/* * VC-1 and WMV3 decoder * Copyright (c) 2011 Mashiat Sarker Shakkhar * Copyright (c) 2006-2007 Konstantin Shishkov * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * VC-1 and WMV3 block decoding routines */ #include "avcodec.h" #include "h264chroma.h" #include "mathops.h" #include "mpegvideo.h" #include "vc1.h" static av_always_inline void vc1_scale_luma(uint8_t *srcY, int k, int linesize) { int i, j; for (j = 0; j < k; j++) { for (i = 0; i < k; i++) srcY[i] = ((srcY[i] - 128) >> 1) + 128; srcY += linesize; } } static av_always_inline void vc1_scale_chroma(uint8_t *srcU, uint8_t *srcV, int k, int uvlinesize) { int i, j; for (j = 0; j < k; j++) { for (i = 0; i < k; i++) { srcU[i] = ((srcU[i] - 128) >> 1) + 128; srcV[i] = ((srcV[i] - 128) >> 1) + 128; } srcU += uvlinesize; srcV += uvlinesize; } } static av_always_inline void vc1_lut_scale_luma(uint8_t *srcY, uint8_t *lut1, uint8_t *lut2, int k, int linesize) { int i, j; for (j = 0; j < k; j += 2) { for (i = 0; i < k; i++) srcY[i] = lut1[srcY[i]]; srcY += linesize; if (j + 1 == k) break; for (i = 0; i < k; i++) srcY[i] = lut2[srcY[i]]; srcY += linesize; } } static av_always_inline void vc1_lut_scale_chroma(uint8_t *srcU, uint8_t *srcV, uint8_t *lut1, uint8_t *lut2, int k, int uvlinesize) { int i, j; for (j = 0; j < k; j += 2) { for (i = 0; i < k; i++) { srcU[i] = lut1[srcU[i]]; srcV[i] = lut1[srcV[i]]; } srcU += uvlinesize; srcV += uvlinesize; if (j + 1 == k) break; for (i = 0; i < k; i++) { srcU[i] = lut2[srcU[i]]; srcV[i] = lut2[srcV[i]]; } srcU += uvlinesize; srcV += uvlinesize; } } static const uint8_t popcount4[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; static av_always_inline int get_luma_mv(VC1Context *v, int dir, int16_t *tx, int16_t *ty) { MpegEncContext *s = &v->s; int idx = v->mv_f[dir][s->block_index[0] + v->blocks_off] | (v->mv_f[dir][s->block_index[1] + v->blocks_off] << 1) | (v->mv_f[dir][s->block_index[2] + v->blocks_off] << 2) | (v->mv_f[dir][s->block_index[3] + v->blocks_off] << 3); static const uint8_t index2[16] = { 0, 0, 0, 0x23, 0, 0x13, 0x03, 0, 0, 0x12, 0x02, 0, 0x01, 0, 0, 0 }; int opp_count = popcount4[idx]; switch (opp_count) { case 0: case 4: *tx = median4(s->mv[dir][0][0], s->mv[dir][1][0], s->mv[dir][2][0], s->mv[dir][3][0]); *ty = median4(s->mv[dir][0][1], s->mv[dir][1][1], s->mv[dir][2][1], s->mv[dir][3][1]); break; case 1: *tx = mid_pred(s->mv[dir][idx < 2][0], s->mv[dir][1 + (idx < 4)][0], s->mv[dir][2 + (idx < 8)][0]); *ty = mid_pred(s->mv[dir][idx < 2][1], s->mv[dir][1 + (idx < 4)][1], s->mv[dir][2 + (idx < 8)][1]); break; case 3: *tx = mid_pred(s->mv[dir][idx > 0xd][0], s->mv[dir][1 + (idx > 0xb)][0], s->mv[dir][2 + (idx > 0x7)][0]); *ty = mid_pred(s->mv[dir][idx > 0xd][1], s->mv[dir][1 + (idx > 0xb)][1], s->mv[dir][2 + (idx > 0x7)][1]); break; case 2: *tx = (s->mv[dir][index2[idx] >> 4][0] + s->mv[dir][index2[idx] & 0xf][0]) / 2; *ty = (s->mv[dir][index2[idx] >> 4][1] + s->mv[dir][index2[idx] & 0xf][1]) / 2; break; } return opp_count; } static av_always_inline int get_chroma_mv(VC1Context *v, int dir, int16_t *tx, int16_t *ty) { MpegEncContext *s = &v->s; int idx = !v->mb_type[0][s->block_index[0]] | (!v->mb_type[0][s->block_index[1]] << 1) | (!v->mb_type[0][s->block_index[2]] << 2) | (!v->mb_type[0][s->block_index[3]] << 3); static const uint8_t index2[16] = { 0, 0, 0, 0x01, 0, 0x02, 0x12, 0, 0, 0x03, 0x13, 0, 0x23, 0, 0, 0 }; int valid_count = popcount4[idx]; switch (valid_count) { case 4: *tx = median4(s->mv[dir][0][0], s->mv[dir][1][0], s->mv[dir][2][0], s->mv[dir][3][0]); *ty = median4(s->mv[dir][0][1], s->mv[dir][1][1], s->mv[dir][2][1], s->mv[dir][3][1]); break; case 3: *tx = mid_pred(s->mv[dir][idx > 0xd][0], s->mv[dir][1 + (idx > 0xb)][0], s->mv[dir][2 + (idx > 0x7)][0]); *ty = mid_pred(s->mv[dir][idx > 0xd][1], s->mv[dir][1 + (idx > 0xb)][1], s->mv[dir][2 + (idx > 0x7)][1]); break; case 2: *tx = (s->mv[dir][index2[idx] >> 4][0] + s->mv[dir][index2[idx] & 0xf][0]) / 2; *ty = (s->mv[dir][index2[idx] >> 4][1] + s->mv[dir][index2[idx] & 0xf][1]) / 2; break; default: return 0; } return valid_count; } /** Do motion compensation over 1 macroblock * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c */ void ff_vc1_mc_1mv(VC1Context *v, int dir) { MpegEncContext *s = &v->s; H264ChromaContext *h264chroma = &v->h264chroma; uint8_t *srcY, *srcU, *srcV; int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; int v_edge_pos = s->v_edge_pos >> v->field_mode; int i; uint8_t (*luty)[256], (*lutuv)[256]; int use_ic; if ((!v->field_mode || (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) && !v->s.last_picture.f->data[0]) return; mx = s->mv[dir][0][0]; my = s->mv[dir][0][1]; // store motion vectors for further use in B frames if (s->pict_type == AV_PICTURE_TYPE_P) { for (i = 0; i < 4; i++) { s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = mx; s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = my; } } uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; v->luma_mv[s->mb_x][0] = uvmx; v->luma_mv[s->mb_x][1] = uvmy; if (v->field_mode && v->cur_field_type != v->ref_field_type[dir]) { my = my - 2 + 4 * v->cur_field_type; uvmy = uvmy - 2 + 4 * v->cur_field_type; } // fastuvmc shall be ignored for interlaced frame picture if (v->fastuvmc && (v->fcm != ILACE_FRAME)) { uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1)); uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1)); } if (!dir) { if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) { srcY = s->current_picture.f->data[0]; srcU = s->current_picture.f->data[1]; srcV = s->current_picture.f->data[2]; luty = v->curr_luty; lutuv = v->curr_lutuv; use_ic = *v->curr_use_ic; } else { srcY = s->last_picture.f->data[0]; srcU = s->last_picture.f->data[1]; srcV = s->last_picture.f->data[2]; luty = v->last_luty; lutuv = v->last_lutuv; use_ic = v->last_use_ic; } } else { srcY = s->next_picture.f->data[0]; srcU = s->next_picture.f->data[1]; srcV = s->next_picture.f->data[2]; luty = v->next_luty; lutuv = v->next_lutuv; use_ic = v->next_use_ic; } if (!srcY || !srcU) { av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n"); return; } src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if (v->profile != PROFILE_ADVANCED) { src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); } else { src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; if (v->field_mode && v->ref_field_type[dir]) { srcY += s->current_picture_ptr->f->linesize[0]; srcU += s->current_picture_ptr->f->linesize[1]; srcV += s->current_picture_ptr->f->linesize[2]; } /* for grayscale we should not try to read from unknown area */ if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) { srcU = s->sc.edge_emu_buffer + 18 * s->linesize; srcV = s->sc.edge_emu_buffer + 18 * s->linesize; } if (v->rangeredfrm || use_ic || s->h_edge_pos < 22 || v_edge_pos < 22 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3 || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) { uint8_t *ubuf = s->sc.edge_emu_buffer + 19 * s->linesize; uint8_t *vbuf = ubuf + 9 * s->uvlinesize; const int k = 17 + s->mspel * 2; srcY -= s->mspel * (1 + s->linesize); s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY, s->linesize, s->linesize, k, k, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, v_edge_pos); srcY = s->sc.edge_emu_buffer; s->vdsp.emulated_edge_mc(ubuf, srcU, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); s->vdsp.emulated_edge_mc(vbuf, srcV, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); srcU = ubuf; srcV = vbuf; /* if we deal with range reduction we need to scale source blocks */ if (v->rangeredfrm) { vc1_scale_luma(srcY, k, s->linesize); vc1_scale_chroma(srcU, srcV, 9, s->uvlinesize); } /* if we deal with intensity compensation we need to scale source blocks */ if (use_ic) { vc1_lut_scale_luma(srcY, luty[v->field_mode ? v->ref_field_type[dir] : ((0 + src_y - s->mspel) & 1)], luty[v->field_mode ? v->ref_field_type[dir] : ((1 + src_y - s->mspel) & 1)], k, s->linesize); vc1_lut_scale_chroma(srcU, srcV, lutuv[v->field_mode ? v->ref_field_type[dir] : ((0 + uvsrc_y) & 1)], lutuv[v->field_mode ? v->ref_field_type[dir] : ((1 + uvsrc_y) & 1)], 9, s->uvlinesize); } srcY += s->mspel * (1 + s->linesize); } if (s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); v->vc1dsp.put_vc1_mspel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if (!v->rnd) s->hdsp.put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); else s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); } if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel bilinear */ uvmx = (uvmx & 3) << 1; uvmy = (uvmy & 3) << 1; if (!v->rnd) { h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } else { v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } /** Do motion compensation for 4-MV macroblock - luminance block */ void ff_vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg) { MpegEncContext *s = &v->s; uint8_t *srcY; int dxy, mx, my, src_x, src_y; int off; int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0; int v_edge_pos = s->v_edge_pos >> v->field_mode; uint8_t (*luty)[256]; int use_ic; if ((!v->field_mode || (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) && !v->s.last_picture.f->data[0]) return; mx = s->mv[dir][n][0]; my = s->mv[dir][n][1]; if (!dir) { if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) { srcY = s->current_picture.f->data[0]; luty = v->curr_luty; use_ic = *v->curr_use_ic; } else { srcY = s->last_picture.f->data[0]; luty = v->last_luty; use_ic = v->last_use_ic; } } else { srcY = s->next_picture.f->data[0]; luty = v->next_luty; use_ic = v->next_use_ic; } if (!srcY) { av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n"); return; } if (v->field_mode) { if (v->cur_field_type != v->ref_field_type[dir]) my = my - 2 + 4 * v->cur_field_type; } if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) { int opp_count = get_luma_mv(v, 0, &s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0], &s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1]); int k, f = opp_count > 2; for (k = 0; k < 4; k++) v->mv_f[1][s->block_index[k] + v->blocks_off] = f; } if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture int qx, qy; int width = s->avctx->coded_width; int height = s->avctx->coded_height >> 1; if (s->pict_type == AV_PICTURE_TYPE_P) { s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][0] = mx; s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][1] = my; } qx = (s->mb_x * 16) + (mx >> 2); qy = (s->mb_y * 8) + (my >> 3); if (qx < -17) mx -= 4 * (qx + 17); else if (qx > width) mx -= 4 * (qx - width); if (qy < -18) my -= 8 * (qy + 18); else if (qy > height + 1) my -= 8 * (qy - height - 1); } if ((v->fcm == ILACE_FRAME) && fieldmv) off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8; else off = s->linesize * 4 * (n & 2) + (n & 1) * 8; src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2); if (!fieldmv) src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2); else src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2); if (v->profile != PROFILE_ADVANCED) { src_x = av_clip(src_x, -16, s->mb_width * 16); src_y = av_clip(src_y, -16, s->mb_height * 16); } else { src_x = av_clip(src_x, -17, s->avctx->coded_width); if (v->fcm == ILACE_FRAME) { if (src_y & 1) src_y = av_clip(src_y, -17, s->avctx->coded_height + 1); else src_y = av_clip(src_y, -18, s->avctx->coded_height); } else { src_y = av_clip(src_y, -18, s->avctx->coded_height + 1); } } srcY += src_y * s->linesize + src_x; if (v->field_mode && v->ref_field_type[dir]) srcY += s->current_picture_ptr->f->linesize[0]; if (fieldmv) { if (!(src_y & 1)) v_edge_pos--; else src_y -= (src_y < 4); } if (v->rangeredfrm || use_ic || s->h_edge_pos < 13 || v_edge_pos < 23 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2 || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) { const int k = 9 + s->mspel * 2; srcY -= s->mspel * (1 + (s->linesize << fieldmv)); /* check emulate edge stride and offset */ s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY, s->linesize, s->linesize, k, k << fieldmv, src_x - s->mspel, src_y - (s->mspel << fieldmv), s->h_edge_pos, v_edge_pos); srcY = s->sc.edge_emu_buffer; /* if we deal with range reduction we need to scale source blocks */ if (v->rangeredfrm) { vc1_scale_luma(srcY, k, s->linesize << fieldmv); } /* if we deal with intensity compensation we need to scale source blocks */ if (use_ic) { vc1_lut_scale_luma(srcY, luty[v->field_mode ? v->ref_field_type[dir] : (((0<<fieldmv)+src_y - (s->mspel << fieldmv)) & 1)], luty[v->field_mode ? v->ref_field_type[dir] : (((1<<fieldmv)+src_y - (s->mspel << fieldmv)) & 1)], k, s->linesize << fieldmv); } srcY += s->mspel * (1 + (s->linesize << fieldmv)); } if (s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); if (avg) v->vc1dsp.avg_vc1_mspel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd); else v->vc1dsp.put_vc1_mspel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if (!v->rnd) s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); else s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); } } /** Do motion compensation for 4-MV macroblock - both chroma blocks */ void ff_vc1_mc_4mv_chroma(VC1Context *v, int dir) { MpegEncContext *s = &v->s; H264ChromaContext *h264chroma = &v->h264chroma; uint8_t *srcU, *srcV; int uvmx, uvmy, uvsrc_x, uvsrc_y; int16_t tx, ty; int chroma_ref_type; int v_edge_pos = s->v_edge_pos >> v->field_mode; uint8_t (*lutuv)[256]; int use_ic; if (!v->field_mode && !v->s.last_picture.f->data[0]) return; if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) return; /* calculate chroma MV vector from four luma MVs */ if (!v->field_mode || !v->numref) { int valid_count = get_chroma_mv(v, dir, &tx, &ty); if (!valid_count) { s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0; s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0; v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0; return; //no need to do MC for intra blocks } chroma_ref_type = v->ref_field_type[dir]; } else { int opp_count = get_luma_mv(v, dir, &tx, &ty); chroma_ref_type = v->cur_field_type ^ (opp_count > 2); } if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f->data[0]) return; s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx; s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty; uvmx = (tx + ((tx & 3) == 3)) >> 1; uvmy = (ty + ((ty & 3) == 3)) >> 1; v->luma_mv[s->mb_x][0] = uvmx; v->luma_mv[s->mb_x][1] = uvmy; if (v->fastuvmc) { uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1)); uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1)); } // Field conversion bias if (v->cur_field_type != chroma_ref_type) uvmy += 2 - 4 * chroma_ref_type; uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if (v->profile != PROFILE_ADVANCED) { uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); } else { uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } if (!dir) { if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->second_field) { srcU = s->current_picture.f->data[1]; srcV = s->current_picture.f->data[2]; lutuv = v->curr_lutuv; use_ic = *v->curr_use_ic; } else { srcU = s->last_picture.f->data[1]; srcV = s->last_picture.f->data[2]; lutuv = v->last_lutuv; use_ic = v->last_use_ic; } } else { srcU = s->next_picture.f->data[1]; srcV = s->next_picture.f->data[2]; lutuv = v->next_lutuv; use_ic = v->next_use_ic; } if (!srcU) { av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n"); return; } srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; if (v->field_mode) { if (chroma_ref_type) { srcU += s->current_picture_ptr->f->linesize[1]; srcV += s->current_picture_ptr->f->linesize[2]; } } if (v->rangeredfrm || use_ic || s->h_edge_pos < 18 || v_edge_pos < 18 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9 || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) { s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcU, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer + 16, srcV, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); srcU = s->sc.edge_emu_buffer; srcV = s->sc.edge_emu_buffer + 16; /* if we deal with range reduction we need to scale source blocks */ if (v->rangeredfrm) { vc1_scale_chroma(srcU, srcV, 9, s->uvlinesize); } /* if we deal with intensity compensation we need to scale source blocks */ if (use_ic) { vc1_lut_scale_chroma(srcU, srcV, lutuv[v->field_mode ? chroma_ref_type : ((0 + uvsrc_y) & 1)], lutuv[v->field_mode ? chroma_ref_type : ((1 + uvsrc_y) & 1)], 9, s->uvlinesize); } } /* Chroma MC always uses qpel bilinear */ uvmx = (uvmx & 3) << 1; uvmy = (uvmy & 3) << 1; if (!v->rnd) { h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } else { v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } /** Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V) */ void ff_vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg) { MpegEncContext *s = &v->s; H264ChromaContext *h264chroma = &v->h264chroma; uint8_t *srcU, *srcV; int uvsrc_x, uvsrc_y; int uvmx_field[4], uvmy_field[4]; int i, off, tx, ty; int fieldmv = v->blk_mv_type[s->block_index[0]]; static const uint8_t s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 }; int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks int v_edge_pos = s->v_edge_pos >> 1; int use_ic; uint8_t (*lutuv)[256]; if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) return; for (i = 0; i < 4; i++) { int d = i < 2 ? dir: dir2; tx = s->mv[d][i][0]; uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1; ty = s->mv[d][i][1]; if (fieldmv) uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF]; else uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1; } for (i = 0; i < 4; i++) { off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0); uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2); uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2); // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack()) uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); if (i < 2 ? dir : dir2) { srcU = s->next_picture.f->data[1]; srcV = s->next_picture.f->data[2]; lutuv = v->next_lutuv; use_ic = v->next_use_ic; } else { srcU = s->last_picture.f->data[1]; srcV = s->last_picture.f->data[2]; lutuv = v->last_lutuv; use_ic = v->last_use_ic; } if (!srcU) return; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; uvmx_field[i] = (uvmx_field[i] & 3) << 1; uvmy_field[i] = (uvmy_field[i] & 3) << 1; if (fieldmv) { if (!(uvsrc_y & 1)) v_edge_pos = (s->v_edge_pos >> 1) - 1; else uvsrc_y -= (uvsrc_y < 2); } if (use_ic || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv) || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5 || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) { s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcU, s->uvlinesize, s->uvlinesize, 5, (5 << fieldmv), uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos); s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer + 16, srcV, s->uvlinesize, s->uvlinesize, 5, (5 << fieldmv), uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos); srcU = s->sc.edge_emu_buffer; srcV = s->sc.edge_emu_buffer + 16; /* if we deal with intensity compensation we need to scale source blocks */ if (use_ic) { vc1_lut_scale_chroma(srcU, srcV, lutuv[(uvsrc_y + (0 << fieldmv)) & 1], lutuv[(uvsrc_y + (1 << fieldmv)) & 1], 5, s->uvlinesize << fieldmv); } } if (avg) { if (!v->rnd) { h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); } else { v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); } } else { if (!v->rnd) { h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); } else { v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]); } } } } /** Motion compensation for direct or interpolated blocks in B-frames */ void ff_vc1_interp_mc(VC1Context *v) { MpegEncContext *s = &v->s; H264ChromaContext *h264chroma = &v->h264chroma; uint8_t *srcY, *srcU, *srcV; int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; int v_edge_pos = s->v_edge_pos >> v->field_mode; int use_ic = v->next_use_ic; if (!v->field_mode && !v->s.next_picture.f->data[0]) return; mx = s->mv[1][0][0]; my = s->mv[1][0][1]; uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; if (v->field_mode && v->cur_field_type != v->ref_field_type[1]) { my = my - 2 + 4 * v->cur_field_type; uvmy = uvmy - 2 + 4 * v->cur_field_type; } if (v->fastuvmc) { uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1)); uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1)); } srcY = s->next_picture.f->data[0]; srcU = s->next_picture.f->data[1]; srcV = s->next_picture.f->data[2]; src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if (v->profile != PROFILE_ADVANCED) { src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); } else { src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; if (v->field_mode && v->ref_field_type[1]) { srcY += s->current_picture_ptr->f->linesize[0]; srcU += s->current_picture_ptr->f->linesize[1]; srcV += s->current_picture_ptr->f->linesize[2]; } /* for grayscale we should not try to read from unknown area */ if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) { srcU = s->sc.edge_emu_buffer + 18 * s->linesize; srcV = s->sc.edge_emu_buffer + 18 * s->linesize; } if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22 || use_ic || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3 || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) { uint8_t *ubuf = s->sc.edge_emu_buffer + 19 * s->linesize; uint8_t *vbuf = ubuf + 9 * s->uvlinesize; const int k = 17 + s->mspel * 2; srcY -= s->mspel * (1 + s->linesize); s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY, s->linesize, s->linesize, k, k, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, v_edge_pos); srcY = s->sc.edge_emu_buffer; s->vdsp.emulated_edge_mc(ubuf, srcU, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); s->vdsp.emulated_edge_mc(vbuf, srcV, s->uvlinesize, s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1); srcU = ubuf; srcV = vbuf; /* if we deal with range reduction we need to scale source blocks */ if (v->rangeredfrm) { vc1_scale_luma(srcY, k, s->linesize); vc1_scale_chroma(srcU, srcV, 9, s->uvlinesize); } if (use_ic) { uint8_t (*luty )[256] = v->next_luty; uint8_t (*lutuv)[256] = v->next_lutuv; vc1_lut_scale_luma(srcY, luty[v->field_mode ? v->ref_field_type[1] : ((0+src_y - s->mspel) & 1)], luty[v->field_mode ? v->ref_field_type[1] : ((1+src_y - s->mspel) & 1)], k, s->linesize); vc1_lut_scale_chroma(srcU, srcV, lutuv[v->field_mode ? v->ref_field_type[1] : ((0+uvsrc_y) & 1)], lutuv[v->field_mode ? v->ref_field_type[1] : ((1+uvsrc_y) & 1)], 9, s->uvlinesize); } srcY += s->mspel * (1 + s->linesize); } if (s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); v->vc1dsp.avg_vc1_mspel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, v->rnd); } else { // hpel mc dxy = (my & 2) | ((mx & 2) >> 1); if (!v->rnd) s->hdsp.avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); else s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0], srcY, s->linesize, 16); } if (CONFIG_GRAY && s->avctx->flags & AV_CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel blilinear */ uvmx = (uvmx & 3) << 1; uvmy = (uvmy & 3) << 1; if (!v->rnd) { h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } else { v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } }