i = 0; i < 2 * step + 1; i++) { memset(temp1_counter, 0, counter_size); temp1_counter[i] = 1; for (z = 0; z < step * 2; z += 2) { add_mask_counter(temp2_counter, counter[z], temp1_counter, step * 2); memcpy(counter[z], temp1_counter, counter_size); add_mask_counter(temp1_counter, counter[z + 1], temp2_counter, step * 2); memcpy(counter[z + 1], temp2_counter, counter_size); } } memcpy(mask, temp1_counter, counter_size); end: av_freep(&temp1_counter); av_freep(&temp2_counter); for (i = 0; counter && i < 2 * step + 1; i++) { av_freep(&counter[i]); } av_freep(&counter); return ret; } static int copy_separable_masks(cl_mem cl_mask_x, cl_mem cl_mask_y, int step_x, int step_y) { int ret = 0; uint32_t *mask_x, *mask_y; size_t size_mask_x = sizeof(uint32_t) * (2 * step_x + 1); size_t size_mask_y = sizeof(uint32_t) * (2 * step_y + 1); mask_x = av_mallocz_array(2 * step_x + 1, sizeof(uint32_t)); if (!mask_x) { ret = AVERROR(ENOMEM); goto end; } mask_y = av_mallocz_array(2 * step_y + 1, sizeof(uint32_t)); if (!mask_y) { ret = AVERROR(ENOMEM); goto end; } ret = compute_mask(step_x, mask_x); if (ret < 0) goto end; ret = compute_mask(step_y, mask_y); if (ret < 0) goto end; ret = av_opencl_buffer_write(cl_mask_x, (uint8_t *)mask_x, size_mask_x); ret = av_opencl_buffer_write(cl_mask_y, (uint8_t *)mask_y, size_mask_y); end: av_freep(&mask_x); av_freep(&mask_y); return ret; } static int generate_mask(AVFilterContext *ctx) { cl_mem masks[4]; cl_mem mask_matrix[2]; int i, ret = 0, step_x[2], step_y[2]; UnsharpContext *unsharp = ctx->priv; mask_matrix[0] = unsharp->opencl_ctx.cl_luma_mask; mask_matrix[1] = unsharp->opencl_ctx.cl_chroma_mask; masks[0] = unsharp->opencl_ctx.cl_luma_mask_x; masks[1] = unsharp->opencl_ctx.cl_luma_mask_y; masks[2] = unsharp->opencl_ctx.cl_chroma_mask_x; masks[3] = unsharp->opencl_ctx.cl_chroma_mask_y; step_x[0] = unsharp->luma.steps_x; step_x[1] = unsharp->chroma.steps_x; step_y[0] = unsharp->luma.steps_y; step_y[1] = unsharp->chroma.steps_y; /* use default kernel if any matrix dim larger than 8 due to limited local mem size */ if (step_x[0]>8 || step_x[1]>8 || step_y[0]>8 || step_y[1]>8) unsharp->opencl_ctx.use_fast_kernels = 0; else unsharp->opencl_ctx.use_fast_kernels = 1; if (!masks[0] || !masks[1] || !masks[2] || !masks[3]) { av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n"); return AVERROR(EINVAL); } if (!mask_matrix[0] || !mask_matrix[1]) { av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n"); return AVERROR(EINVAL); } for (i = 0; i < 2; i++) { ret = copy_separable_masks(masks[2*i], masks[2*i+1], step_x[i], step_y[i]); if (ret < 0) return ret; } return ret; } int ff_opencl_apply_unsharp(AVFilterContext *ctx, AVFrame *in, AVFrame *out) { int ret; AVFilterLink *link = ctx->inputs[0]; UnsharpContext *unsharp = ctx->priv; cl_int status; FFOpenclParam kernel1 = {0}; FFOpenclParam kernel2 = {0}; int width = link->w; int height = link->h; int cw = AV_CEIL_RSHIFT(link->w, unsharp->hsub); int ch = AV_CEIL_RSHIFT(link->h, unsharp->vsub); size_t globalWorkSize1d = width * height + 2 * ch * cw; size_t globalWorkSize2dLuma[2]; size_t globalWorkSize2dChroma[2]; size_t localWorkSize2d[2] = {16, 16}; if (unsharp->opencl_ctx.use_fast_kernels) { globalWorkSize2dLuma[0] = (size_t)ROUND_TO_16(width); globalWorkSize2dLuma[1] = (size_t)ROUND_TO_16(height); globalWorkSize2dChroma[0] = (size_t)ROUND_TO_16(cw); globalWorkSize2dChroma[1] = (size_t)(2*ROUND_TO_16(ch)); kernel1.ctx = ctx; kernel1.kernel = unsharp->opencl_ctx.kernel_luma; ret = avpriv_opencl_set_parameter(&kernel1, FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_x), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_y), FF_OPENCL_PARAM_INFO(unsharp->luma.amount), FF_OPENCL_PARAM_INFO(unsharp->luma.scalebits), FF_OPENCL_PARAM_INFO(unsharp->luma.halfscale), FF_OPENCL_PARAM_INFO(in->linesize[0]), FF_OPENCL_PARAM_INFO(out->linesize[0]), FF_OPENCL_PARAM_INFO(width), FF_OPENCL_PARAM_INFO(height), NULL); if (ret < 0) return ret; kernel2.ctx = ctx; kernel2.kernel = unsharp->opencl_ctx.kernel_chroma; ret = avpriv_opencl_set_parameter(&kernel2, FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_x), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_y), FF_OPENCL_PARAM_INFO(unsharp->chroma.amount), FF_OPENCL_PARAM_INFO(unsharp->chroma.scalebits), FF_OPENCL_PARAM_INFO(unsharp->chroma.halfscale), FF_OPENCL_PARAM_INFO(in->linesize[0]), FF_OPENCL_PARAM_INFO(in->linesize[1]), FF_OPENCL_PARAM_INFO(out->linesize[0]), FF_OPENCL_PARAM_INFO(out->linesize[1]), FF_OPENCL_PARAM_INFO(link->w), FF_OPENCL_PARAM_INFO(link->h), FF_OPENCL_PARAM_INFO(cw), FF_OPENCL_PARAM_INFO(ch), NULL); if (ret < 0) return ret; status = clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue, unsharp->opencl_ctx.kernel_luma, 2, NULL, globalWorkSize2dLuma, localWorkSize2d, 0, NULL, NULL); status |=clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue, unsharp->opencl_ctx.kernel_chroma, 2, NULL, globalWorkSize2dChroma, localWorkSize2d, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "OpenCL run kernel error occurred: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } } else { /* use default kernel */ kernel1.ctx = ctx; kernel1.kernel = unsharp->opencl_ctx.kernel_default; ret = avpriv_opencl_set_parameter(&kernel1, FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask), FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask), FF_OPENCL_PARAM_INFO(unsharp->luma.amount), FF_OPENCL_PARAM_INFO(unsharp->chroma.amount), FF_OPENCL_PARAM_INFO(unsharp->luma.steps_x), FF_OPENCL_PARAM_INFO(unsharp->luma.steps_y), FF_OPENCL_PARAM_INFO(unsharp->chroma.steps_x), FF_OPENCL_PARAM_INFO(unsharp->chroma.steps_y), FF_OPENCL_PARAM_INFO(unsharp->luma.scalebits), FF_OPENCL_PARAM_INFO(unsharp->chroma.scalebits), FF_OPENCL_PARAM_INFO(unsharp->luma.halfscale), FF_OPENCL_PARAM_INFO(unsharp->chroma.halfscale), FF_OPENCL_PARAM_INFO(in->linesize[0]), FF_OPENCL_PARAM_INFO(in->linesize[1]), FF_OPENCL_PARAM_INFO(out->linesize[0]), FF_OPENCL_PARAM_INFO(out->linesize[1]), FF_OPENCL_PARAM_INFO(link->h), FF_OPENCL_PARAM_INFO(link->w), FF_OPENCL_PARAM_INFO(ch), FF_OPENCL_PARAM_INFO(cw), NULL); if (ret < 0) return ret; status = clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue, unsharp->opencl_ctx.kernel_default, 1, NULL, &globalWorkSize1d, NULL, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "OpenCL run kernel error occurred: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } } //blocking map is suffficient, no need for clFinish //clFinish(unsharp->opencl_ctx.command_queue); return av_opencl_buffer_read_image(out->data, unsharp->opencl_ctx.out_plane_size, unsharp->opencl_ctx.plane_num, unsharp->opencl_ctx.cl_outbuf, unsharp->opencl_ctx.cl_outbuf_size); } int ff_opencl_unsharp_init(AVFilterContext *ctx) { int ret = 0; char build_opts[96]; UnsharpContext *unsharp = ctx->priv; ret = av_opencl_init(NULL); if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask, sizeof(uint32_t) * (2 * unsharp->luma.steps_x + 1) * (2 * unsharp->luma.steps_y + 1), CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask, sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1) * (2 * unsharp->chroma.steps_y + 1), CL_MEM_READ_ONLY, NULL); // separable filters if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_x, sizeof(uint32_t) * (2 * unsharp->luma.steps_x + 1), CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_y, sizeof(uint32_t) * (2 * unsharp->luma.steps_y + 1), CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_x, sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1), CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_y, sizeof(uint32_t) * (2 * unsharp->chroma.steps_y + 1), CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; ret = generate_mask(ctx); if (ret < 0) return ret; unsharp->opencl_ctx.plane_num = PLANE_NUM; unsharp->opencl_ctx.command_queue = av_opencl_get_command_queue(); if (!unsharp->opencl_ctx.command_queue) { av_log(ctx, AV_LOG_ERROR, "Unable to get OpenCL command queue in filter 'unsharp'\n"); return AVERROR(EINVAL); } snprintf(build_opts, 96, "-D LU_RADIUS_X=%d -D LU_RADIUS_Y=%d -D CH_RADIUS_X=%d -D CH_RADIUS_Y=%d", 2*unsharp->luma.steps_x+1, 2*unsharp->luma.steps_y+1, 2*unsharp->chroma.steps_x+1, 2*unsharp->chroma.steps_y+1); unsharp->opencl_ctx.program = av_opencl_compile("unsharp", build_opts); if (!unsharp->opencl_ctx.program) { av_log(ctx, AV_LOG_ERROR, "OpenCL failed to compile program 'unsharp'\n"); return AVERROR(EINVAL); } if (unsharp->opencl_ctx.use_fast_kernels) { if (!unsharp->opencl_ctx.kernel_luma) { unsharp->opencl_ctx.kernel_luma = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_luma", &ret); if (ret != CL_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_luma'\n"); return ret; } } if (!unsharp->opencl_ctx.kernel_chroma) { unsharp->opencl_ctx.kernel_chroma = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_chroma", &ret); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_chroma'\n"); return ret; } } } else { if (!unsharp->opencl_ctx.kernel_default) { unsharp->opencl_ctx.kernel_default = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_default", &ret); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_default'\n"); return ret; } } } return ret; } void ff_opencl_unsharp_uninit(AVFilterContext *ctx) { UnsharpContext *unsharp = ctx->priv; av_opencl_buffer_release(&unsharp->opencl_ctx.cl_inbuf); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_outbuf); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_x); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_x); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_y); av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_y); clReleaseKernel(unsharp->opencl_ctx.kernel_default); clReleaseKernel(unsharp->opencl_ctx.kernel_luma); clReleaseKernel(unsharp->opencl_ctx.kernel_chroma); clReleaseProgram(unsharp->opencl_ctx.program); unsharp->opencl_ctx.command_queue = NULL; av_opencl_uninit(); } int ff_opencl_unsharp_process_inout_buf(AVFilterContext *ctx, AVFrame *in, AVFrame *out) { int ret = 0; AVFilterLink *link = ctx->inputs[0]; UnsharpContext *unsharp = ctx->priv; int ch = AV_CEIL_RSHIFT(link->h, unsharp->vsub); if ((!unsharp->opencl_ctx.cl_inbuf) || (!unsharp->opencl_ctx.cl_outbuf)) { unsharp->opencl_ctx.in_plane_size[0] = (in->linesize[0] * in->height); unsharp->opencl_ctx.in_plane_size[1] = (in->linesize[1] * ch); unsharp->opencl_ctx.in_plane_size[2] = (in->linesize[2] * ch); unsharp->opencl_ctx.out_plane_size[0] = (out->linesize[0] * out->height); unsharp->opencl_ctx.out_plane_size[1] = (out->linesize[1] * ch); unsharp->opencl_ctx.out_plane_size[2] = (out->linesize[2] * ch); unsharp->opencl_ctx.cl_inbuf_size = unsharp->opencl_ctx.in_plane_size[0] + unsharp->opencl_ctx.in_plane_size[1] + unsharp->opencl_ctx.in_plane_size[2]; unsharp->opencl_ctx.cl_outbuf_size = unsharp->opencl_ctx.out_plane_size[0] + unsharp->opencl_ctx.out_plane_size[1] + unsharp->opencl_ctx.out_plane_size[2]; if (!unsharp->opencl_ctx.cl_inbuf) { ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_inbuf, unsharp->opencl_ctx.cl_inbuf_size, CL_MEM_READ_ONLY, NULL); if (ret < 0) return ret; } if (!unsharp->opencl_ctx.cl_outbuf) { ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_outbuf, unsharp->opencl_ctx.cl_outbuf_size, CL_MEM_READ_WRITE, NULL); if (ret < 0) return ret; } } return av_opencl_buffer_write_image(unsharp->opencl_ctx.cl_inbuf, unsharp->opencl_ctx.cl_inbuf_size, 0, in->data, unsharp->opencl_ctx.in_plane_size, unsharp->opencl_ctx.plane_num); }