/* * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/mem.h" #include "libavutil/tx.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "audio.h" #include "filters.h" #include "formats.h" #include "video.h" #include "avfilter.h" #include "internal.h" #include "window_func.h" enum DataMode { MAGNITUDE, PHASE, DELAY, NB_DATA }; enum DisplayMode { LINE, BAR, DOT, NB_MODES }; enum ChannelMode { COMBINED, SEPARATE, NB_CMODES }; enum FrequencyScale { FS_LINEAR, FS_LOG, FS_RLOG, NB_FSCALES }; enum AmplitudeScale { AS_LINEAR, AS_SQRT, AS_CBRT, AS_LOG, NB_ASCALES }; typedef struct ShowFreqsContext { const AVClass *class; int w, h; int mode; int data_mode; int cmode; int fft_size; int ascale, fscale; int avg; int win_func; char *ch_layout_str; uint8_t *bypass; AVChannelLayout ch_layout; AVTXContext *fft; av_tx_fn tx_fn; AVComplexFloat **fft_input; AVComplexFloat **fft_data; AVFrame *window; float **avg_data; float *window_func_lut; float overlap; float minamp; int hop_size; int nb_channels; int nb_draw_channels; int nb_freq; int win_size; float scale; char *colors; int64_t pts; int64_t old_pts; AVRational frame_rate; } ShowFreqsContext; #define OFFSET(x) offsetof(ShowFreqsContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption showfreqs_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS }, { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS }, { "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS }, { "mode", "set display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BAR}, 0, NB_MODES-1, FLAGS, .unit = "mode" }, { "line", "show lines", 0, AV_OPT_TYPE_CONST, {.i64=LINE}, 0, 0, FLAGS, .unit = "mode" }, { "bar", "show bars", 0, AV_OPT_TYPE_CONST, {.i64=BAR}, 0, 0, FLAGS, .unit = "mode" }, { "dot", "show dots", 0, AV_OPT_TYPE_CONST, {.i64=DOT}, 0, 0, FLAGS, .unit = "mode" }, { "ascale", "set amplitude scale", OFFSET(ascale), AV_OPT_TYPE_INT, {.i64=AS_LOG}, 0, NB_ASCALES-1, FLAGS, .unit = "ascale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=AS_LINEAR}, 0, 0, FLAGS, .unit = "ascale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=AS_SQRT}, 0, 0, FLAGS, .unit = "ascale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=AS_CBRT}, 0, 0, FLAGS, .unit = "ascale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=AS_LOG}, 0, 0, FLAGS, .unit = "ascale" }, { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=FS_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=FS_LINEAR}, 0, 0, FLAGS, .unit = "fscale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_LOG}, 0, 0, FLAGS, .unit = "fscale" }, { "rlog", "reverse logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_RLOG}, 0, 0, FLAGS, .unit = "fscale" }, { "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=2048}, 16, 65536, FLAGS }, WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING), { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1.}, 0., 1., FLAGS }, { "averaging", "set time averaging", OFFSET(avg), AV_OPT_TYPE_INT, {.i64=1}, 0, INT32_MAX, FLAGS }, { "colors", "set channels colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, FLAGS }, { "cmode", "set channel mode", OFFSET(cmode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_CMODES-1, FLAGS, .unit = "cmode" }, { "combined", "show all channels in same window", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "cmode" }, { "separate", "show each channel in own window", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "cmode" }, { "minamp", "set minimum amplitude", OFFSET(minamp), AV_OPT_TYPE_FLOAT, {.dbl=1e-6}, FLT_MIN, 1e-6, FLAGS }, { "data", "set data mode", OFFSET(data_mode), AV_OPT_TYPE_INT, {.i64=MAGNITUDE}, 0, NB_DATA-1, FLAGS, .unit = "data" }, { "magnitude", "show magnitude", 0, AV_OPT_TYPE_CONST, {.i64=MAGNITUDE}, 0, 0, FLAGS, .unit = "data" }, { "phase", "show phase", 0, AV_OPT_TYPE_CONST, {.i64=PHASE}, 0, 0, FLAGS, .unit = "data" }, { "delay", "show group delay",0, AV_OPT_TYPE_CONST, {.i64=DELAY}, 0, 0, FLAGS, .unit = "data" }, { "channels", "set channels to draw", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showfreqs); static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0) return ret; layouts = ff_all_channel_counts(); if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0) return ret; return 0; } static int config_output(AVFilterLink *outlink) { FilterLink *l = ff_filter_link(outlink); AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowFreqsContext *s = ctx->priv; float overlap, scale = 1.f; int i, ret; s->old_pts = AV_NOPTS_VALUE; s->nb_freq = s->fft_size / 2; s->win_size = s->fft_size; av_tx_uninit(&s->fft); ret = av_tx_init(&s->fft, &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return ret; } /* FFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_channels; i++) { av_freep(&s->fft_input[i]); av_freep(&s->fft_data[i]); av_freep(&s->avg_data[i]); } av_freep(&s->bypass); av_freep(&s->fft_input); av_freep(&s->fft_data); av_freep(&s->avg_data); s->nb_channels = inlink->ch_layout.nb_channels; s->bypass = av_calloc(s->nb_channels, sizeof(*s->bypass)); if (!s->bypass) return AVERROR(ENOMEM); s->fft_input = av_calloc(s->nb_channels, sizeof(*s->fft_input)); if (!s->fft_input) return AVERROR(ENOMEM); s->fft_data = av_calloc(s->nb_channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); s->avg_data = av_calloc(s->nb_channels, sizeof(*s->avg_data)); if (!s->avg_data) return AVERROR(ENOMEM); for (i = 0; i < s->nb_channels; i++) { s->fft_input[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_input)); s->fft_data[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_data)); s->avg_data[i] = av_calloc(s->nb_freq, sizeof(**s->avg_data)); if (!s->fft_data[i] || !s->avg_data[i] || !s->fft_input[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1.) s->overlap = overlap; s->hop_size = (1. - s->overlap) * s->win_size; if (s->hop_size < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); } for (s->scale = 0, i = 0; i < s->win_size; i++) { s->scale += s->window_func_lut[i] * s->window_func_lut[i]; } s->window = ff_get_audio_buffer(inlink, s->win_size * 2); if (!s->window) return AVERROR(ENOMEM); l->frame_rate = s->frame_rate; outlink->time_base = av_inv_q(l->frame_rate); outlink->sample_aspect_ratio = (AVRational){1,1}; outlink->w = s->w; outlink->h = s->h; ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout); if (ret < 0) return ret; s->nb_draw_channels = s->nb_channels; if (strcmp(s->ch_layout_str, "all")) { int nb_draw_channels = 0; av_channel_layout_from_string(&s->ch_layout, s->ch_layout_str); for (int ch = 0; ch < s->nb_channels; ch++) { const enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); s->bypass[ch] = av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0; nb_draw_channels += s->bypass[ch] == 0; } s->nb_draw_channels = nb_draw_channels; } return 0; } static inline void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4]) { uint32_t color = AV_RL32(out->data[0] + y * out->linesize[0] + x * 4); if ((color & 0xffffff) != 0) AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg) | color); else AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg)); } static int get_sx(ShowFreqsContext *s, int f) { switch (s->fscale) { case FS_LINEAR: return (s->w/(float)s->nb_freq)*f; case FS_LOG: return s->w-pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.)); case FS_RLOG: return pow(s->w, f/(s->nb_freq-1.)); } return 0; } static float get_bsize(ShowFreqsContext *s, int f) { switch (s->fscale) { case FS_LINEAR: return s->w/(float)s->nb_freq; case FS_LOG: return pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.))- pow(s->w, (s->nb_freq-f-2)/(s->nb_freq-1.)); case FS_RLOG: return pow(s->w, (f+1)/(s->nb_freq-1.))- pow(s->w, f /(s->nb_freq-1.)); } return 1.; } static inline void plot_freq(ShowFreqsContext *s, int ch, double a, int f, uint8_t fg[4], int *prev_y, AVFrame *out, AVFilterLink *outlink) { FilterLink *outl = ff_filter_link(outlink); const int w = s->w; const float min = s->minamp; const float avg = s->avg_data[ch][f]; const float bsize = get_bsize(s, f); const int sx = get_sx(s, f); int end = outlink->h; int x, y, i; switch(s->ascale) { case AS_SQRT: a = 1.0 - sqrt(a); break; case AS_CBRT: a = 1.0 - cbrt(a); break; case AS_LOG: a = log(av_clipd(a, min, 1)) / log(min); break; case AS_LINEAR: a = 1.0 - a; break; } switch (s->cmode) { case COMBINED: y = a * outlink->h - 1; break; case SEPARATE: end = (outlink->h / s->nb_draw_channels) * (ch + 1); y = (outlink->h / s->nb_draw_channels) * ch + a * (outlink->h / s->nb_draw_channels) - 1; break; default: av_assert0(0); } if (y < 0) return; switch (s->avg) { case 0: y = s->avg_data[ch][f] = !outl->frame_count_in ? y : FFMIN(0, y); break; case 1: break; default: s->avg_data[ch][f] = avg + y * (y - avg) / (FFMIN(outl->frame_count_in + 1, s->avg) * (float)y); y = av_clip(s->avg_data[ch][f], 0, outlink->h - 1); break; } switch(s->mode) { case LINE: if (*prev_y == -1) { *prev_y = y; } if (y <= *prev_y) { for (x = sx + 1; x < sx + bsize && x < w; x++) draw_dot(out, x, y, fg); for (i = y; i <= *prev_y; i++) draw_dot(out, sx, i, fg); } else { for (i = *prev_y; i <= y; i++) draw_dot(out, sx, i, fg); for (x = sx + 1; x < sx + bsize && x < w; x++) draw_dot(out, x, i - 1, fg); } *prev_y = y; break; case BAR: for (x = sx; x < sx + bsize && x < w; x++) for (i = y; i < end; i++) draw_dot(out, x, i, fg); break; case DOT: for (x = sx; x < sx + bsize && x < w; x++) draw_dot(out, x, y, fg); break; } } static int plot_freqs(AVFilterLink *inlink, int64_t pts) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowFreqsContext *s = ctx->priv; AVFrame *in = s->window; const int win_size = s->win_size; char *colors, *color, *saveptr = NULL; AVFrame *out; int ch, n; /* fill FFT input with the number of samples available */ for (ch = 0; ch < s->nb_channels; ch++) { const float *p = (float *)in->extended_data[ch]; if (s->bypass[ch]) continue; for (n = 0; n < win_size; n++) { s->fft_input[ch][n].re = p[n] * s->window_func_lut[n]; s->fft_input[ch][n].im = 0; } } /* run FFT on each samples set */ for (ch = 0; ch < s->nb_channels; ch++) { if (s->bypass[ch]) continue; s->tx_fn(s->fft, s->fft_data[ch], s->fft_input[ch], sizeof(AVComplexFloat)); } s->pts = av_rescale_q(pts, inlink->time_base, outlink->time_base); if (s->old_pts >= s->pts) return 0; s->old_pts = s->pts; #define RE(x, ch) s->fft_data[ch][x].re #define IM(x, ch) s->fft_data[ch][x].im #define M(a, b) (sqrt((a) * (a) + (b) * (b))) #define P(a, b) (atan2((b), (a))) colors = av_strdup(s->colors); if (!colors) return AVERROR(ENOMEM); out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_free(colors); return AVERROR(ENOMEM); } for (n = 0; n < outlink->h; n++) memset(out->data[0] + out->linesize[0] * n, 0, outlink->w * 4); for (ch = 0; ch < s->nb_channels; ch++) { uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff }; int prev_y = -1, f; double a; color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr); if (color) av_parse_color(fg, color, -1, ctx); if (s->bypass[ch]) continue; switch (s->data_mode) { case MAGNITUDE: for (f = 0; f < s->nb_freq; f++) { a = av_clipd(M(RE(f, ch), IM(f, ch)) / s->scale, 0, 1); plot_freq(s, ch, a, f, fg, &prev_y, out, outlink); } break; case PHASE: for (f = 0; f < s->nb_freq; f++) { a = av_clipd((M_PI + P(RE(f, ch), IM(f, ch))) / (2. * M_PI), 0, 1); plot_freq(s, ch, a, f, fg, &prev_y, out, outlink); } break; case DELAY: for (f = 0; f < s->nb_freq; f++) { a = av_clipd((M_PI - P(IM(f, ch) * RE(f-1, ch) - IM(f-1, ch) * RE(f, ch), RE(f, ch) * RE(f-1, ch) + IM(f, ch) * IM(f-1, ch))) / (2. * M_PI), 0, 1); plot_freq(s, ch, a, f, fg, &prev_y, out, outlink); } break; } } av_free(colors); out->pts = s->pts; out->duration = 1; out->sample_aspect_ratio = (AVRational){1,1}; return ff_filter_frame(outlink, out); } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; ShowFreqsContext *s = ctx->priv; const int offset = s->win_size - s->hop_size; int64_t pts = in->pts; for (int ch = 0; ch < in->ch_layout.nb_channels; ch++) { float *dst = (float *)s->window->extended_data[ch]; memmove(dst, &dst[s->hop_size], offset * sizeof(float)); memcpy(&dst[offset], in->extended_data[ch], in->nb_samples * sizeof(float)); memset(&dst[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float)); } av_frame_free(&in); return plot_freqs(inlink, pts); } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; ShowFreqsContext *s = ctx->priv; AVFrame *in; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in); if (ret < 0) return ret; if (ret > 0) ret = filter_frame(inlink, in); if (ret < 0) return ret; if (ff_inlink_queued_samples(inlink) >= s->hop_size) { ff_filter_set_ready(ctx, 10); return 0; } FF_FILTER_FORWARD_STATUS(inlink, outlink); FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { ShowFreqsContext *s = ctx->priv; int i; av_channel_layout_uninit(&s->ch_layout); av_tx_uninit(&s->fft); for (i = 0; i < s->nb_channels; i++) { if (s->fft_input) av_freep(&s->fft_input[i]); if (s->fft_data) av_freep(&s->fft_data[i]); if (s->avg_data) av_freep(&s->avg_data[i]); } av_freep(&s->bypass); av_freep(&s->fft_input); av_freep(&s->fft_data); av_freep(&s->avg_data); av_freep(&s->window_func_lut); av_frame_free(&s->window); } static const AVFilterPad showfreqs_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_avf_showfreqs = { .name = "showfreqs", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a frequencies video output."), .uninit = uninit, .priv_size = sizeof(ShowFreqsContext), .activate = activate, FILTER_INPUTS(ff_audio_default_filterpad), FILTER_OUTPUTS(showfreqs_outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &showfreqs_class, };