/* * Copyright (c) 2012 * MIPS Technologies, Inc., California. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Authors: Darko Laus (darko@mips.com) * Djordje Pesut (djordje@mips.com) * Mirjana Vulin (mvulin@mips.com) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Reference: libavcodec/aacdec.c */ #include "libavutil/attributes.h" #include "libavcodec/aacdec.h" #include "aacdec_mips.h" #include "libavcodec/aactab.h" #include "libavcodec/sinewin.h" #include "libavutil/mips/asmdefs.h" #if HAVE_INLINE_ASM #if HAVE_MIPSFPU static av_always_inline void float_copy(float *dst, const float *src, int count) { // Copy 'count' floats from src to dst const float *loop_end = src + count; int temp[8]; // count must be a multiple of 8 av_assert2(count % 8 == 0); // loop unrolled 8 times __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "1: \n\t" "lw %[temp0], 0(%[src]) \n\t" "lw %[temp1], 4(%[src]) \n\t" "lw %[temp2], 8(%[src]) \n\t" "lw %[temp3], 12(%[src]) \n\t" "lw %[temp4], 16(%[src]) \n\t" "lw %[temp5], 20(%[src]) \n\t" "lw %[temp6], 24(%[src]) \n\t" "lw %[temp7], 28(%[src]) \n\t" PTR_ADDIU "%[src], %[src], 32 \n\t" "sw %[temp0], 0(%[dst]) \n\t" "sw %[temp1], 4(%[dst]) \n\t" "sw %[temp2], 8(%[dst]) \n\t" "sw %[temp3], 12(%[dst]) \n\t" "sw %[temp4], 16(%[dst]) \n\t" "sw %[temp5], 20(%[dst]) \n\t" "sw %[temp6], 24(%[dst]) \n\t" "sw %[temp7], 28(%[dst]) \n\t" "bne %[src], %[loop_end], 1b \n\t" PTR_ADDIU "%[dst], %[dst], 32 \n\t" ".set pop \n\t" : [temp0]"=&r"(temp[0]), [temp1]"=&r"(temp[1]), [temp2]"=&r"(temp[2]), [temp3]"=&r"(temp[3]), [temp4]"=&r"(temp[4]), [temp5]"=&r"(temp[5]), [temp6]"=&r"(temp[6]), [temp7]"=&r"(temp[7]), [src]"+r"(src), [dst]"+r"(dst) : [loop_end]"r"(loop_end) : "memory" ); } static av_always_inline int lcg_random(unsigned previous_val) { union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; return v.s; } static void imdct_and_windowing_mips(AACDecContext *ac, SingleChannelElement *sce) { IndividualChannelStream *ics = &sce->ics; float *in = sce->coeffs; float *out = sce->output; float *saved = sce->saved; const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; float *buf = ac->buf_mdct; int i; if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { for (i = 0; i < 1024; i += 128) ac->mdct128_fn(ac->mdct128, buf + i, in + i, sizeof(float)); } else ac->mdct1024_fn(ac->mdct1024, buf, in, sizeof(float)); /* window overlapping * NOTE: To simplify the overlapping code, all 'meaningless' short to long * and long to short transitions are considered to be short to short * transitions. This leaves just two cases (long to long and short to short) * with a little special sauce for EIGHT_SHORT_SEQUENCE. */ if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512); } else { float_copy(out, saved, 448); if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { { float wi; float wj; int i; float temp0, temp1, temp2, temp3; float *dst0 = out + 448 + 0*128; float *dst1 = dst0 + 64 + 63; float *dst2 = saved + 63; float *win0 = (float*)swindow; float *win1 = win0 + 64 + 63; float *win0_prev = (float*)swindow_prev; float *win1_prev = win0_prev + 64 + 63; float *src0_prev = saved + 448; float *src1_prev = buf + 0*128 + 63; float *src0 = buf + 0*128 + 64; float *src1 = buf + 1*128 + 63; for(i = 0; i < 64; i++) { temp0 = src0_prev[0]; temp1 = src1_prev[0]; wi = *win0_prev; wj = *win1_prev; temp2 = src0[0]; temp3 = src1[0]; dst0[0] = temp0 * wj - temp1 * wi; dst1[0] = temp0 * wi + temp1 * wj; wi = *win0; wj = *win1; temp0 = src0[128]; temp1 = src1[128]; dst0[128] = temp2 * wj - temp3 * wi; dst1[128] = temp2 * wi + temp3 * wj; temp2 = src0[256]; temp3 = src1[256]; dst0[256] = temp0 * wj - temp1 * wi; dst1[256] = temp0 * wi + temp1 * wj; dst0[384] = temp2 * wj - temp3 * wi; dst1[384] = temp2 * wi + temp3 * wj; temp0 = src0[384]; temp1 = src1[384]; dst0[512] = temp0 * wj - temp1 * wi; dst2[0] = temp0 * wi + temp1 * wj; src0++; src1--; src0_prev++; src1_prev--; win0++; win1--; win0_prev++; win1_prev--; dst0++; dst1--; dst2--; } } } else { ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); float_copy(out + 576, buf + 64, 448); } } // buffer update if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); float_copy(saved + 448, buf + 7*128 + 64, 64); } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { float_copy(saved, buf + 512, 448); float_copy(saved + 448, buf + 7*128 + 64, 64); } else { // LONG_STOP or ONLY_LONG float_copy(saved, buf + 512, 512); } } static void apply_ltp_mips(AACDecContext *ac, SingleChannelElement *sce) { const LongTermPrediction *ltp = &sce->ics.ltp; const uint16_t *offsets = sce->ics.swb_offset; int i, sfb; int j, k; if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { float *predTime = sce->output; float *predFreq = ac->buf_mdct; float *p_predTime; int16_t num_samples = 2048; if (ltp->lag < 1024) num_samples = ltp->lag + 1024; j = (2048 - num_samples) >> 2; k = (2048 - num_samples) & 3; p_predTime = &predTime[num_samples]; for (i = 0; i < num_samples; i++) predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef; for (i = 0; i < j; i++) { /* loop unrolled 4 times */ __asm__ volatile ( "sw $0, 0(%[p_predTime]) \n\t" "sw $0, 4(%[p_predTime]) \n\t" "sw $0, 8(%[p_predTime]) \n\t" "sw $0, 12(%[p_predTime]) \n\t" PTR_ADDIU "%[p_predTime], %[p_predTime], 16 \n\t" : [p_predTime]"+r"(p_predTime) : : "memory" ); } for (i = 0; i < k; i++) { __asm__ volatile ( "sw $0, 0(%[p_predTime]) \n\t" PTR_ADDIU "%[p_predTime], %[p_predTime], 4 \n\t" : [p_predTime]"+r"(p_predTime) : : "memory" ); } ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics); if (sce->tns.present) ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0); for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) if (ltp->used[sfb]) for (i = offsets[sfb]; i < offsets[sfb + 1]; i++) sce->coeffs[i] += predFreq[i]; } } static av_always_inline void fmul_and_reverse(float *dst, const float *src0, const float *src1, int count) { /* Multiply 'count' floats in src0 by src1 and store the results in dst in reverse */ /* This should be equivalent to a normal fmul, followed by reversing dst */ // count must be a multiple of 4 av_assert2(count % 4 == 0); // move src0 and src1 to the last element of their arrays src0 += count - 1; src1 += count - 1; for (; count > 0; count -= 4){ float temp[12]; /* loop unrolled 4 times */ __asm__ volatile ( "lwc1 %[temp0], 0(%[ptr2]) \n\t" "lwc1 %[temp1], -4(%[ptr2]) \n\t" "lwc1 %[temp2], -8(%[ptr2]) \n\t" "lwc1 %[temp3], -12(%[ptr2]) \n\t" "lwc1 %[temp4], 0(%[ptr3]) \n\t" "lwc1 %[temp5], -4(%[ptr3]) \n\t" "lwc1 %[temp6], -8(%[ptr3]) \n\t" "lwc1 %[temp7], -12(%[ptr3]) \n\t" "mul.s %[temp8], %[temp0], %[temp4] \n\t" "mul.s %[temp9], %[temp1], %[temp5] \n\t" "mul.s %[temp10], %[temp2], %[temp6] \n\t" "mul.s %[temp11], %[temp3], %[temp7] \n\t" "swc1 %[temp8], 0(%[ptr1]) \n\t" "swc1 %[temp9], 4(%[ptr1]) \n\t" "swc1 %[temp10], 8(%[ptr1]) \n\t" "swc1 %[temp11], 12(%[ptr1]) \n\t" PTR_ADDIU "%[ptr1], %[ptr1], 16 \n\t" PTR_ADDIU "%[ptr2], %[ptr2], -16 \n\t" PTR_ADDIU "%[ptr3], %[ptr3], -16 \n\t" : [temp0]"=&f"(temp[0]), [temp1]"=&f"(temp[1]), [temp2]"=&f"(temp[2]), [temp3]"=&f"(temp[3]), [temp4]"=&f"(temp[4]), [temp5]"=&f"(temp[5]), [temp6]"=&f"(temp[6]), [temp7]"=&f"(temp[7]), [temp8]"=&f"(temp[8]), [temp9]"=&f"(temp[9]), [temp10]"=&f"(temp[10]), [temp11]"=&f"(temp[11]), [ptr1]"+r"(dst), [ptr2]"+r"(src0), [ptr3]"+r"(src1) : : "memory" ); } } static void update_ltp_mips(AACDecContext *ac, SingleChannelElement *sce) { IndividualChannelStream *ics = &sce->ics; float *saved = sce->saved; float *saved_ltp = sce->coeffs; const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { float *p_saved_ltp = saved_ltp + 576; float *loop_end1 = p_saved_ltp + 448; float_copy(saved_ltp, saved, 512); /* loop unrolled 8 times */ __asm__ volatile ( "1: \n\t" "sw $0, 0(%[p_saved_ltp]) \n\t" "sw $0, 4(%[p_saved_ltp]) \n\t" "sw $0, 8(%[p_saved_ltp]) \n\t" "sw $0, 12(%[p_saved_ltp]) \n\t" "sw $0, 16(%[p_saved_ltp]) \n\t" "sw $0, 20(%[p_saved_ltp]) \n\t" "sw $0, 24(%[p_saved_ltp]) \n\t" "sw $0, 28(%[p_saved_ltp]) \n\t" PTR_ADDIU "%[p_saved_ltp],%[p_saved_ltp], 32 \n\t" "bne %[p_saved_ltp], %[loop_end1], 1b \n\t" : [p_saved_ltp]"+r"(p_saved_ltp) : [loop_end1]"r"(loop_end1) : "memory" ); ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64); } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { float *buff0 = saved; float *buff1 = saved_ltp; float *loop_end = saved + 448; /* loop unrolled 8 times */ __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "1: \n\t" "lw %[temp0], 0(%[src]) \n\t" "lw %[temp1], 4(%[src]) \n\t" "lw %[temp2], 8(%[src]) \n\t" "lw %[temp3], 12(%[src]) \n\t" "lw %[temp4], 16(%[src]) \n\t" "lw %[temp5], 20(%[src]) \n\t" "lw %[temp6], 24(%[src]) \n\t" "lw %[temp7], 28(%[src]) \n\t" PTR_ADDIU "%[src], %[src], 32 \n\t" "sw %[temp0], 0(%[dst]) \n\t" "sw %[temp1], 4(%[dst]) \n\t" "sw %[temp2], 8(%[dst]) \n\t" "sw %[temp3], 12(%[dst]) \n\t" "sw %[temp4], 16(%[dst]) \n\t" "sw %[temp5], 20(%[dst]) \n\t" "sw %[temp6], 24(%[dst]) \n\t" "sw %[temp7], 28(%[dst]) \n\t" "sw $0, 2304(%[dst]) \n\t" "sw $0, 2308(%[dst]) \n\t" "sw $0, 2312(%[dst]) \n\t" "sw $0, 2316(%[dst]) \n\t" "sw $0, 2320(%[dst]) \n\t" "sw $0, 2324(%[dst]) \n\t" "sw $0, 2328(%[dst]) \n\t" "sw $0, 2332(%[dst]) \n\t" "bne %[src], %[loop_end], 1b \n\t" PTR_ADDIU "%[dst], %[dst], 32 \n\t" ".set pop \n\t" : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [src]"+r"(buff0), [dst]"+r"(buff1) : [loop_end]"r"(loop_end) : "memory" ); ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64); } else { // LONG_STOP or ONLY_LONG ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512); fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 512, lwindow, 512); } float_copy(sce->ltp_state, sce->ltp_state + 1024, 1024); float_copy(sce->ltp_state + 1024, sce->output, 1024); float_copy(sce->ltp_state + 2048, saved_ltp, 1024); } #endif /* HAVE_MIPSFPU */ #endif /* HAVE_INLINE_ASM */ void ff_aacdec_init_mips(AACDecContext *c) { #if HAVE_INLINE_ASM #if HAVE_MIPSFPU c->imdct_and_windowing = imdct_and_windowing_mips; c->apply_ltp = apply_ltp_mips; c->update_ltp = update_ltp_mips; #endif /* HAVE_MIPSFPU */ #endif /* HAVE_INLINE_ASM */ }