/* * Copyright (c) 2013 Paul B Mahol * Copyright (c) 2006-2008 Rob Sykes * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* * 2-pole filters designed by Robert Bristow-Johnson * see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt * * 1-pole filters based on code (c) 2000 Chris Bagwell * Algorithms: Recursive single pole low/high pass filter * Reference: The Scientist and Engineer's Guide to Digital Signal Processing * * low-pass: output[N] = input[N] * A + output[N-1] * B * X = exp(-2.0 * pi * Fc) * A = 1 - X * B = X * Fc = cutoff freq / sample rate * * Mimics an RC low-pass filter: * * ---/\/\/\/\-----------> * | * --- C * --- * | * | * V * * high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1] * X = exp(-2.0 * pi * Fc) * A0 = (1 + X) / 2 * A1 = -(1 + X) / 2 * B1 = X * Fc = cutoff freq / sample rate * * Mimics an RC high-pass filter: * * || C * ----||---------> * || | * < * > R * < * | * V */ #include "config_components.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/ffmath.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "internal.h" enum FilterType { biquad, equalizer, bass, treble, bandpass, bandreject, allpass, highpass, lowpass, lowshelf, highshelf, tiltshelf, }; enum WidthType { NONE, HERTZ, OCTAVE, QFACTOR, SLOPE, KHERTZ, NB_WTYPE, }; enum TransformType { DI, DII, TDI, TDII, LATT, SVF, ZDF, NB_TTYPE, }; typedef struct BiquadsContext { const AVClass *class; enum FilterType filter_type; int width_type; int poles; int csg; int transform_type; int precision; int block_samples; int bypass; double gain; double frequency; double width; double mix; char *ch_layout_str; AVChannelLayout ch_layout; int normalize; int order; double a_double[3]; double b_double[3]; float a_float[3]; float b_float[3]; double oa[3]; double ob[3]; AVFrame *block[3]; int *clip; AVFrame *cache[2]; int block_align; int64_t pts; int nb_samples; void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len, void *cache, int *clip, int disabled); } BiquadsContext; static int query_formats(AVFilterContext *ctx) { BiquadsContext *s = ctx->priv; static const enum AVSampleFormat auto_sample_fmts[] = { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE }; enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE }; const enum AVSampleFormat *sample_fmts_list = sample_fmts; int ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; switch (s->precision) { case 0: sample_fmts[0] = AV_SAMPLE_FMT_S16P; break; case 1: sample_fmts[0] = AV_SAMPLE_FMT_S32P; break; case 2: sample_fmts[0] = AV_SAMPLE_FMT_FLTP; break; case 3: sample_fmts[0] = AV_SAMPLE_FMT_DBLP; break; default: sample_fmts_list = auto_sample_fmts; break; } ret = ff_set_common_formats_from_list(ctx, sample_fmts_list); if (ret < 0) return ret; return ff_set_common_all_samplerates(ctx); } #define BIQUAD_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype i1 = fcache[0], i2 = fcache[1], o1 = fcache[2], o2 = fcache[3]; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype a1 = -a[1]; \ ftype a2 = -a[2]; \ ftype b0 = b[0]; \ ftype b1 = b[1]; \ ftype b2 = b[2]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype out; \ int i; \ \ for (i = 0; i+1 < len; i++) { \ o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \ i2 = ibuf[i]; \ out = o2 * wet + i2 * dry; \ if (disabled) { \ obuf[i] = i2; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ i++; \ o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \ i1 = ibuf[i]; \ out = o1 * wet + i1 * dry; \ if (disabled) { \ obuf[i] = i1; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ if (i < len) { \ ftype o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \ i2 = i1; \ i1 = ibuf[i]; \ o2 = o1; \ o1 = o0; \ out = o0 * wet + i1 * dry; \ if (disabled) { \ obuf[i] = i1; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = i1; \ fcache[1] = i2; \ fcache[2] = o1; \ fcache[3] = o2; \ } BIQUAD_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_DII_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_dii_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype a1 = -a[1]; \ ftype a2 = -a[2]; \ ftype b0 = b[0]; \ ftype b1 = b[1]; \ ftype b2 = b[2]; \ ftype w1 = fcache[0]; \ ftype w2 = fcache[1]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype in, out, w0; \ \ for (int i = 0; i < len; i++) { \ in = ibuf[i]; \ w0 = in + a1 * w1 + a2 * w2; \ out = b0 * w0 + b1 * w1 + b2 * w2; \ w2 = w1; \ w1 = w0; \ out = out * wet + in * dry; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = w1; \ fcache[1] = w2; \ } BIQUAD_DII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_DII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_DII_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_DII_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_TDI_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_tdi_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype a1 = -a[1]; \ ftype a2 = -a[2]; \ ftype b0 = b[0]; \ ftype b1 = b[1]; \ ftype b2 = b[2]; \ ftype s1 = fcache[0]; \ ftype s2 = fcache[1]; \ ftype s3 = fcache[2]; \ ftype s4 = fcache[3]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype in, out; \ \ for (int i = 0; i < len; i++) { \ ftype t1, t2, t3, t4; \ in = ibuf[i] + s1; \ t1 = in * a1 + s2; \ t2 = in * a2; \ t3 = in * b1 + s4; \ t4 = in * b2; \ out = b0 * in + s3; \ out = out * wet + in * dry; \ s1 = t1; s2 = t2; s3 = t3; s4 = t4; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ \ fcache[0] = s1; \ fcache[1] = s2; \ fcache[2] = s3; \ fcache[3] = s4; \ } BIQUAD_TDI_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_TDI_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_TDI_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_TDI_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_TDII_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_tdii_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype a1 = -a[1]; \ ftype a2 = -a[2]; \ ftype b0 = b[0]; \ ftype b1 = b[1]; \ ftype b2 = b[2]; \ ftype w1 = fcache[0]; \ ftype w2 = fcache[1]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype in, out; \ \ for (int i = 0; i < len; i++) { \ in = ibuf[i]; \ out = b0 * in + w1; \ w1 = b1 * in + w2 + a1 * out; \ w2 = b2 * in + a2 * out; \ out = out * wet + in * dry; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = w1; \ fcache[1] = w2; \ } BIQUAD_TDII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_TDII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_TDII_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_TDII_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_LATT_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_latt_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype k0 = a[1]; \ ftype k1 = a[2]; \ ftype v0 = b[0]; \ ftype v1 = b[1]; \ ftype v2 = b[2]; \ ftype s0 = fcache[0]; \ ftype s1 = fcache[1]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype in, out; \ ftype t0, t1; \ \ for (int i = 0; i < len; i++) { \ out = 0.; \ in = ibuf[i]; \ t0 = in - k1 * s0; \ t1 = t0 * k1 + s0; \ out += t1 * v2; \ \ t0 = t0 - k0 * s1; \ t1 = t0 * k0 + s1; \ out += t1 * v1; \ \ out += t0 * v0; \ s0 = t1; \ s1 = t0; \ \ out = out * wet + in * dry; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = s0; \ fcache[1] = s1; \ } BIQUAD_LATT_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_LATT_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_LATT_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_LATT_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_SVF_FILTER(name, type, ftype, min, max, need_clipping) \ static void biquad_svf_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype a1 = a[1]; \ ftype a2 = a[2]; \ ftype b0 = b[0]; \ ftype b1 = b[1]; \ ftype b2 = b[2]; \ ftype s0 = fcache[0]; \ ftype s1 = fcache[1]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype in, out; \ ftype t0, t1; \ \ for (int i = 0; i < len; i++) { \ in = ibuf[i]; \ out = b2 * in + s0; \ t0 = b0 * in + a1 * s0 + s1; \ t1 = b1 * in + a2 * s0; \ s0 = t0; \ s1 = t1; \ \ out = out * wet + in * dry; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = s0; \ fcache[1] = s1; \ } BIQUAD_SVF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) BIQUAD_SVF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) BIQUAD_SVF_FILTER(flt, float, float, -1.f, 1.f, 0) BIQUAD_SVF_FILTER(dbl, double, double, -1., 1., 0) #define BIQUAD_ZDF_FILTER(name, type, ftype, min, max, need_clipping, two) \ static void biquad_zdf_## name (BiquadsContext *s, \ const void *input, void *output, int len, \ void *cache, int *clippings, int disabled) \ { \ const type *ibuf = input; \ type *obuf = output; \ ftype *fcache = cache; \ ftype *a = s->a_##ftype; \ ftype *b = s->b_##ftype; \ ftype m0 = b[0]; \ ftype m1 = b[1]; \ ftype m2 = b[2]; \ ftype a0 = a[0]; \ ftype a1 = a[1]; \ ftype a2 = a[2]; \ ftype b0 = fcache[0]; \ ftype b1 = fcache[1]; \ ftype wet = s->mix; \ ftype dry = 1. - wet; \ ftype out; \ \ for (int i = 0; i < len; i++) { \ const ftype in = ibuf[i]; \ const ftype v0 = in; \ const ftype v3 = v0 - b1; \ const ftype v1 = a0 * b0 + a1 * v3; \ const ftype v2 = b1 + a1 * b0 + a2 * v3; \ \ b0 = two * v1 - b0; \ b1 = two * v2 - b1; \ \ out = m0 * v0 + m1 * v1 + m2 * v2; \ out = out * wet + in * dry; \ if (disabled) { \ obuf[i] = in; \ } else if (need_clipping && out < min) { \ (*clippings)++; \ obuf[i] = min; \ } else if (need_clipping && out > max) { \ (*clippings)++; \ obuf[i] = max; \ } else { \ obuf[i] = out; \ } \ } \ fcache[0] = b0; \ fcache[1] = b1; \ } BIQUAD_ZDF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1, 2.f) BIQUAD_ZDF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1, 2.0) BIQUAD_ZDF_FILTER(flt, float, float, -1.f, 1.f, 0, 2.f) BIQUAD_ZDF_FILTER(dbl, double, double, -1., 1., 0, 2.0) static void convert_dir2latt(BiquadsContext *s) { double k0, k1, v0, v1, v2; k1 = s->a_double[2]; k0 = s->a_double[1] / (1. + k1); v2 = s->b_double[2]; v1 = s->b_double[1] - v2 * s->a_double[1]; v0 = s->b_double[0] - v1 * k0 - v2 * k1; s->a_double[1] = k0; s->a_double[2] = k1; s->b_double[0] = v0; s->b_double[1] = v1; s->b_double[2] = v2; } static void convert_dir2svf(BiquadsContext *s) { double a[2]; double b[3]; a[0] = -s->a_double[1]; a[1] = -s->a_double[2]; b[0] = s->b_double[1] - s->a_double[1] * s->b_double[0]; b[1] = s->b_double[2] - s->a_double[2] * s->b_double[0]; b[2] = s->b_double[0]; s->a_double[1] = a[0]; s->a_double[2] = a[1]; s->b_double[0] = b[0]; s->b_double[1] = b[1]; s->b_double[2] = b[2]; } static double convert_width2qfactor(double width, double frequency, double gain, double sample_rate, int width_type) { double w0 = 2. * M_PI * frequency / sample_rate; double A = ff_exp10(gain / 40.); double ret; switch (width_type) { case NONE: case QFACTOR: ret = width; break; case HERTZ: ret = frequency / width; break; case KHERTZ: ret = frequency / (width * 1000.); break; case OCTAVE: ret = 1. / (2. * sinh(log(2.) / 2. * width * w0 / sin(w0))); break; case SLOPE: ret = 1. / sqrt((A + 1. / A) * (1. / width - 1.) + 2.); break; default: av_assert0(0); break; } return ret; } static void convert_dir2zdf(BiquadsContext *s, int sample_rate) { double Q = convert_width2qfactor(s->width, s->frequency, s->gain, sample_rate, s->width_type); double g, k, A; double a[3]; double m[3]; switch (s->filter_type) { case biquad: a[0] = s->oa[0]; a[1] = s->oa[1]; a[2] = s->oa[2]; m[0] = s->ob[0]; m[1] = s->ob[1]; m[2] = s->ob[2]; break; case equalizer: A = ff_exp10(s->gain / 40.); g = tan(M_PI * s->frequency / sample_rate); k = 1. / (Q * A); a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1.; m[1] = k * (A * A - 1.); m[2] = 0.; break; case bass: case lowshelf: A = ff_exp10(s->gain / 40.); g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1.; m[1] = k * (A - 1.); m[2] = A * A - 1.; break; case tiltshelf: A = ff_exp10(s->gain / 20.); g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1./ A; m[1] = k * (A - 1.) / A; m[2] = (A * A - 1.) / A; break; case treble: case highshelf: A = ff_exp10(s->gain / 40.); g = tan(M_PI * s->frequency / sample_rate) * sqrt(A); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = A * A; m[1] = k * (1. - A) * A; m[2] = 1. - A * A; break; case bandpass: g = tan(M_PI * s->frequency / sample_rate); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 0.; m[1] = s->csg ? 1. : k; m[2] = 0.; break; case bandreject: g = tan(M_PI * s->frequency / sample_rate); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1.; m[1] = -k; m[2] = 0.; break; case lowpass: g = tan(M_PI * s->frequency / sample_rate); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 0.; m[1] = 0.; m[2] = 1.; break; case highpass: g = tan(M_PI * s->frequency / sample_rate); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1.; m[1] = -k; m[2] = -1.; break; case allpass: g = tan(M_PI * s->frequency / sample_rate); k = 1. / Q; a[0] = 1. / (1. + g * (g + k)); a[1] = g * a[0]; a[2] = g * a[1]; m[0] = 1.; m[1] = -2. * k; m[2] = 0.; break; default: av_assert0(0); } s->a_double[0] = a[0]; s->a_double[1] = a[1]; s->a_double[2] = a[2]; s->b_double[0] = m[0]; s->b_double[1] = m[1]; s->b_double[2] = m[2]; } static int config_filter(AVFilterLink *outlink, int reset) { AVFilterContext *ctx = outlink->src; BiquadsContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; double gain = s->gain * ((s->filter_type == tiltshelf) + 1.); double A = ff_exp10(gain / 40); double w0 = 2 * M_PI * s->frequency / inlink->sample_rate; double K = tan(w0 / 2.); double alpha, beta; s->bypass = (((w0 > M_PI || w0 <= 0.) && reset) || (s->width <= 0.)) && (s->filter_type != biquad); if (s->bypass) { av_log(ctx, AV_LOG_WARNING, "Invalid frequency and/or width!\n"); return 0; } if ((w0 > M_PI || w0 <= 0.) && (s->filter_type != biquad)) return AVERROR(EINVAL); switch (s->width_type) { case NONE: alpha = 0.0; break; case HERTZ: alpha = sin(w0) / (2 * s->frequency / s->width); break; case KHERTZ: alpha = sin(w0) / (2 * s->frequency / (s->width * 1000)); break; case OCTAVE: alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0)); break; case QFACTOR: alpha = sin(w0) / (2 * s->width); break; case SLOPE: alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2); break; default: av_assert0(0); } beta = 2 * sqrt(A); switch (s->filter_type) { case biquad: s->a_double[0] = s->oa[0]; s->a_double[1] = s->oa[1]; s->a_double[2] = s->oa[2]; s->b_double[0] = s->ob[0]; s->b_double[1] = s->ob[1]; s->b_double[2] = s->ob[2]; break; case equalizer: s->a_double[0] = 1 + alpha / A; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha / A; s->b_double[0] = 1 + alpha * A; s->b_double[1] = -2 * cos(w0); s->b_double[2] = 1 - alpha * A; break; case bass: beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); case tiltshelf: case lowshelf: if (s->poles == 1) { double A = ff_exp10(gain / 20); double ro = -sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); double n = (A + 1) / (A - 1); double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; s->a_double[0] = 1 + ro * alpha1; s->a_double[1] = -ro - alpha1; s->a_double[2] = 0; s->b_double[0] = beta0 + ro * beta1; s->b_double[1] = -beta1 - ro * beta0; s->b_double[2] = 0; } else { s->a_double[0] = (A + 1) + (A - 1) * cos(w0) + beta * alpha; s->a_double[1] = -2 * ((A - 1) + (A + 1) * cos(w0)); s->a_double[2] = (A + 1) + (A - 1) * cos(w0) - beta * alpha; s->b_double[0] = A * ((A + 1) - (A - 1) * cos(w0) + beta * alpha); s->b_double[1] = 2 * A * ((A - 1) - (A + 1) * cos(w0)); s->b_double[2] = A * ((A + 1) - (A - 1) * cos(w0) - beta * alpha); } break; case treble: beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); case highshelf: if (s->poles == 1) { double A = ff_exp10(gain / 20); double ro = sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); double n = (A + 1) / (A - 1); double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; s->a_double[0] = 1 + ro * alpha1; s->a_double[1] = ro + alpha1; s->a_double[2] = 0; s->b_double[0] = beta0 + ro * beta1; s->b_double[1] = beta1 + ro * beta0; s->b_double[2] = 0; } else { s->a_double[0] = (A + 1) - (A - 1) * cos(w0) + beta * alpha; s->a_double[1] = 2 * ((A - 1) - (A + 1) * cos(w0)); s->a_double[2] = (A + 1) - (A - 1) * cos(w0) - beta * alpha; s->b_double[0] = A * ((A + 1) + (A - 1) * cos(w0) + beta * alpha); s->b_double[1] =-2 * A * ((A - 1) + (A + 1) * cos(w0)); s->b_double[2] = A * ((A + 1) + (A - 1) * cos(w0) - beta * alpha); } break; case bandpass: if (s->csg) { s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = sin(w0) / 2; s->b_double[1] = 0; s->b_double[2] = -sin(w0) / 2; } else { s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = alpha; s->b_double[1] = 0; s->b_double[2] = -alpha; } break; case bandreject: s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = 1; s->b_double[1] = -2 * cos(w0); s->b_double[2] = 1; break; case lowpass: if (s->poles == 1) { s->a_double[0] = 1; s->a_double[1] = -exp(-w0); s->a_double[2] = 0; s->b_double[0] = 1 + s->a_double[1]; s->b_double[1] = 0; s->b_double[2] = 0; } else { s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = (1 - cos(w0)) / 2; s->b_double[1] = 1 - cos(w0); s->b_double[2] = (1 - cos(w0)) / 2; } break; case highpass: if (s->poles == 1) { s->a_double[0] = 1; s->a_double[1] = -exp(-w0); s->a_double[2] = 0; s->b_double[0] = (1 - s->a_double[1]) / 2; s->b_double[1] = -s->b_double[0]; s->b_double[2] = 0; } else { s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = (1 + cos(w0)) / 2; s->b_double[1] = -(1 + cos(w0)); s->b_double[2] = (1 + cos(w0)) / 2; } break; case allpass: switch (s->order) { case 1: s->a_double[0] = 1.; s->a_double[1] = -(1. - K) / (1. + K); s->a_double[2] = 0.; s->b_double[0] = s->a_double[1]; s->b_double[1] = s->a_double[0]; s->b_double[2] = 0.; break; case 2: s->a_double[0] = 1 + alpha; s->a_double[1] = -2 * cos(w0); s->a_double[2] = 1 - alpha; s->b_double[0] = 1 - alpha; s->b_double[1] = -2 * cos(w0); s->b_double[2] = 1 + alpha; break; } break; default: av_assert0(0); } av_log(ctx, AV_LOG_VERBOSE, "a=%f %f %f:b=%f %f %f\n", s->a_double[0], s->a_double[1], s->a_double[2], s->b_double[0], s->b_double[1], s->b_double[2]); s->a_double[1] /= s->a_double[0]; s->a_double[2] /= s->a_double[0]; s->b_double[0] /= s->a_double[0]; s->b_double[1] /= s->a_double[0]; s->b_double[2] /= s->a_double[0]; s->a_double[0] /= s->a_double[0]; if (s->normalize && fabs(s->b_double[0] + s->b_double[1] + s->b_double[2]) > 1e-6) { double factor = (s->a_double[0] + s->a_double[1] + s->a_double[2]) / (s->b_double[0] + s->b_double[1] + s->b_double[2]); s->b_double[0] *= factor; s->b_double[1] *= factor; s->b_double[2] *= factor; } switch (s->filter_type) { case tiltshelf: s->b_double[0] /= A; s->b_double[1] /= A; s->b_double[2] /= A; break; } if (!s->cache[0]) s->cache[0] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); if (!s->clip) s->clip = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->clip)); if (!s->cache[0] || !s->clip) return AVERROR(ENOMEM); if (reset) { av_samples_set_silence(s->cache[0]->extended_data, 0, s->cache[0]->nb_samples, s->cache[0]->ch_layout.nb_channels, s->cache[0]->format); } if (reset && s->block_samples > 0) { if (!s->cache[1]) s->cache[1] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); if (!s->cache[1]) return AVERROR(ENOMEM); av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); for (int i = 0; i < 3; i++) { if (!s->block[i]) s->block[i] = ff_get_audio_buffer(outlink, s->block_samples * 2); if (!s->block[i]) return AVERROR(ENOMEM); av_samples_set_silence(s->block[i]->extended_data, 0, s->block_samples * 2, s->block[i]->ch_layout.nb_channels, s->block[i]->format); } } switch (s->transform_type) { case DI: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_dbl; break; default: av_assert0(0); } break; case DII: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_dii_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_dii_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_dii_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_dii_dbl; break; default: av_assert0(0); } break; case TDI: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_tdi_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_tdi_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_tdi_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_tdi_dbl; break; default: av_assert0(0); } break; case TDII: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_tdii_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_tdii_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_tdii_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_tdii_dbl; break; default: av_assert0(0); } break; case LATT: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_latt_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_latt_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_latt_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_latt_dbl; break; default: av_assert0(0); } break; case SVF: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_svf_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_svf_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_svf_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_svf_dbl; break; default: av_assert0(0); } break; case ZDF: switch (inlink->format) { case AV_SAMPLE_FMT_S16P: s->filter = biquad_zdf_s16; break; case AV_SAMPLE_FMT_S32P: s->filter = biquad_zdf_s32; break; case AV_SAMPLE_FMT_FLTP: s->filter = biquad_zdf_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = biquad_zdf_dbl; break; default: av_assert0(0); } break; default: av_assert0(0); } s->block_align = av_get_bytes_per_sample(inlink->format); if (s->transform_type == LATT) convert_dir2latt(s); else if (s->transform_type == SVF) convert_dir2svf(s); else if (s->transform_type == ZDF) convert_dir2zdf(s, inlink->sample_rate); s->a_float[0] = s->a_double[0]; s->a_float[1] = s->a_double[1]; s->a_float[2] = s->a_double[2]; s->b_float[0] = s->b_double[0]; s->b_float[1] = s->b_double[1]; s->b_float[2] = s->b_double[2]; return 0; } static int config_output(AVFilterLink *outlink) { return config_filter(outlink, 1); } typedef struct ThreadData { AVFrame *in, *out; int eof; } ThreadData; static void reverse_samples(AVFrame *out, AVFrame *in, int p, int oo, int io, int nb_samples) { switch (out->format) { case AV_SAMPLE_FMT_S16P: { const int16_t *src = ((const int16_t *)in->extended_data[p]) + io; int16_t *dst = ((int16_t *)out->extended_data[p]) + oo; for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) dst[i] = src[j]; } break; case AV_SAMPLE_FMT_S32P: { const int32_t *src = ((const int32_t *)in->extended_data[p]) + io; int32_t *dst = ((int32_t *)out->extended_data[p]) + oo; for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) dst[i] = src[j]; } break; case AV_SAMPLE_FMT_FLTP: { const float *src = ((const float *)in->extended_data[p]) + io; float *dst = ((float *)out->extended_data[p]) + oo; for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) dst[i] = src[j]; } break; case AV_SAMPLE_FMT_DBLP: { const double *src = ((const double *)in->extended_data[p]) + io; double *dst = ((double *)out->extended_data[p]) + oo; for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) dst[i] = src[j]; } break; } } static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AVFilterLink *inlink = ctx->inputs[0]; ThreadData *td = arg; AVFrame *buf = td->in; AVFrame *out_buf = td->out; BiquadsContext *s = ctx->priv; const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs; const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; int ch; for (ch = start; ch < end; ch++) { enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); if (av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0) { if (buf != out_buf) memcpy(out_buf->extended_data[ch], buf->extended_data[ch], buf->nb_samples * s->block_align); continue; } if (!s->block_samples) { s->filter(s, buf->extended_data[ch], out_buf->extended_data[ch], buf->nb_samples, s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); } else if (td->eof) { memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch] + s->block_align * s->block_samples, s->nb_samples * s->block_align); } else { memcpy(s->block[0]->extended_data[ch] + s->block_align * s->block_samples, buf->extended_data[ch], buf->nb_samples * s->block_align); memset(s->block[0]->extended_data[ch] + s->block_align * (s->block_samples + buf->nb_samples), 0, (s->block_samples - buf->nb_samples) * s->block_align); s->filter(s, s->block[0]->extended_data[ch], s->block[1]->extended_data[ch], s->block_samples, s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); av_samples_copy(s->cache[1]->extended_data, s->cache[0]->extended_data, 0, 0, s->cache[0]->nb_samples, s->cache[0]->ch_layout.nb_channels, s->cache[0]->format); s->filter(s, s->block[0]->extended_data[ch] + s->block_samples * s->block_align, s->block[1]->extended_data[ch] + s->block_samples * s->block_align, s->block_samples, s->cache[1]->extended_data[ch], s->clip+ch, ctx->is_disabled); reverse_samples(s->block[2], s->block[1], ch, 0, 0, 2 * s->block_samples); av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); s->filter(s, s->block[2]->extended_data[ch], s->block[2]->extended_data[ch], 2 * s->block_samples, s->cache[1]->extended_data[ch], s->clip+ch, ctx->is_disabled); reverse_samples(s->block[1], s->block[2], ch, 0, 0, 2 * s->block_samples); memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch], s->block_samples * s->block_align); memmove(s->block[0]->extended_data[ch], s->block[0]->extended_data[ch] + s->block_align * s->block_samples, s->block_samples * s->block_align); } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *buf, int eof) { AVFilterContext *ctx = inlink->dst; BiquadsContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out_buf; ThreadData td; int ch, ret, drop = 0; if (s->bypass) return ff_filter_frame(outlink, buf); ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout); if (ret < 0) { av_frame_free(&buf); return ret; } if (strcmp(s->ch_layout_str, "all")) av_channel_layout_from_string(&s->ch_layout, s->ch_layout_str); if (av_frame_is_writable(buf) && s->block_samples == 0) { out_buf = buf; } else { out_buf = ff_get_audio_buffer(outlink, s->block_samples > 0 ? s->block_samples : buf->nb_samples); if (!out_buf) { av_frame_free(&buf); return AVERROR(ENOMEM); } av_frame_copy_props(out_buf, buf); } if (s->block_samples > 0 && s->pts == AV_NOPTS_VALUE) drop = 1; td.in = buf; td.out = out_buf; td.eof = eof; ff_filter_execute(ctx, filter_channel, &td, NULL, FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); for (ch = 0; ch < outlink->ch_layout.nb_channels; ch++) { if (s->clip[ch] > 0) av_log(ctx, AV_LOG_WARNING, "Channel %d clipping %d times. Please reduce gain.\n", ch, s->clip[ch]); s->clip[ch] = 0; } if (s->block_samples > 0) { int nb_samples = buf->nb_samples; int64_t pts = buf->pts; out_buf->pts = s->pts; out_buf->nb_samples = s->nb_samples; s->pts = pts; s->nb_samples = nb_samples; } if (buf != out_buf) av_frame_free(&buf); if (!drop) return ff_filter_frame(outlink, out_buf); else { av_frame_free(&out_buf); ff_filter_set_ready(ctx, 10); return 0; } } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; BiquadsContext *s = ctx->priv; AVFrame *in = NULL; int64_t pts; int status; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (s->block_samples > 0) { ret = ff_inlink_consume_samples(inlink, s->block_samples, s->block_samples, &in); } else { ret = ff_inlink_consume_frame(inlink, &in); } if (ret < 0) return ret; if (ret > 0) return filter_frame(inlink, in, 0); if (s->block_samples > 0 && ff_inlink_queued_samples(inlink) >= s->block_samples) { ff_filter_set_ready(ctx, 10); return 0; } if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { if (s->block_samples > 0) { AVFrame *in = ff_get_audio_buffer(outlink, s->block_samples); if (!in) return AVERROR(ENOMEM); ret = filter_frame(inlink, in, 1); } ff_outlink_set_status(outlink, status, pts); return ret; } FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { AVFilterLink *outlink = ctx->outputs[0]; int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; return config_filter(outlink, 0); } static av_cold void uninit(AVFilterContext *ctx) { BiquadsContext *s = ctx->priv; for (int i = 0; i < 3; i++) av_frame_free(&s->block[i]); av_frame_free(&s->cache[0]); av_frame_free(&s->cache[1]); av_freep(&s->clip); av_channel_layout_uninit(&s->ch_layout); } static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, }; #define OFFSET(x) offsetof(BiquadsContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define DEFINE_BIQUAD_FILTER_2(name_, description_, priv_class_) \ static av_cold int name_##_init(AVFilterContext *ctx) \ { \ BiquadsContext *s = ctx->priv; \ s->filter_type = name_; \ s->pts = AV_NOPTS_VALUE; \ return 0; \ } \ \ const AVFilter ff_af_##name_ = { \ .name = #name_, \ .description = NULL_IF_CONFIG_SMALL(description_), \ .priv_class = &priv_class_##_class, \ .priv_size = sizeof(BiquadsContext), \ .init = name_##_init, \ .activate = activate, \ .uninit = uninit, \ FILTER_INPUTS(ff_audio_default_filterpad), \ FILTER_OUTPUTS(outputs), \ FILTER_QUERY_FUNC(query_formats), \ .process_command = process_command, \ .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, \ } #define DEFINE_BIQUAD_FILTER(name, description) \ AVFILTER_DEFINE_CLASS(name); \ DEFINE_BIQUAD_FILTER_2(name, description, name) #define WIDTH_OPTION(x) \ {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS}, \ {"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS} #define WIDTH_TYPE_OPTION(x) \ {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \ {"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \ {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, .unit = "width_type"}, \ {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, .unit = "width_type"}, \ {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, .unit = "width_type"}, \ {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, .unit = "width_type"}, \ {"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, .unit = "width_type"} #define MIX_CHANNELS_NORMALIZE_OPTION(x, y, z) \ {"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ {"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ {"channels", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ {"c", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ {"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS}, \ {"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS} #define TRANSFORM_OPTION(x) \ {"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \ {"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \ {"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, .unit = "transform_type"}, \ {"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, .unit = "transform_type"}, \ {"tdi", "transposed direct form I", 0, AV_OPT_TYPE_CONST, {.i64=TDI}, 0, 0, AF, .unit = "transform_type"}, \ {"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, .unit = "transform_type"}, \ {"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, .unit = "transform_type"}, \ {"svf", "state variable filter form", 0, AV_OPT_TYPE_CONST, {.i64=SVF}, 0, 0, AF, .unit = "transform_type"}, \ {"zdf", "zero-delay filter form", 0, AV_OPT_TYPE_CONST, {.i64=ZDF}, 0, 0, AF, .unit = "transform_type"} #define PRECISION_OPTION(x) \ {"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \ {"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \ {"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, .unit = "precision"}, \ {"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, .unit = "precision"}, \ {"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, .unit = "precision"}, \ {"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, .unit = "precision"}, \ {"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, .unit = "precision"} #define BLOCKSIZE_OPTION(x) \ {"blocksize", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF}, \ {"b", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF} #if CONFIG_EQUALIZER_FILTER static const AVOption equalizer_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(1.0), {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, {"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter."); #endif /* CONFIG_EQUALIZER_FILTER */ #if CONFIG_BASS_FILTER || CONFIG_LOWSHELF_FILTER static const AVOption bass_lowshelf_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.5), {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, {"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, {"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; AVFILTER_DEFINE_CLASS_EXT(bass_lowshelf, "bass/lowshelf", bass_lowshelf_options); #if CONFIG_BASS_FILTER DEFINE_BIQUAD_FILTER_2(bass, "Boost or cut lower frequencies.", bass_lowshelf); #endif /* CONFIG_BASS_FILTER */ #if CONFIG_LOWSHELF_FILTER DEFINE_BIQUAD_FILTER_2(lowshelf, "Apply a low shelf filter.", bass_lowshelf); #endif /* CONFIG_LOWSHELF_FILTER */ #endif /* CONFIG_BASS_FILTER || CONFIG LOWSHELF_FILTER */ #if CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER static const AVOption treble_highshelf_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.5), {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, {"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, {"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; AVFILTER_DEFINE_CLASS_EXT(treble_highshelf, "treble/high/tiltshelf", treble_highshelf_options); #if CONFIG_TREBLE_FILTER DEFINE_BIQUAD_FILTER_2(treble, "Boost or cut upper frequencies.", treble_highshelf); #endif /* CONFIG_TREBLE_FILTER */ #if CONFIG_HIGHSHELF_FILTER DEFINE_BIQUAD_FILTER_2(highshelf, "Apply a high shelf filter.", treble_highshelf); #endif /* CONFIG_HIGHSHELF_FILTER */ #if CONFIG_TILTSHELF_FILTER DEFINE_BIQUAD_FILTER_2(tiltshelf, "Apply a tilt shelf filter.", treble_highshelf); #endif #endif /* CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER */ #if CONFIG_BANDPASS_FILTER static const AVOption bandpass_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.5), {"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter."); #endif /* CONFIG_BANDPASS_FILTER */ #if CONFIG_BANDREJECT_FILTER static const AVOption bandreject_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.5), MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter."); #endif /* CONFIG_BANDREJECT_FILTER */ #if CONFIG_LOWPASS_FILTER static const AVOption lowpass_options[] = { {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, {"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.707), {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, {"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency."); #endif /* CONFIG_LOWPASS_FILTER */ #if CONFIG_HIGHPASS_FILTER static const AVOption highpass_options[] = { {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, {"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.707), {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, {"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency."); #endif /* CONFIG_HIGHPASS_FILTER */ #if CONFIG_ALLPASS_FILTER static const AVOption allpass_options[] = { {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, {"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, WIDTH_TYPE_OPTION(QFACTOR), WIDTH_OPTION(0.707), MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), {"order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, {"o", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), {NULL} }; DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter."); #endif /* CONFIG_ALLPASS_FILTER */ #if CONFIG_BIQUAD_FILTER static const AVOption biquad_options[] = { {"a0", NULL, OFFSET(oa[0]), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT32_MIN, INT32_MAX, FLAGS}, {"a1", NULL, OFFSET(oa[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, {"a2", NULL, OFFSET(oa[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, {"b0", NULL, OFFSET(ob[0]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, {"b1", NULL, OFFSET(ob[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, {"b2", NULL, OFFSET(ob[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), TRANSFORM_OPTION(DI), PRECISION_OPTION(-1), BLOCKSIZE_OPTION(0), {NULL} }; DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients."); #endif /* CONFIG_BIQUAD_FILTER */