/* * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at) * * This file is part of libswresample * * libswresample is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * libswresample is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with libswresample; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "swresample_internal.h" #include "libavutil/audioconvert.h" #include "libavutil/avassert.h" #define ONE (1.0) #define R(x) x #define SAMPLE float #define COEFF float #define INTER float #define RENAME(x) x ## _float #include "rematrix_template.c" #undef SAMPLE #undef RENAME #undef R #undef ONE #undef COEFF #undef INTER #define ONE (1.0) #define R(x) x #define SAMPLE double #define COEFF double #define INTER double #define RENAME(x) x ## _double #include "rematrix_template.c" #undef SAMPLE #undef RENAME #undef R #undef ONE #undef COEFF #undef INTER #define ONE (-32768) #define R(x) (((x) + 16384)>>15) #define SAMPLE int16_t #define COEFF int #define INTER int #define RENAME(x) x ## _s16 #include "rematrix_template.c" #define FRONT_LEFT 0 #define FRONT_RIGHT 1 #define FRONT_CENTER 2 #define LOW_FREQUENCY 3 #define BACK_LEFT 4 #define BACK_RIGHT 5 #define FRONT_LEFT_OF_CENTER 6 #define FRONT_RIGHT_OF_CENTER 7 #define BACK_CENTER 8 #define SIDE_LEFT 9 #define SIDE_RIGHT 10 #define TOP_CENTER 11 #define TOP_FRONT_LEFT 12 #define TOP_FRONT_CENTER 13 #define TOP_FRONT_RIGHT 14 #define TOP_BACK_LEFT 15 #define TOP_BACK_CENTER 16 #define TOP_BACK_RIGHT 17 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride) { int nb_in, nb_out, in, out; if (!s || s->in_convert) // s needs to be allocated but not initialized return AVERROR(EINVAL); memset(s->matrix, 0, sizeof(s->matrix)); nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout); nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout); for (out = 0; out < nb_out; out++) { for (in = 0; in < nb_in; in++) s->matrix[out][in] = matrix[in]; matrix += stride; } s->rematrix_custom = 1; return 0; } static int even(int64_t layout){ if(!layout) return 1; if(layout&(layout-1)) return 1; return 0; } static int sane_layout(int64_t layout){ if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker return 0; if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front return 0; if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side return 0; if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT))) return 0; if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER))) return 0; if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX) return 0; return 1; } static int auto_matrix(SwrContext *s) { int i, j, out_i; double matrix[64][64]={{0}}; int64_t unaccounted= s->in_ch_layout & ~s->out_ch_layout; double maxcoef=0; memset(s->matrix, 0, sizeof(s->matrix)); for(i=0; i<64; i++){ if(s->in_ch_layout & s->out_ch_layout & (1LL<in_ch_layout)){ av_log(s, AV_LOG_ERROR, "Input channel layout isnt supported\n"); return AVERROR(EINVAL); } if(!sane_layout(s->out_ch_layout)){ av_log(s, AV_LOG_ERROR, "Output channel layout isnt supported\n"); return AVERROR(EINVAL); } //FIXME implement dolby surround //FIXME implement full ac3 if(unaccounted & AV_CH_FRONT_CENTER){ if((s->out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){ matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2; matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2; }else av_assert0(0); } if(unaccounted & AV_CH_LAYOUT_STEREO){ if(s->out_ch_layout & AV_CH_FRONT_CENTER){ matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2; matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2; if(s->in_ch_layout & AV_CH_FRONT_CENTER) matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2); }else av_assert0(0); } if(unaccounted & AV_CH_BACK_CENTER){ if(s->out_ch_layout & AV_CH_BACK_LEFT){ matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2; matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2; }else if(s->out_ch_layout & AV_CH_SIDE_LEFT){ matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2; matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2; }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){ matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2; matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2; }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){ matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2; }else av_assert0(0); } if(unaccounted & AV_CH_BACK_LEFT){ if(s->out_ch_layout & AV_CH_BACK_CENTER){ matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2; matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2; }else if(s->out_ch_layout & AV_CH_SIDE_LEFT){ if(s->in_ch_layout & AV_CH_SIDE_LEFT){ matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2; matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2; }else{ matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0; matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0; } }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){ matrix[ FRONT_LEFT][ BACK_LEFT]+= s->slev; matrix[FRONT_RIGHT][BACK_RIGHT]+= s->slev; }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){ matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2; matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2; }else av_assert0(0); } if(unaccounted & AV_CH_SIDE_LEFT){ if(s->out_ch_layout & AV_CH_BACK_LEFT){ /* if back channels do not exist in the input, just copy side channels to back channels, otherwise mix side into back */ if (s->in_ch_layout & AV_CH_BACK_LEFT) { matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2; matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2; } else { matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0; matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0; } }else if(s->out_ch_layout & AV_CH_BACK_CENTER){ matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2; matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2; }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){ matrix[ FRONT_LEFT][ SIDE_LEFT]+= s->slev; matrix[FRONT_RIGHT][SIDE_RIGHT]+= s->slev; }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){ matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2; matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2; }else av_assert0(0); } if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){ if(s->out_ch_layout & AV_CH_FRONT_LEFT){ matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0; matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0; }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){ matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2; matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2; }else av_assert0(0); } /* mix LFE into front left/right or center */ if (unaccounted & AV_CH_LOW_FREQUENCY) { if (s->out_ch_layout & AV_CH_FRONT_CENTER) { matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level; } else if (s->out_ch_layout & AV_CH_FRONT_LEFT) { matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2; matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2; } else av_assert0(0); } for(out_i=i=0; i<64; i++){ double sum=0; int in_i=0; for(j=0; j<64; j++){ s->matrix[out_i][in_i]= matrix[i][j]; if(matrix[i][j]){ sum += fabs(matrix[i][j]); } if(s->in_ch_layout & (1ULL<out_ch_layout & (1ULL<rematrix_volume < 0) maxcoef = -s->rematrix_volume; if(( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) && maxcoef > 1.0){ for(i=0; imatrix[i][j] /= maxcoef; } } if(s->rematrix_volume > 0){ for(i=0; imatrix[i][j] *= s->rematrix_volume; } } for(i=0; iout_ch_layout); i++){ for(j=0; jin_ch_layout); j++){ av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]); } av_log(NULL, AV_LOG_DEBUG, "\n"); } return 0; } int swri_rematrix_init(SwrContext *s){ int i, j; int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout); int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout); s->mix_any_f = NULL; if (!s->rematrix_custom) { int r = auto_matrix(s); if (r) return r; } if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){ s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(int)); s->native_one = av_mallocz(sizeof(int)); for (i = 0; i < nb_out; i++) for (j = 0; j < nb_in; j++) ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768); *((int*)s->native_one) = 32768; s->mix_1_1_f = copy_s16; s->mix_2_1_f = sum2_s16; s->mix_any_f = get_mix_any_func_s16(s); }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){ s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(float)); s->native_one = av_mallocz(sizeof(float)); for (i = 0; i < nb_out; i++) for (j = 0; j < nb_in; j++) ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; *((float*)s->native_one) = 1.0; s->mix_1_1_f = copy_float; s->mix_2_1_f = sum2_float; s->mix_any_f = get_mix_any_func_float(s); }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){ s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(double)); s->native_one = av_mallocz(sizeof(double)); for (i = 0; i < nb_out; i++) for (j = 0; j < nb_in; j++) ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; *((double*)s->native_one) = 1.0; s->mix_1_1_f = copy_double; s->mix_2_1_f = sum2_double; s->mix_any_f = get_mix_any_func_double(s); }else av_assert0(0); //FIXME quantize for integeres for (i = 0; i < SWR_CH_MAX; i++) { int ch_in=0; for (j = 0; j < SWR_CH_MAX; j++) { s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768); if(s->matrix[i][j]) s->matrix_ch[i][++ch_in]= j; } s->matrix_ch[i][0]= ch_in; } return 0; } void swri_rematrix_free(SwrContext *s){ av_freep(&s->native_matrix); av_freep(&s->native_one); } int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){ int out_i, in_i, i, j; if(s->mix_any_f) { s->mix_any_f(out->ch, in->ch, s->native_matrix, len); return 0; } av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout)); av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout)); for(out_i=0; out_ich_count; out_i++){ switch(s->matrix_ch[out_i][0]){ case 0: if(mustcopy) memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt)); break; case 1: in_i= s->matrix_ch[out_i][1]; if(s->matrix[out_i][in_i]!=1.0){ s->mix_1_1_f(out->ch[out_i], in->ch[in_i], s->native_matrix, in->ch_count*out_i + in_i, len); }else if(mustcopy){ memcpy(out->ch[out_i], in->ch[in_i], len*out->bps); }else{ out->ch[out_i]= in->ch[in_i]; } break; case 2: { int in_i1 = s->matrix_ch[out_i][1]; int in_i2 = s->matrix_ch[out_i][2]; s->mix_2_1_f(out->ch[out_i], in->ch[in_i1], in->ch[in_i2], s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len); break;} default: if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i]; } ((float*)out->ch[out_i])[i]= v; } }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i]; } ((double*)out->ch[out_i])[i]= v; } }else{ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i]; } ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15; } } } } return 0; }