/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #ifndef AVCODEC_H264_H #define AVCODEC_H264_H #include "libavutil/intreadwrite.h" #include "cabac.h" #include "error_resilience.h" #include "get_bits.h" #include "h264chroma.h" #include "h264dsp.h" #include "h264pred.h" #include "h264qpel.h" #include "internal.h" // for avpriv_find_start_code() #include "me_cmp.h" #include "mpegutils.h" #include "parser.h" #include "qpeldsp.h" #include "rectangle.h" #include "videodsp.h" #define H264_MAX_PICTURE_COUNT 36 #define H264_MAX_THREADS 32 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_MMCO_COUNT 66 #define MAX_DELAYED_PIC_COUNT 16 #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes /* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */ #define ALLOW_INTERLACE #define FMO 0 /** * The maximum number of slices supported by the decoder. * must be a power of 2 */ #define MAX_SLICES 32 #ifdef ALLOW_INTERLACE #define MB_MBAFF(h) (h)->mb_mbaff #define MB_FIELD(h) (h)->mb_field_decoding_flag #define FRAME_MBAFF(h) (h)->mb_aff_frame #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME) #define LEFT_MBS 2 #define LTOP 0 #define LBOT 1 #define LEFT(i) (i) #else #define MB_MBAFF(h) 0 #define MB_FIELD(h) 0 #define FRAME_MBAFF(h) 0 #define FIELD_PICTURE(h) 0 #undef IS_INTERLACED #define IS_INTERLACED(mb_type) 0 #define LEFT_MBS 1 #define LTOP 0 #define LBOT 0 #define LEFT(i) 0 #endif #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h)) #ifndef CABAC #define CABAC(h) (h)->pps.cabac #endif #define CHROMA(h) ((h)->sps.chroma_format_idc) #define CHROMA422(h) ((h)->sps.chroma_format_idc == 2) #define CHROMA444(h) ((h)->sps.chroma_format_idc == 3) #define EXTENDED_SAR 255 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit #define MB_TYPE_8x8DCT 0x01000000 #define IS_REF0(a) ((a) & MB_TYPE_REF0) #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp /* NAL unit types */ enum { NAL_SLICE = 1, NAL_DPA = 2, NAL_DPB = 3, NAL_DPC = 4, NAL_IDR_SLICE = 5, NAL_SEI = 6, NAL_SPS = 7, NAL_PPS = 8, NAL_AUD = 9, NAL_END_SEQUENCE = 10, NAL_END_STREAM = 11, NAL_FILLER_DATA = 12, NAL_SPS_EXT = 13, NAL_AUXILIARY_SLICE = 19, NAL_FF_IGNORE = 0xff0f001, }; /** * SEI message types */ typedef enum { SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) SEI_TYPE_PIC_TIMING = 1, ///< picture timing SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync) SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation } SEI_Type; /** * pic_struct in picture timing SEI message */ typedef enum { SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling } SEI_PicStructType; /** * frame_packing_arrangement types */ typedef enum { SEI_FPA_TYPE_CHECKERBOARD = 0, SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1, SEI_FPA_TYPE_INTERLEAVE_ROW = 2, SEI_FPA_TYPE_SIDE_BY_SIDE = 3, SEI_FPA_TYPE_TOP_BOTTOM = 4, SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5, SEI_FPA_TYPE_2D = 6, } SEI_FpaType; /** * Sequence parameter set */ typedef struct SPS { unsigned int sps_id; int profile_idc; int level_idc; int chroma_format_idc; int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 int poc_type; ///< pic_order_cnt_type int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 int delta_pic_order_always_zero_flag; int offset_for_non_ref_pic; int offset_for_top_to_bottom_field; int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle int ref_frame_count; ///< num_ref_frames int gaps_in_frame_num_allowed_flag; int mb_width; ///< pic_width_in_mbs_minus1 + 1 int mb_height; ///< pic_height_in_map_units_minus1 + 1 int frame_mbs_only_flag; int mb_aff; ///< mb_adaptive_frame_field_flag int direct_8x8_inference_flag; int crop; ///< frame_cropping_flag /* those 4 are already in luma samples */ unsigned int crop_left; ///< frame_cropping_rect_left_offset unsigned int crop_right; ///< frame_cropping_rect_right_offset unsigned int crop_top; ///< frame_cropping_rect_top_offset unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset int vui_parameters_present_flag; AVRational sar; int video_signal_type_present_flag; int full_range; int colour_description_present_flag; enum AVColorPrimaries color_primaries; enum AVColorTransferCharacteristic color_trc; enum AVColorSpace colorspace; int timing_info_present_flag; uint32_t num_units_in_tick; uint32_t time_scale; int fixed_frame_rate_flag; short offset_for_ref_frame[256]; // FIXME dyn aloc? int bitstream_restriction_flag; int num_reorder_frames; int scaling_matrix_present; uint8_t scaling_matrix4[6][16]; uint8_t scaling_matrix8[6][64]; int nal_hrd_parameters_present_flag; int vcl_hrd_parameters_present_flag; int pic_struct_present_flag; int time_offset_length; int cpb_cnt; ///< See H.264 E.1.2 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8 int residual_color_transform_flag; ///< residual_colour_transform_flag int constraint_set_flags; ///< constraint_set[0-3]_flag int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS } SPS; /** * Picture parameter set */ typedef struct PPS { unsigned int sps_id; int cabac; ///< entropy_coding_mode_flag int pic_order_present; ///< pic_order_present_flag int slice_group_count; ///< num_slice_groups_minus1 + 1 int mb_slice_group_map_type; unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1 int weighted_pred; ///< weighted_pred_flag int weighted_bipred_idc; int init_qp; ///< pic_init_qp_minus26 + 26 int init_qs; ///< pic_init_qs_minus26 + 26 int chroma_qp_index_offset[2]; int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag int constrained_intra_pred; ///< constrained_intra_pred_flag int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag int transform_8x8_mode; ///< transform_8x8_mode_flag uint8_t scaling_matrix4[6][16]; uint8_t scaling_matrix8[6][64]; uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table int chroma_qp_diff; } PPS; /** * Frame Packing Arrangement Type */ typedef struct FPA { int frame_packing_arrangement_id; int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received SEI_FpaType frame_packing_arrangement_type; int frame_packing_arrangement_repetition_period; int content_interpretation_type; int quincunx_sampling_flag; } FPA; /** * Memory management control operation opcode. */ typedef enum MMCOOpcode { MMCO_END = 0, MMCO_SHORT2UNUSED, MMCO_LONG2UNUSED, MMCO_SHORT2LONG, MMCO_SET_MAX_LONG, MMCO_RESET, MMCO_LONG, } MMCOOpcode; /** * Memory management control operation. */ typedef struct MMCO { MMCOOpcode opcode; int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) int long_arg; ///< index, pic_num, or num long refs depending on opcode } MMCO; typedef struct H264Picture { struct AVFrame f; uint8_t avframe_padding[1024]; // hack to allow linking to a avutil with larger AVFrame ThreadFrame tf; AVBufferRef *qscale_table_buf; int8_t *qscale_table; AVBufferRef *motion_val_buf[2]; int16_t (*motion_val[2])[2]; AVBufferRef *mb_type_buf; uint32_t *mb_type; AVBufferRef *hwaccel_priv_buf; void *hwaccel_picture_private; ///< hardware accelerator private data AVBufferRef *ref_index_buf[2]; int8_t *ref_index[2]; int field_poc[2]; ///< top/bottom POC int poc; ///< frame POC int frame_num; ///< frame_num (raw frame_num from slice header) int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must not mix pictures before and after MMCO_RESET. */ int pic_id; /**< pic_num (short -> no wrap version of pic_num, pic_num & max_pic_num; long -> long_pic_num) */ int long_ref; ///< 1->long term reference 0->short term reference int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice) int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice) int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF int field_picture; ///< whether or not picture was encoded in separate fields int needs_realloc; ///< picture needs to be reallocated (eg due to a frame size change) int reference; int recovered; ///< picture at IDR or recovery point + recovery count int invalid_gap; int sei_recovery_frame_cnt; int crop; int crop_left; int crop_top; } H264Picture; /** * H264Context */ typedef struct H264Context { AVCodecContext *avctx; MECmpContext mecc; VideoDSPContext vdsp; H264DSPContext h264dsp; H264ChromaContext h264chroma; H264QpelContext h264qpel; ParseContext parse_context; GetBitContext gb; ERContext er; H264Picture *DPB; H264Picture *cur_pic_ptr; H264Picture cur_pic; int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264 int chroma_qp[2]; // QPc int qp_thresh; ///< QP threshold to skip loopfilter /* coded dimensions -- 16 * mb w/h */ int width, height; ptrdiff_t linesize, uvlinesize; int chroma_x_shift, chroma_y_shift; int qscale; int droppable; int data_partitioning; int coded_picture_number; int low_delay; int context_initialized; int flags; int workaround_bugs; int prev_mb_skipped; int next_mb_skipped; // prediction stuff int chroma_pred_mode; int intra16x16_pred_mode; int topleft_mb_xy; int top_mb_xy; int topright_mb_xy; int left_mb_xy[LEFT_MBS]; int topleft_type; int top_type; int topright_type; int left_type[LEFT_MBS]; const uint8_t *left_block; int topleft_partition; int8_t intra4x4_pred_mode_cache[5 * 8]; int8_t(*intra4x4_pred_mode); H264PredContext hpc; unsigned int topleft_samples_available; unsigned int top_samples_available; unsigned int topright_samples_available; unsigned int left_samples_available; uint8_t (*top_borders[2])[(16 * 3) * 2]; /** * non zero coeff count cache. * is 64 if not available. */ DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8]; uint8_t (*non_zero_count)[48]; /** * Motion vector cache. */ DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2]; DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8]; #define LIST_NOT_USED -1 // FIXME rename? #define PART_NOT_AVAILABLE -2 /** * number of neighbors (top and/or left) that used 8x8 dct */ int neighbor_transform_size; /** * block_offset[ 0..23] for frame macroblocks * block_offset[24..47] for field macroblocks */ int block_offset[2 * (16 * 3)]; uint32_t *mb2b_xy; // FIXME are these 4 a good idea? uint32_t *mb2br_xy; int b_stride; // FIXME use s->b4_stride ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff ptrdiff_t mb_uvlinesize; unsigned current_sps_id; ///< id of the current SPS SPS sps; ///< current sps PPS pps; ///< current pps int au_pps_id; ///< pps_id of current access unit uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down? uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64]; uint32_t(*dequant4_coeff[6])[16]; uint32_t(*dequant8_coeff[6])[64]; int slice_num; uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 int slice_type; int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) int slice_type_fixed; // interlacing specific flags int mb_aff_frame; int mb_field_decoding_flag; int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag int picture_structure; int first_field; DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4]; // Weighted pred stuff int use_weight; int use_weight_chroma; int luma_log2_weight_denom; int chroma_log2_weight_denom; // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss int luma_weight[48][2][2]; int chroma_weight[48][2][2][2]; int implicit_weight[48][48][2]; int direct_spatial_mv_pred; int col_parity; int col_fieldoff; int dist_scale_factor[32]; int dist_scale_factor_field[2][32]; int map_col_to_list0[2][16 + 32]; int map_col_to_list0_field[2][2][16 + 32]; /** * num_ref_idx_l0/1_active_minus1 + 1 */ unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode unsigned int list_count; uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type H264Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. * Reordered version of default_ref_list * according to picture reordering in slice header */ int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 // data partitioning GetBitContext intra_gb; GetBitContext inter_gb; GetBitContext *intra_gb_ptr; GetBitContext *inter_gb_ptr; const uint8_t *intra_pcm_ptr; DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coefficient is int32_t in high depth, we need to reserve twice the space. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2]; int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb /** * Cabac */ CABACContext cabac; uint8_t cabac_state[1024]; /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */ uint16_t *cbp_table; int cbp; int top_cbp; int left_cbp; /* chroma_pred_mode for i4x4 or i16x16, else 0 */ uint8_t *chroma_pred_mode_table; int last_qscale_diff; uint8_t (*mvd_table[2])[2]; DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2]; uint8_t *direct_table; uint8_t direct_cache[5 * 8]; uint8_t zigzag_scan[16]; uint8_t zigzag_scan8x8[64]; uint8_t zigzag_scan8x8_cavlc[64]; uint8_t field_scan[16]; uint8_t field_scan8x8[64]; uint8_t field_scan8x8_cavlc[64]; uint8_t zigzag_scan_q0[16]; uint8_t zigzag_scan8x8_q0[64]; uint8_t zigzag_scan8x8_cavlc_q0[64]; uint8_t field_scan_q0[16]; uint8_t field_scan8x8_q0[64]; uint8_t field_scan8x8_cavlc_q0[64]; int x264_build; int mb_x, mb_y; int resync_mb_x; int resync_mb_y; int mb_skip_run; int mb_height, mb_width; int mb_stride; int mb_num; int mb_xy; int is_complex; // deblock int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0 int slice_alpha_c0_offset; int slice_beta_offset; // ============================================================= // Things below are not used in the MB or more inner code int nal_ref_idc; int nal_unit_type; uint8_t *rbsp_buffer[2]; unsigned int rbsp_buffer_size[2]; /** * Used to parse AVC variant of h264 */ int is_avc; ///< this flag is != 0 if codec is avc1 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) int got_first; ///< this flag is != 0 if we've parsed a frame int bit_depth_luma; ///< luma bit depth from sps to detect changes int chroma_format_idc; ///< chroma format from sps to detect changes SPS *sps_buffers[MAX_SPS_COUNT]; PPS *pps_buffers[MAX_PPS_COUNT]; int dequant_coeff_pps; ///< reinit tables when pps changes uint16_t *slice_table_base; // POC stuff int poc_lsb; int poc_msb; int delta_poc_bottom; int delta_poc[2]; int frame_num; int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 int frame_num_offset; ///< for POC type 2 int prev_frame_num_offset; ///< for POC type 2 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 /** * frame_num for frames or 2 * frame_num + 1 for field pics. */ int curr_pic_num; /** * max_frame_num or 2 * max_frame_num for field pics. */ int max_pic_num; int redundant_pic_count; H264Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture H264Picture *short_ref[32]; H264Picture *long_ref[32]; H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size? int last_pocs[MAX_DELAYED_PIC_COUNT]; H264Picture *next_output_pic; int outputed_poc; int next_outputed_poc; /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int mmco_index; int mmco_reset; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references int cabac_init_idc; /** * @name Members for slice based multithreading * @{ */ struct H264Context *thread_context[H264_MAX_THREADS]; /** * current slice number, used to initialize slice_num of each thread/context */ int current_slice; /** * Max number of threads / contexts. * This is equal to AVCodecContext.thread_count unless * multithreaded decoding is impossible, in which case it is * reduced to 1. */ int max_contexts; int slice_context_count; /** * 1 if the single thread fallback warning has already been * displayed, 0 otherwise. */ int single_decode_warning; enum AVPictureType pict_type; int last_slice_type; unsigned int last_ref_count[2]; /** @} */ /** * pic_struct in picture timing SEI message */ SEI_PicStructType sei_pic_struct; /** * Complement sei_pic_struct * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. * However, soft telecined frames may have these values. * This is used in an attempt to flag soft telecine progressive. */ int prev_interlaced_frame; /** * frame_packing_arrangment SEI message */ int sei_frame_packing_present; int frame_packing_arrangement_type; int content_interpretation_type; int quincunx_subsampling; /** * display orientation SEI message */ int sei_display_orientation_present; int sei_anticlockwise_rotation; int sei_hflip, sei_vflip; /** * Bit set of clock types for fields/frames in picture timing SEI message. * For each found ct_type, appropriate bit is set (e.g., bit 1 for * interlaced). */ int sei_ct_type; /** * dpb_output_delay in picture timing SEI message, see H.264 C.2.2 */ int sei_dpb_output_delay; /** * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2 */ int sei_cpb_removal_delay; /** * recovery_frame_cnt from SEI message * * Set to -1 if no recovery point SEI message found or to number of frames * before playback synchronizes. Frames having recovery point are key * frames. */ int sei_recovery_frame_cnt; /** * Are the SEI recovery points looking valid. */ int valid_recovery_point; FPA sei_fpa; /** * recovery_frame is the frame_num at which the next frame should * be fully constructed. * * Set to -1 when not expecting a recovery point. */ int recovery_frame; /** * We have seen an IDR, so all the following frames in coded order are correctly * decodable. */ #define FRAME_RECOVERED_IDR (1 << 0) /** * Sufficient number of frames have been decoded since a SEI recovery point, * so all the following frames in presentation order are correct. */ #define FRAME_RECOVERED_SEI (1 << 1) int frame_recovered; ///< Initial frame has been completely recovered int has_recovery_point; int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag // Timestamp stuff int sei_buffering_period_present; ///< Buffering period SEI flag int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs int cur_chroma_format_idc; uint8_t *bipred_scratchpad; int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low uint8_t parse_history[6]; int parse_history_count; int parse_last_mb; uint8_t *edge_emu_buffer; int16_t *dc_val_base; AVBufferPool *qscale_table_pool; AVBufferPool *mb_type_pool; AVBufferPool *motion_val_pool; AVBufferPool *ref_index_pool; /* Motion Estimation */ qpel_mc_func (*qpel_put)[16]; qpel_mc_func (*qpel_avg)[16]; } H264Context; extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14). extern const uint16_t ff_h264_mb_sizes[4]; /** * Decode SEI */ int ff_h264_decode_sei(H264Context *h); /** * Decode SPS */ int ff_h264_decode_seq_parameter_set(H264Context *h); /** * compute profile from sps */ int ff_h264_get_profile(SPS *sps); /** * Decode PPS */ int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); /** * Decode a network abstraction layer unit. * @param consumed is the number of bytes used as input * @param length is the length of the array * @param dst_length is the number of decoded bytes FIXME here * or a decode rbsp tailing? * @return decoded bytes, might be src+1 if no escapes */ const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); /** * Free any data that may have been allocated in the H264 context * like SPS, PPS etc. */ void ff_h264_free_context(H264Context *h); /** * Reconstruct bitstream slice_type. */ int ff_h264_get_slice_type(const H264Context *h); /** * Allocate tables. * needs width/height */ int ff_h264_alloc_tables(H264Context *h); /** * Fill the default_ref_list. */ int ff_h264_fill_default_ref_list(H264Context *h); int ff_h264_decode_ref_pic_list_reordering(H264Context *h); void ff_h264_fill_mbaff_ref_list(H264Context *h); void ff_h264_remove_all_refs(H264Context *h); /** * Execute the reference picture marking (memory management control operations). */ int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb, int first_slice); int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice); /** * Check if the top & left blocks are available if needed & change the * dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h); /** * Check if the top & left blocks are available if needed & change the * dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma); void ff_h264_hl_decode_mb(H264Context *h); int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size); int ff_h264_decode_init(AVCodecContext *avctx); void ff_h264_decode_init_vlc(void); /** * Decode a macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */ int ff_h264_decode_mb_cavlc(H264Context *h); /** * Decode a CABAC coded macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */ int ff_h264_decode_mb_cabac(H264Context *h); void ff_h264_init_cabac_states(H264Context *h); void h264_init_dequant_tables(H264Context *h); void ff_h264_direct_dist_scale_factor(H264Context *const h); void ff_h264_direct_ref_list_init(H264Context *const h); void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type); void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); /** * Reset SEI values at the beginning of the frame. * * @param h H.264 context. */ void ff_h264_reset_sei(H264Context *h); /** * Get stereo_mode string from the h264 frame_packing_arrangement * @param h H.264 context. */ const char* ff_h264_sei_stereo_mode(H264Context *h); /* * o-o o-o * / / / * o-o o-o * ,---' * o-o o-o * / / / * o-o o-o */ /* Scan8 organization: * 0 1 2 3 4 5 6 7 * 0 DY y y y y y * 1 y Y Y Y Y * 2 y Y Y Y Y * 3 y Y Y Y Y * 4 y Y Y Y Y * 5 DU u u u u u * 6 u U U U U * 7 u U U U U * 8 u U U U U * 9 u U U U U * 10 DV v v v v v * 11 v V V V V * 12 v V V V V * 13 v V V V V * 14 v V V V V * DY/DU/DV are for luma/chroma DC. */ #define LUMA_DC_BLOCK_INDEX 48 #define CHROMA_DC_BLOCK_INDEX 49 // This table must be here because scan8[constant] must be known at compiletime static const uint8_t scan8[16 * 3 + 3] = { 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8, 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8, 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8, 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8, 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8, 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8, 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8, 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8, 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8, 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8, 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8, 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8, 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8 }; static av_always_inline uint32_t pack16to32(int a, int b) { #if HAVE_BIGENDIAN return (b & 0xFFFF) + (a << 16); #else return (a & 0xFFFF) + (b << 16); #endif } static av_always_inline uint16_t pack8to16(int a, int b) { #if HAVE_BIGENDIAN return (b & 0xFF) + (a << 8); #else return (a & 0xFF) + (b << 8); #endif } /** * Get the chroma qp. */ static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale) { return h->pps.chroma_qp_table[t][qscale]; } /** * Get the predicted intra4x4 prediction mode. */ static av_always_inline int pred_intra_mode(H264Context *h, int n) { const int index8 = scan8[n]; const int left = h->intra4x4_pred_mode_cache[index8 - 1]; const int top = h->intra4x4_pred_mode_cache[index8 - 8]; const int min = FFMIN(left, top); tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min); if (min < 0) return DC_PRED; else return min; } static av_always_inline void write_back_intra_pred_mode(H264Context *h) { int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy]; int8_t *i4x4_cache = h->intra4x4_pred_mode_cache; AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4); i4x4[4] = i4x4_cache[7 + 8 * 3]; i4x4[5] = i4x4_cache[7 + 8 * 2]; i4x4[6] = i4x4_cache[7 + 8 * 1]; } static av_always_inline void write_back_non_zero_count(H264Context *h) { const int mb_xy = h->mb_xy; uint8_t *nnz = h->non_zero_count[mb_xy]; uint8_t *nnz_cache = h->non_zero_count_cache; AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]); AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]); AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]); AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]); AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]); AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]); AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]); AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]); if (!h->chroma_y_shift) { AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]); AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]); AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]); AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]); } } static av_always_inline void write_back_motion_list(H264Context *h, int b_stride, int b_xy, int b8_xy, int mb_type, int list) { int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy]; int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]]; AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0); AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1); AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2); AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3); if (CABAC(h)) { uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy : h->mb2br_xy[h->mb_xy]]; uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]]; if (IS_SKIP(mb_type)) { AV_ZERO128(mvd_dst); } else { AV_COPY64(mvd_dst, mvd_src + 8 * 3); AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0); AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1); AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2); } } { int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy]; int8_t *ref_cache = h->ref_cache[list]; ref_index[0 + 0 * 2] = ref_cache[scan8[0]]; ref_index[1 + 0 * 2] = ref_cache[scan8[4]]; ref_index[0 + 1 * 2] = ref_cache[scan8[8]]; ref_index[1 + 1 * 2] = ref_cache[scan8[12]]; } } static av_always_inline void write_back_motion(H264Context *h, int mb_type) { const int b_stride = h->b_stride; const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy const int b8_xy = 4 * h->mb_xy; if (USES_LIST(mb_type, 0)) { write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0); } else { fill_rectangle(&h->cur_pic.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); } if (USES_LIST(mb_type, 1)) write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1); if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) { if (IS_8X8(mb_type)) { uint8_t *direct_table = &h->direct_table[4 * h->mb_xy]; direct_table[1] = h->sub_mb_type[1] >> 1; direct_table[2] = h->sub_mb_type[2] >> 1; direct_table[3] = h->sub_mb_type[3] >> 1; } } } static av_always_inline int get_dct8x8_allowed(H264Context *h) { if (h->sps.direct_8x8_inference_flag) return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) * 0x0001000100010001ULL)); else return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) * 0x0001000100010001ULL)); } static inline int find_start_code(const uint8_t *buf, int buf_size, int buf_index, int next_avc) { uint32_t state = -1; buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1; return FFMIN(buf_index, buf_size); } static inline int get_avc_nalsize(H264Context *h, const uint8_t *buf, int buf_size, int *buf_index) { int i, nalsize = 0; if (*buf_index >= buf_size - h->nal_length_size) return -1; for (i = 0; i < h->nal_length_size; i++) nalsize = ((unsigned)nalsize << 8) | buf[(*buf_index)++]; if (nalsize <= 0 || nalsize > buf_size - *buf_index) { av_log(h->avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); return -1; } return nalsize; } int ff_h264_field_end(H264Context *h, int in_setup); int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src); void ff_h264_unref_picture(H264Context *h, H264Picture *pic); int ff_h264_context_init(H264Context *h); int ff_h264_set_parameter_from_sps(H264Context *h); void ff_h264_draw_horiz_band(H264Context *h, int y, int height); int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc); int ff_pred_weight_table(H264Context *h); int ff_set_ref_count(H264Context *h); int ff_h264_decode_slice_header(H264Context *h, H264Context *h0); #define SLICE_SINGLETHREAD 1 #define SLICE_SKIPED 2 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count); int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src); void ff_h264_flush_change(H264Context *h); void ff_h264_free_tables(H264Context *h, int free_rbsp); void ff_h264_set_erpic(ERPicture *dst, H264Picture *src); #endif /* AVCODEC_H264_H */