/** * @file * Vorbis I decoder * @author Denes Balatoni ( dbalatoni programozo hu ) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Vorbis I decoder * @author Denes Balatoni ( dbalatoni programozo hu ) */ #include #include #include "libavutil/avassert.h" #include "libavutil/float_dsp.h" #include "libavutil/tx.h" #define BITSTREAM_READER_LE #include "avcodec.h" #include "codec_internal.h" #include "decode.h" #include "get_bits.h" #include "internal.h" #include "vorbis.h" #include "vorbisdsp.h" #include "vorbis_data.h" #include "xiph.h" #define V_NB_BITS 8 #define V_NB_BITS2 11 #define V_MAX_VLCS (1 << 16) #define V_MAX_PARTITIONS (1 << 20) typedef struct vorbis_codebook { uint8_t dimensions; uint8_t lookup_type; uint8_t maxdepth; VLC vlc; float *codevectors; unsigned int nb_bits; } vorbis_codebook; typedef union vorbis_floor_u vorbis_floor_data; typedef struct vorbis_floor0_s vorbis_floor0; typedef struct vorbis_floor1_s vorbis_floor1; struct vorbis_context_s; typedef int (* vorbis_floor_decode_func) (struct vorbis_context_s *, vorbis_floor_data *, float *); typedef struct vorbis_floor { uint8_t floor_type; vorbis_floor_decode_func decode; union vorbis_floor_u { struct vorbis_floor0_s { uint8_t order; uint16_t rate; uint16_t bark_map_size; int32_t *map[2]; uint32_t map_size[2]; uint8_t amplitude_bits; uint8_t amplitude_offset; uint8_t num_books; uint8_t *book_list; float *lsp; } t0; struct vorbis_floor1_s { uint8_t partitions; uint8_t partition_class[32]; uint8_t class_dimensions[16]; uint8_t class_subclasses[16]; uint8_t class_masterbook[16]; int16_t subclass_books[16][8]; uint8_t multiplier; uint16_t x_list_dim; vorbis_floor1_entry *list; } t1; } data; } vorbis_floor; typedef struct vorbis_residue { uint16_t type; uint32_t begin; uint32_t end; unsigned partition_size; uint8_t classifications; uint8_t classbook; int16_t books[64][8]; uint8_t maxpass; uint16_t ptns_to_read; uint8_t *classifs; } vorbis_residue; typedef struct vorbis_mapping { uint8_t submaps; uint16_t coupling_steps; uint8_t *magnitude; uint8_t *angle; uint8_t *mux; uint8_t submap_floor[16]; uint8_t submap_residue[16]; } vorbis_mapping; typedef struct vorbis_mode { uint8_t blockflag; uint16_t windowtype; uint16_t transformtype; uint8_t mapping; } vorbis_mode; typedef struct vorbis_context_s { AVCodecContext *avctx; GetBitContext gb; VorbisDSPContext dsp; AVFloatDSPContext *fdsp; AVTXContext *mdct[2]; av_tx_fn mdct_fn[2]; uint8_t first_frame; uint32_t version; uint8_t audio_channels; uint32_t audio_samplerate; uint32_t bitrate_maximum; uint32_t bitrate_nominal; uint32_t bitrate_minimum; uint32_t blocksize[2]; const float *win[2]; uint16_t codebook_count; vorbis_codebook *codebooks; uint8_t floor_count; vorbis_floor *floors; uint8_t residue_count; vorbis_residue *residues; uint8_t mapping_count; vorbis_mapping *mappings; uint8_t mode_count; vorbis_mode *modes; uint8_t mode_number; // mode number for the current packet int8_t previous_window; float *channel_residues; float *saved; } vorbis_context; /* Helper functions */ #define BARK(x) \ (13.1f * atan(0.00074f * (x)) + 2.24f * atan(1.85e-8f * (x) * (x)) + 1e-4f * (x)) static const char idx_err_str[] = "Index value %d out of range (0 - %d) for %s at %s:%i\n"; #define VALIDATE_INDEX(idx, limit) \ if (idx >= limit) {\ av_log(vc->avctx, AV_LOG_ERROR,\ idx_err_str,\ (int)(idx), (int)(limit - 1), #idx, __FILE__, __LINE__);\ return AVERROR_INVALIDDATA;\ } #define GET_VALIDATED_INDEX(idx, bits, limit) \ {\ idx = get_bits(gb, bits);\ VALIDATE_INDEX(idx, limit)\ } static float vorbisfloat2float(unsigned val) { double mant = val & 0x1fffff; long exp = (val & 0x7fe00000L) >> 21; if (val & 0x80000000) mant = -mant; return ldexp(mant, exp - 20 - 768); } // Free all allocated memory ----------------------------------------- static void vorbis_free(vorbis_context *vc) { int i; av_freep(&vc->channel_residues); av_freep(&vc->saved); av_freep(&vc->fdsp); if (vc->residues) for (i = 0; i < vc->residue_count; i++) av_freep(&vc->residues[i].classifs); av_freep(&vc->residues); av_freep(&vc->modes); av_tx_uninit(&vc->mdct[0]); av_tx_uninit(&vc->mdct[1]); if (vc->codebooks) for (i = 0; i < vc->codebook_count; ++i) { av_freep(&vc->codebooks[i].codevectors); ff_vlc_free(&vc->codebooks[i].vlc); } av_freep(&vc->codebooks); if (vc->floors) for (i = 0; i < vc->floor_count; ++i) { if (vc->floors[i].floor_type == 0) { av_freep(&vc->floors[i].data.t0.map[0]); av_freep(&vc->floors[i].data.t0.map[1]); av_freep(&vc->floors[i].data.t0.book_list); av_freep(&vc->floors[i].data.t0.lsp); } else { av_freep(&vc->floors[i].data.t1.list); } } av_freep(&vc->floors); if (vc->mappings) for (i = 0; i < vc->mapping_count; ++i) { av_freep(&vc->mappings[i].magnitude); av_freep(&vc->mappings[i].angle); av_freep(&vc->mappings[i].mux); } av_freep(&vc->mappings); } // Parse setup header ------------------------------------------------- // Process codebooks part static int vorbis_parse_setup_hdr_codebooks(vorbis_context *vc) { unsigned cb; uint8_t *tmp_vlc_bits = NULL; uint32_t *tmp_vlc_codes = NULL; GetBitContext *gb = &vc->gb; uint16_t *codebook_multiplicands = NULL; int ret = 0; vc->codebook_count = get_bits(gb, 8) + 1; ff_dlog(NULL, " Codebooks: %d \n", vc->codebook_count); vc->codebooks = av_mallocz(vc->codebook_count * sizeof(*vc->codebooks)); tmp_vlc_bits = av_mallocz(V_MAX_VLCS * sizeof(*tmp_vlc_bits)); tmp_vlc_codes = av_mallocz(V_MAX_VLCS * sizeof(*tmp_vlc_codes)); codebook_multiplicands = av_malloc(V_MAX_VLCS * sizeof(*codebook_multiplicands)); if (!vc->codebooks || !tmp_vlc_bits || !tmp_vlc_codes || !codebook_multiplicands) { ret = AVERROR(ENOMEM); goto error; } for (cb = 0; cb < vc->codebook_count; ++cb) { vorbis_codebook *codebook_setup = &vc->codebooks[cb]; unsigned ordered, t, entries, used_entries = 0; ff_dlog(NULL, " %u. Codebook\n", cb); if (get_bits(gb, 24) != 0x564342) { av_log(vc->avctx, AV_LOG_ERROR, " %u. Codebook setup data corrupt.\n", cb); ret = AVERROR_INVALIDDATA; goto error; } codebook_setup->dimensions=get_bits(gb, 16); if (codebook_setup->dimensions > 16 || codebook_setup->dimensions == 0) { av_log(vc->avctx, AV_LOG_ERROR, " %u. Codebook's dimension is invalid (%d).\n", cb, codebook_setup->dimensions); ret = AVERROR_INVALIDDATA; goto error; } entries = get_bits(gb, 24); if (entries > V_MAX_VLCS) { av_log(vc->avctx, AV_LOG_ERROR, " %u. Codebook has too many entries (%u).\n", cb, entries); ret = AVERROR_INVALIDDATA; goto error; } ordered = get_bits1(gb); ff_dlog(NULL, " codebook_dimensions %d, codebook_entries %u\n", codebook_setup->dimensions, entries); if (!ordered) { unsigned ce, flag; unsigned sparse = get_bits1(gb); ff_dlog(NULL, " not ordered \n"); if (sparse) { ff_dlog(NULL, " sparse \n"); used_entries = 0; for (ce = 0; ce < entries; ++ce) { flag = get_bits1(gb); if (flag) { tmp_vlc_bits[ce] = get_bits(gb, 5) + 1; ++used_entries; } else tmp_vlc_bits[ce] = 0; } } else { ff_dlog(NULL, " not sparse \n"); used_entries = entries; for (ce = 0; ce < entries; ++ce) tmp_vlc_bits[ce] = get_bits(gb, 5) + 1; } } else { unsigned current_entry = 0; unsigned current_length = get_bits(gb, 5) + 1; ff_dlog(NULL, " ordered, current length: %u\n", current_length); //FIXME used_entries = entries; for (; current_entry < used_entries && current_length <= 32; ++current_length) { unsigned i, number; ff_dlog(NULL, " number bits: %u ", ilog(entries - current_entry)); number = get_bits(gb, ilog(entries - current_entry)); ff_dlog(NULL, " number: %u\n", number); for (i = current_entry; i < number+current_entry; ++i) if (i < used_entries) tmp_vlc_bits[i] = current_length; current_entry+=number; } if (current_entry>used_entries) { av_log(vc->avctx, AV_LOG_ERROR, " More codelengths than codes in codebook. \n"); ret = AVERROR_INVALIDDATA; goto error; } } codebook_setup->lookup_type = get_bits(gb, 4); ff_dlog(NULL, " lookup type: %d : %s \n", codebook_setup->lookup_type, codebook_setup->lookup_type ? "vq" : "no lookup"); // If the codebook is used for (inverse) VQ, calculate codevectors. if (codebook_setup->lookup_type == 1) { unsigned i, j, k; unsigned codebook_lookup_values = ff_vorbis_nth_root(entries, codebook_setup->dimensions); float codebook_minimum_value = vorbisfloat2float(get_bits_long(gb, 32)); float codebook_delta_value = vorbisfloat2float(get_bits_long(gb, 32)); unsigned codebook_value_bits = get_bits(gb, 4) + 1; unsigned codebook_sequence_p = get_bits1(gb); if (!isfinite(codebook_minimum_value) || !isfinite(codebook_delta_value)) { ret = AVERROR_INVALIDDATA; goto error; } ff_dlog(NULL, " We expect %d numbers for building the codevectors. \n", codebook_lookup_values); ff_dlog(NULL, " delta %f minmum %f \n", codebook_delta_value, codebook_minimum_value); for (i = 0; i < codebook_lookup_values; ++i) { codebook_multiplicands[i] = get_bits(gb, codebook_value_bits); ff_dlog(NULL, " multiplicands*delta+minmum : %e \n", (float)codebook_multiplicands[i] * codebook_delta_value + codebook_minimum_value); ff_dlog(NULL, " multiplicand %u\n", codebook_multiplicands[i]); } // Weed out unused vlcs and build codevector vector if (used_entries) { codebook_setup->codevectors = av_calloc(used_entries, codebook_setup->dimensions * sizeof(*codebook_setup->codevectors)); if (!codebook_setup->codevectors) { ret = AVERROR(ENOMEM); goto error; } } else codebook_setup->codevectors = NULL; for (j = 0, i = 0; i < entries; ++i) { unsigned dim = codebook_setup->dimensions; if (tmp_vlc_bits[i]) { float last = 0.0; unsigned lookup_offset = i; ff_dlog(vc->avctx, "Lookup offset %u ,", i); for (k = 0; k < dim; ++k) { unsigned multiplicand_offset = lookup_offset % codebook_lookup_values; codebook_setup->codevectors[j * dim + k] = codebook_multiplicands[multiplicand_offset] * codebook_delta_value + codebook_minimum_value + last; if (codebook_sequence_p) last = codebook_setup->codevectors[j * dim + k]; lookup_offset/=codebook_lookup_values; } tmp_vlc_bits[j] = tmp_vlc_bits[i]; ff_dlog(vc->avctx, "real lookup offset %u, vector: ", j); for (k = 0; k < dim; ++k) ff_dlog(vc->avctx, " %f ", codebook_setup->codevectors[j * dim + k]); ff_dlog(vc->avctx, "\n"); ++j; } } if (j != used_entries) { av_log(vc->avctx, AV_LOG_ERROR, "Bug in codevector vector building code. \n"); ret = AVERROR_INVALIDDATA; goto error; } entries = used_entries; } else if (codebook_setup->lookup_type >= 2) { av_log(vc->avctx, AV_LOG_ERROR, "Codebook lookup type not supported. \n"); ret = AVERROR_INVALIDDATA; goto error; } // Initialize VLC table if (ff_vorbis_len2vlc(tmp_vlc_bits, tmp_vlc_codes, entries)) { av_log(vc->avctx, AV_LOG_ERROR, " Invalid code lengths while generating vlcs. \n"); ret = AVERROR_INVALIDDATA; goto error; } codebook_setup->maxdepth = 0; for (t = 0; t < entries; ++t) if (tmp_vlc_bits[t] >= codebook_setup->maxdepth) codebook_setup->maxdepth = tmp_vlc_bits[t]; if (codebook_setup->maxdepth > 3 * V_NB_BITS) codebook_setup->nb_bits = V_NB_BITS2; else codebook_setup->nb_bits = V_NB_BITS; codebook_setup->maxdepth = (codebook_setup->maxdepth+codebook_setup->nb_bits - 1) / codebook_setup->nb_bits; if ((ret = vlc_init(&codebook_setup->vlc, codebook_setup->nb_bits, entries, tmp_vlc_bits, sizeof(*tmp_vlc_bits), sizeof(*tmp_vlc_bits), tmp_vlc_codes, sizeof(*tmp_vlc_codes), sizeof(*tmp_vlc_codes), VLC_INIT_LE))) { av_log(vc->avctx, AV_LOG_ERROR, " Error generating vlc tables. \n"); goto error; } } av_free(tmp_vlc_bits); av_free(tmp_vlc_codes); av_free(codebook_multiplicands); return 0; // Error: error: av_free(tmp_vlc_bits); av_free(tmp_vlc_codes); av_free(codebook_multiplicands); return ret; } // Process time domain transforms part (unused in Vorbis I) static int vorbis_parse_setup_hdr_tdtransforms(vorbis_context *vc) { GetBitContext *gb = &vc->gb; unsigned i, vorbis_time_count = get_bits(gb, 6) + 1; for (i = 0; i < vorbis_time_count; ++i) { unsigned vorbis_tdtransform = get_bits(gb, 16); ff_dlog(NULL, " Vorbis time domain transform %u: %u\n", vorbis_time_count, vorbis_tdtransform); if (vorbis_tdtransform) { av_log(vc->avctx, AV_LOG_ERROR, "Vorbis time domain transform data nonzero. \n"); return AVERROR_INVALIDDATA; } } return 0; } // Process floors part static int vorbis_floor0_decode(vorbis_context *vc, vorbis_floor_data *vfu, float *vec); static int create_map(vorbis_context *vc, unsigned floor_number); static int vorbis_floor1_decode(vorbis_context *vc, vorbis_floor_data *vfu, float *vec); static int vorbis_parse_setup_hdr_floors(vorbis_context *vc) { GetBitContext *gb = &vc->gb; int i, j, k, ret; vc->floor_count = get_bits(gb, 6) + 1; vc->floors = av_mallocz(vc->floor_count * sizeof(*vc->floors)); if (!vc->floors) return AVERROR(ENOMEM); for (i = 0; i < vc->floor_count; ++i) { vorbis_floor *floor_setup = &vc->floors[i]; floor_setup->floor_type = get_bits(gb, 16); ff_dlog(NULL, " %d. floor type %d \n", i, floor_setup->floor_type); if (floor_setup->floor_type == 1) { int maximum_class = -1; unsigned rangebits, rangemax, floor1_values = 2; floor_setup->decode = vorbis_floor1_decode; floor_setup->data.t1.partitions = get_bits(gb, 5); ff_dlog(NULL, " %d.floor: %d partitions \n", i, floor_setup->data.t1.partitions); for (j = 0; j < floor_setup->data.t1.partitions; ++j) { floor_setup->data.t1.partition_class[j] = get_bits(gb, 4); if (floor_setup->data.t1.partition_class[j] > maximum_class) maximum_class = floor_setup->data.t1.partition_class[j]; ff_dlog(NULL, " %d. floor %d partition class %d \n", i, j, floor_setup->data.t1.partition_class[j]); } ff_dlog(NULL, " maximum class %d \n", maximum_class); for (j = 0; j <= maximum_class; ++j) { floor_setup->data.t1.class_dimensions[j] = get_bits(gb, 3) + 1; floor_setup->data.t1.class_subclasses[j] = get_bits(gb, 2); ff_dlog(NULL, " %d floor %d class dim: %d subclasses %d \n", i, j, floor_setup->data.t1.class_dimensions[j], floor_setup->data.t1.class_subclasses[j]); if (floor_setup->data.t1.class_subclasses[j]) { GET_VALIDATED_INDEX(floor_setup->data.t1.class_masterbook[j], 8, vc->codebook_count) ff_dlog(NULL, " masterbook: %d \n", floor_setup->data.t1.class_masterbook[j]); } for (k = 0; k < (1 << floor_setup->data.t1.class_subclasses[j]); ++k) { int16_t bits = get_bits(gb, 8) - 1; if (bits != -1) VALIDATE_INDEX(bits, vc->codebook_count) floor_setup->data.t1.subclass_books[j][k] = bits; ff_dlog(NULL, " book %d. : %d \n", k, floor_setup->data.t1.subclass_books[j][k]); } } floor_setup->data.t1.multiplier = get_bits(gb, 2) + 1; floor_setup->data.t1.x_list_dim = 2; for (j = 0; j < floor_setup->data.t1.partitions; ++j) floor_setup->data.t1.x_list_dim+=floor_setup->data.t1.class_dimensions[floor_setup->data.t1.partition_class[j]]; floor_setup->data.t1.list = av_calloc(floor_setup->data.t1.x_list_dim, sizeof(*floor_setup->data.t1.list)); if (!floor_setup->data.t1.list) return AVERROR(ENOMEM); rangebits = get_bits(gb, 4); if (!rangebits && floor_setup->data.t1.partitions) { av_log(vc->avctx, AV_LOG_ERROR, "A rangebits value of 0 is not compliant with the Vorbis I specification.\n"); return AVERROR_INVALIDDATA; } rangemax = (1 << rangebits); if (rangemax > vc->blocksize[1] / 2) { av_log(vc->avctx, AV_LOG_ERROR, "Floor value is too large for blocksize: %u (%"PRIu32")\n", rangemax, vc->blocksize[1] / 2); return AVERROR_INVALIDDATA; } floor_setup->data.t1.list[0].x = 0; floor_setup->data.t1.list[1].x = rangemax; for (j = 0; j < floor_setup->data.t1.partitions; ++j) { for (k = 0; k < floor_setup->data.t1.class_dimensions[floor_setup->data.t1.partition_class[j]]; ++k, ++floor1_values) { floor_setup->data.t1.list[floor1_values].x = get_bits(gb, rangebits); ff_dlog(NULL, " %u. floor1 Y coord. %d\n", floor1_values, floor_setup->data.t1.list[floor1_values].x); } } // Precalculate order of x coordinates - needed for decode if (ff_vorbis_ready_floor1_list(vc->avctx, floor_setup->data.t1.list, floor_setup->data.t1.x_list_dim)) { return AVERROR_INVALIDDATA; } } else if (floor_setup->floor_type == 0) { unsigned max_codebook_dim = 0; floor_setup->decode = vorbis_floor0_decode; floor_setup->data.t0.order = get_bits(gb, 8); if (!floor_setup->data.t0.order) { av_log(vc->avctx, AV_LOG_ERROR, "Floor 0 order is 0.\n"); return AVERROR_INVALIDDATA; } floor_setup->data.t0.rate = get_bits(gb, 16); if (!floor_setup->data.t0.rate) { av_log(vc->avctx, AV_LOG_ERROR, "Floor 0 rate is 0.\n"); return AVERROR_INVALIDDATA; } floor_setup->data.t0.bark_map_size = get_bits(gb, 16); if (!floor_setup->data.t0.bark_map_size) { av_log(vc->avctx, AV_LOG_ERROR, "Floor 0 bark map size is 0.\n"); return AVERROR_INVALIDDATA; } floor_setup->data.t0.amplitude_bits = get_bits(gb, 6); floor_setup->data.t0.amplitude_offset = get_bits(gb, 8); floor_setup->data.t0.num_books = get_bits(gb, 4) + 1; /* allocate mem for booklist */ floor_setup->data.t0.book_list = av_malloc(floor_setup->data.t0.num_books); if (!floor_setup->data.t0.book_list) return AVERROR(ENOMEM); /* read book indexes */ { int idx; unsigned book_idx; for (idx = 0; idx < floor_setup->data.t0.num_books; ++idx) { GET_VALIDATED_INDEX(book_idx, 8, vc->codebook_count) floor_setup->data.t0.book_list[idx] = book_idx; if (vc->codebooks[book_idx].dimensions > max_codebook_dim) max_codebook_dim = vc->codebooks[book_idx].dimensions; } } if ((ret = create_map(vc, i)) < 0) return ret; /* codebook dim is for padding if codebook dim doesn't * * divide order+1 then we need to read more data */ floor_setup->data.t0.lsp = av_malloc_array((floor_setup->data.t0.order + 1 + max_codebook_dim), sizeof(*floor_setup->data.t0.lsp)); if (!floor_setup->data.t0.lsp) return AVERROR(ENOMEM); /* debug output parsed headers */ ff_dlog(NULL, "floor0 order: %u\n", floor_setup->data.t0.order); ff_dlog(NULL, "floor0 rate: %u\n", floor_setup->data.t0.rate); ff_dlog(NULL, "floor0 bark map size: %u\n", floor_setup->data.t0.bark_map_size); ff_dlog(NULL, "floor0 amplitude bits: %u\n", floor_setup->data.t0.amplitude_bits); ff_dlog(NULL, "floor0 amplitude offset: %u\n", floor_setup->data.t0.amplitude_offset); ff_dlog(NULL, "floor0 number of books: %u\n", floor_setup->data.t0.num_books); ff_dlog(NULL, "floor0 book list pointer: %p\n", floor_setup->data.t0.book_list); { int idx; for (idx = 0; idx < floor_setup->data.t0.num_books; ++idx) { ff_dlog(NULL, " Book %d: %u\n", idx + 1, floor_setup->data.t0.book_list[idx]); } } } else { av_log(vc->avctx, AV_LOG_ERROR, "Invalid floor type!\n"); return AVERROR_INVALIDDATA; } } return 0; } // Process residues part static int vorbis_parse_setup_hdr_residues(vorbis_context *vc) { GetBitContext *gb = &vc->gb; unsigned i, j, k; vc->residue_count = get_bits(gb, 6)+1; vc->residues = av_mallocz(vc->residue_count * sizeof(*vc->residues)); if (!vc->residues) return AVERROR(ENOMEM); ff_dlog(NULL, " There are %d residues. \n", vc->residue_count); for (i = 0; i < vc->residue_count; ++i) { vorbis_residue *res_setup = &vc->residues[i]; uint8_t cascade[64]; unsigned high_bits, low_bits; res_setup->type = get_bits(gb, 16); ff_dlog(NULL, " %u. residue type %d\n", i, res_setup->type); res_setup->begin = get_bits(gb, 24); res_setup->end = get_bits(gb, 24); res_setup->partition_size = get_bits(gb, 24) + 1; /* Validations to prevent a buffer overflow later. */ if (res_setup->begin>res_setup->end || (res_setup->end-res_setup->begin) / res_setup->partition_size > FFMIN(V_MAX_PARTITIONS, 65535)) { av_log(vc->avctx, AV_LOG_ERROR, "partition out of bounds: type, begin, end, size, blocksize: %"PRIu16", %"PRIu32", %"PRIu32", %u, %"PRIu32"\n", res_setup->type, res_setup->begin, res_setup->end, res_setup->partition_size, vc->blocksize[1] / 2); return AVERROR_INVALIDDATA; } res_setup->classifications = get_bits(gb, 6) + 1; GET_VALIDATED_INDEX(res_setup->classbook, 8, vc->codebook_count) res_setup->ptns_to_read = (res_setup->end - res_setup->begin) / res_setup->partition_size; res_setup->classifs = av_malloc_array(res_setup->ptns_to_read, vc->audio_channels * sizeof(*res_setup->classifs)); if (!res_setup->classifs) return AVERROR(ENOMEM); ff_dlog(NULL, " begin %"PRIu32" end %"PRIu32" part.size %u classif.s %"PRIu8" classbook %"PRIu8"\n", res_setup->begin, res_setup->end, res_setup->partition_size, res_setup->classifications, res_setup->classbook); for (j = 0; j < res_setup->classifications; ++j) { high_bits = 0; low_bits = get_bits(gb, 3); if (get_bits1(gb)) high_bits = get_bits(gb, 5); cascade[j] = (high_bits << 3) + low_bits; ff_dlog(NULL, " %u class cascade depth: %d\n", j, ilog(cascade[j])); } res_setup->maxpass = 0; for (j = 0; j < res_setup->classifications; ++j) { for (k = 0; k < 8; ++k) { if (cascade[j]&(1 << k)) { GET_VALIDATED_INDEX(res_setup->books[j][k], 8, vc->codebook_count) ff_dlog(NULL, " %u class cascade depth %u book: %d\n", j, k, res_setup->books[j][k]); if (k>res_setup->maxpass) res_setup->maxpass = k; } else { res_setup->books[j][k] = -1; } } } } return 0; } // Process mappings part static int vorbis_parse_setup_hdr_mappings(vorbis_context *vc) { GetBitContext *gb = &vc->gb; unsigned i, j; vc->mapping_count = get_bits(gb, 6)+1; vc->mappings = av_mallocz(vc->mapping_count * sizeof(*vc->mappings)); if (!vc->mappings) return AVERROR(ENOMEM); ff_dlog(NULL, " There are %d mappings. \n", vc->mapping_count); for (i = 0; i < vc->mapping_count; ++i) { vorbis_mapping *mapping_setup = &vc->mappings[i]; if (get_bits(gb, 16)) { av_log(vc->avctx, AV_LOG_ERROR, "Other mappings than type 0 are not compliant with the Vorbis I specification. \n"); return AVERROR_INVALIDDATA; } if (get_bits1(gb)) { mapping_setup->submaps = get_bits(gb, 4) + 1; } else { mapping_setup->submaps = 1; } if (get_bits1(gb)) { mapping_setup->coupling_steps = get_bits(gb, 8) + 1; if (vc->audio_channels < 2) { av_log(vc->avctx, AV_LOG_ERROR, "Square polar channel mapping with less than two channels is not compliant with the Vorbis I specification.\n"); return AVERROR_INVALIDDATA; } mapping_setup->magnitude = av_mallocz(mapping_setup->coupling_steps * sizeof(*mapping_setup->magnitude)); mapping_setup->angle = av_mallocz(mapping_setup->coupling_steps * sizeof(*mapping_setup->angle)); if (!mapping_setup->angle || !mapping_setup->magnitude) return AVERROR(ENOMEM); for (j = 0; j < mapping_setup->coupling_steps; ++j) { GET_VALIDATED_INDEX(mapping_setup->magnitude[j], ilog(vc->audio_channels - 1), vc->audio_channels) GET_VALIDATED_INDEX(mapping_setup->angle[j], ilog(vc->audio_channels - 1), vc->audio_channels) } } else { mapping_setup->coupling_steps = 0; } ff_dlog(NULL, " %u mapping coupling steps: %d\n", i, mapping_setup->coupling_steps); if (get_bits(gb, 2)) { av_log(vc->avctx, AV_LOG_ERROR, "%u. mapping setup data invalid.\n", i); return AVERROR_INVALIDDATA; // following spec. } if (mapping_setup->submaps>1) { mapping_setup->mux = av_calloc(vc->audio_channels, sizeof(*mapping_setup->mux)); if (!mapping_setup->mux) return AVERROR(ENOMEM); for (j = 0; j < vc->audio_channels; ++j) mapping_setup->mux[j] = get_bits(gb, 4); } for (j = 0; j < mapping_setup->submaps; ++j) { skip_bits(gb, 8); // FIXME check? GET_VALIDATED_INDEX(mapping_setup->submap_floor[j], 8, vc->floor_count) GET_VALIDATED_INDEX(mapping_setup->submap_residue[j], 8, vc->residue_count) ff_dlog(NULL, " %u mapping %u submap : floor %d, residue %d\n", i, j, mapping_setup->submap_floor[j], mapping_setup->submap_residue[j]); } } return 0; } // Process modes part static int create_map(vorbis_context *vc, unsigned floor_number) { vorbis_floor *floors = vc->floors; vorbis_floor0 *vf; int idx; int blockflag, n; int32_t *map; for (blockflag = 0; blockflag < 2; ++blockflag) { n = vc->blocksize[blockflag] / 2; floors[floor_number].data.t0.map[blockflag] = av_malloc_array(n + 1, sizeof(int32_t)); // n + sentinel if (!floors[floor_number].data.t0.map[blockflag]) return AVERROR(ENOMEM); map = floors[floor_number].data.t0.map[blockflag]; vf = &floors[floor_number].data.t0; for (idx = 0; idx < n; ++idx) { map[idx] = floor(BARK((vf->rate * idx) / (2.0f * n)) * (vf->bark_map_size / BARK(vf->rate / 2.0f))); if (vf->bark_map_size-1 < map[idx]) map[idx] = vf->bark_map_size - 1; } map[n] = -1; vf->map_size[blockflag] = n; } for (idx = 0; idx <= n; ++idx) { ff_dlog(NULL, "floor0 map: map at pos %d is %"PRId32"\n", idx, map[idx]); } return 0; } static int vorbis_parse_setup_hdr_modes(vorbis_context *vc) { GetBitContext *gb = &vc->gb; unsigned i; vc->mode_count = get_bits(gb, 6) + 1; vc->modes = av_mallocz(vc->mode_count * sizeof(*vc->modes)); if (!vc->modes) return AVERROR(ENOMEM); ff_dlog(NULL, " There are %d modes.\n", vc->mode_count); for (i = 0; i < vc->mode_count; ++i) { vorbis_mode *mode_setup = &vc->modes[i]; mode_setup->blockflag = get_bits1(gb); mode_setup->windowtype = get_bits(gb, 16); //FIXME check mode_setup->transformtype = get_bits(gb, 16); //FIXME check GET_VALIDATED_INDEX(mode_setup->mapping, 8, vc->mapping_count); ff_dlog(NULL, " %u mode: blockflag %d, windowtype %d, transformtype %d, mapping %d\n", i, mode_setup->blockflag, mode_setup->windowtype, mode_setup->transformtype, mode_setup->mapping); } return 0; } // Process the whole setup header using the functions above static int vorbis_parse_setup_hdr(vorbis_context *vc) { GetBitContext *gb = &vc->gb; int ret; if ((get_bits(gb, 8) != 'v') || (get_bits(gb, 8) != 'o') || (get_bits(gb, 8) != 'r') || (get_bits(gb, 8) != 'b') || (get_bits(gb, 8) != 'i') || (get_bits(gb, 8) != 's')) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (no vorbis signature). \n"); return AVERROR_INVALIDDATA; } if ((ret = vorbis_parse_setup_hdr_codebooks(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (codebooks). \n"); return ret; } if ((ret = vorbis_parse_setup_hdr_tdtransforms(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (time domain transforms). \n"); return ret; } if ((ret = vorbis_parse_setup_hdr_floors(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (floors). \n"); return ret; } if ((ret = vorbis_parse_setup_hdr_residues(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (residues). \n"); return ret; } if ((ret = vorbis_parse_setup_hdr_mappings(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (mappings). \n"); return ret; } if ((ret = vorbis_parse_setup_hdr_modes(vc))) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (modes). \n"); return ret; } if (!get_bits1(gb)) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis setup header packet corrupt (framing flag). \n"); return AVERROR_INVALIDDATA; // framing flag bit unset error } return 0; } // Process the identification header static int vorbis_parse_id_hdr(vorbis_context *vc) { GetBitContext *gb = &vc->gb; unsigned bl0, bl1; float scale = -1.0; int ret; if ((get_bits(gb, 8) != 'v') || (get_bits(gb, 8) != 'o') || (get_bits(gb, 8) != 'r') || (get_bits(gb, 8) != 'b') || (get_bits(gb, 8) != 'i') || (get_bits(gb, 8) != 's')) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis id header packet corrupt (no vorbis signature). \n"); return AVERROR_INVALIDDATA; } vc->version = get_bits_long(gb, 32); //FIXME check 0 vc->audio_channels = get_bits(gb, 8); if (vc->audio_channels <= 0) { av_log(vc->avctx, AV_LOG_ERROR, "Invalid number of channels\n"); return AVERROR_INVALIDDATA; } vc->audio_samplerate = get_bits_long(gb, 32); if (vc->audio_samplerate <= 0) { av_log(vc->avctx, AV_LOG_ERROR, "Invalid samplerate\n"); return AVERROR_INVALIDDATA; } vc->bitrate_maximum = get_bits_long(gb, 32); vc->bitrate_nominal = get_bits_long(gb, 32); vc->bitrate_minimum = get_bits_long(gb, 32); bl0 = get_bits(gb, 4); bl1 = get_bits(gb, 4); if (bl0 > 13 || bl0 < 6 || bl1 > 13 || bl1 < 6 || bl1 < bl0) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis id header packet corrupt (illegal blocksize). \n"); return AVERROR_INVALIDDATA; } vc->blocksize[0] = (1 << bl0); vc->blocksize[1] = (1 << bl1); vc->win[0] = ff_vorbis_vwin[bl0 - 6]; vc->win[1] = ff_vorbis_vwin[bl1 - 6]; if ((get_bits1(gb)) == 0) { av_log(vc->avctx, AV_LOG_ERROR, " Vorbis id header packet corrupt (framing flag not set). \n"); return AVERROR_INVALIDDATA; } vc->channel_residues = av_malloc_array(vc->blocksize[1] / 2, vc->audio_channels * sizeof(*vc->channel_residues)); vc->saved = av_calloc(vc->blocksize[1] / 4, vc->audio_channels * sizeof(*vc->saved)); if (!vc->channel_residues || !vc->saved) return AVERROR(ENOMEM); vc->previous_window = -1; ret = av_tx_init(&vc->mdct[0], &vc->mdct_fn[0], AV_TX_FLOAT_MDCT, 1, vc->blocksize[0] >> 1, &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&vc->mdct[1], &vc->mdct_fn[1], AV_TX_FLOAT_MDCT, 1, vc->blocksize[1] >> 1, &scale, 0); if (ret < 0) return ret; vc->fdsp = avpriv_float_dsp_alloc(vc->avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!vc->fdsp) return AVERROR(ENOMEM); ff_dlog(NULL, " vorbis version %"PRIu32" \n audio_channels %"PRIu8" \n audio_samplerate %"PRIu32" \n bitrate_max %"PRIu32" \n bitrate_nom %"PRIu32" \n bitrate_min %"PRIu32" \n blk_0 %"PRIu32" blk_1 %"PRIu32" \n ", vc->version, vc->audio_channels, vc->audio_samplerate, vc->bitrate_maximum, vc->bitrate_nominal, vc->bitrate_minimum, vc->blocksize[0], vc->blocksize[1]); /* BLK = vc->blocksize[0]; for (i = 0; i < BLK / 2; ++i) { vc->win[0][i] = sin(0.5*3.14159265358*(sin(((float)i + 0.5) / (float)BLK*3.14159265358))*(sin(((float)i + 0.5) / (float)BLK*3.14159265358))); } */ return 0; } // Process the extradata using the functions above (identification header, setup header) static av_cold int vorbis_decode_init(AVCodecContext *avctx) { vorbis_context *vc = avctx->priv_data; uint8_t *headers = avctx->extradata; int headers_len = avctx->extradata_size; const uint8_t *header_start[3]; int header_len[3]; GetBitContext *gb = &vc->gb; int hdr_type, ret; vc->avctx = avctx; ff_vorbisdsp_init(&vc->dsp); avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; if (!headers_len) { av_log(avctx, AV_LOG_ERROR, "Extradata missing.\n"); return AVERROR_INVALIDDATA; } if ((ret = avpriv_split_xiph_headers(headers, headers_len, 30, header_start, header_len)) < 0) { av_log(avctx, AV_LOG_ERROR, "Extradata corrupt.\n"); return ret; } init_get_bits(gb, header_start[0], header_len[0]*8); hdr_type = get_bits(gb, 8); if (hdr_type != 1) { av_log(avctx, AV_LOG_ERROR, "First header is not the id header.\n"); return AVERROR_INVALIDDATA; } if ((ret = vorbis_parse_id_hdr(vc))) { av_log(avctx, AV_LOG_ERROR, "Id header corrupt.\n"); vorbis_free(vc); return ret; } init_get_bits(gb, header_start[2], header_len[2]*8); hdr_type = get_bits(gb, 8); if (hdr_type != 5) { av_log(avctx, AV_LOG_ERROR, "Third header is not the setup header.\n"); vorbis_free(vc); return AVERROR_INVALIDDATA; } if ((ret = vorbis_parse_setup_hdr(vc))) { av_log(avctx, AV_LOG_ERROR, "Setup header corrupt.\n"); vorbis_free(vc); return ret; } av_channel_layout_uninit(&avctx->ch_layout); if (vc->audio_channels > 8) { avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; avctx->ch_layout.nb_channels = vc->audio_channels; } else { av_channel_layout_copy(&avctx->ch_layout, &ff_vorbis_ch_layouts[vc->audio_channels - 1]); } avctx->sample_rate = vc->audio_samplerate; return 0; } // Decode audiopackets ------------------------------------------------- // Read and decode floor static int vorbis_floor0_decode(vorbis_context *vc, vorbis_floor_data *vfu, float *vec) { vorbis_floor0 *vf = &vfu->t0; float *lsp = vf->lsp; unsigned book_idx; uint64_t amplitude; unsigned blockflag = vc->modes[vc->mode_number].blockflag; if (!vf->amplitude_bits) return 1; amplitude = get_bits64(&vc->gb, vf->amplitude_bits); if (amplitude > 0) { float last = 0; unsigned idx, lsp_len = 0; vorbis_codebook codebook; book_idx = get_bits(&vc->gb, ilog(vf->num_books)); if (book_idx >= vf->num_books) { av_log(vc->avctx, AV_LOG_ERROR, "floor0 dec: booknumber too high!\n"); book_idx = 0; } ff_dlog(NULL, "floor0 dec: booknumber: %u\n", book_idx); codebook = vc->codebooks[vf->book_list[book_idx]]; /* Invalid codebook! */ if (!codebook.codevectors) return AVERROR_INVALIDDATA; while (lsp_lenorder) { int vec_off; ff_dlog(NULL, "floor0 dec: book dimension: %d\n", codebook.dimensions); ff_dlog(NULL, "floor0 dec: maximum depth: %d\n", codebook.maxdepth); /* read temp vector */ vec_off = get_vlc2(&vc->gb, codebook.vlc.table, codebook.nb_bits, codebook.maxdepth); if (vec_off < 0) return AVERROR_INVALIDDATA; vec_off *= codebook.dimensions; ff_dlog(NULL, "floor0 dec: vector offset: %d\n", vec_off); /* copy each vector component and add last to it */ for (idx = 0; idx < codebook.dimensions; ++idx) lsp[lsp_len+idx] = codebook.codevectors[vec_off+idx] + last; last = lsp[lsp_len+idx-1]; /* set last to last vector component */ lsp_len += codebook.dimensions; } /* DEBUG: output lsp coeffs */ { int idx; for (idx = 0; idx < lsp_len; ++idx) ff_dlog(NULL, "floor0 dec: coeff at %d is %f\n", idx, lsp[idx]); } /* synthesize floor output vector */ { int i; int order = vf->order; float wstep = M_PI / vf->bark_map_size; for (i = 0; i < order; i++) lsp[i] = 2.0f * cos(lsp[i]); ff_dlog(NULL, "floor0 synth: map_size = %"PRIu32"; m = %d; wstep = %f\n", vf->map_size[blockflag], order, wstep); i = 0; while (i < vf->map_size[blockflag]) { int j, iter_cond = vf->map[blockflag][i]; float p = 0.5f; float q = 0.5f; float two_cos_w = 2.0f * cos(wstep * iter_cond); // needed all times /* similar part for the q and p products */ for (j = 0; j + 1 < order; j += 2) { q *= lsp[j] - two_cos_w; p *= lsp[j + 1] - two_cos_w; } if (j == order) { // even order p *= p * (2.0f - two_cos_w); q *= q * (2.0f + two_cos_w); } else { // odd order q *= two_cos_w-lsp[j]; // one more time for q /* final step and square */ p *= p * (4.f - two_cos_w * two_cos_w); q *= q; } if (p + q == 0.0) return AVERROR_INVALIDDATA; /* calculate linear floor value */ q = exp((((amplitude*vf->amplitude_offset) / (((1ULL << vf->amplitude_bits) - 1) * sqrt(p + q))) - vf->amplitude_offset) * .11512925f); /* fill vector */ do { vec[i] = q; ++i; } while (vf->map[blockflag][i] == iter_cond); } } } else { /* this channel is unused */ return 1; } ff_dlog(NULL, " Floor0 decoded\n"); return 0; } static int vorbis_floor1_decode(vorbis_context *vc, vorbis_floor_data *vfu, float *vec) { vorbis_floor1 *vf = &vfu->t1; GetBitContext *gb = &vc->gb; uint16_t range_v[4] = { 256, 128, 86, 64 }; unsigned range = range_v[vf->multiplier - 1]; uint16_t floor1_Y[258]; uint16_t floor1_Y_final[258]; int floor1_flag[258]; unsigned partition_class, cdim, cbits, csub, cval, offset, i, j; int book, adx, ady, dy, off, predicted, err; if (!get_bits1(gb)) // silence return 1; // Read values (or differences) for the floor's points floor1_Y[0] = get_bits(gb, ilog(range - 1)); floor1_Y[1] = get_bits(gb, ilog(range - 1)); ff_dlog(NULL, "floor 0 Y %d floor 1 Y %d \n", floor1_Y[0], floor1_Y[1]); offset = 2; for (i = 0; i < vf->partitions; ++i) { partition_class = vf->partition_class[i]; cdim = vf->class_dimensions[partition_class]; cbits = vf->class_subclasses[partition_class]; csub = (1 << cbits) - 1; cval = 0; ff_dlog(NULL, "Cbits %u\n", cbits); if (cbits) // this reads all subclasses for this partition's class cval = get_vlc2(gb, vc->codebooks[vf->class_masterbook[partition_class]].vlc.table, vc->codebooks[vf->class_masterbook[partition_class]].nb_bits, 3); for (j = 0; j < cdim; ++j) { book = vf->subclass_books[partition_class][cval & csub]; ff_dlog(NULL, "book %d Cbits %u cval %u bits:%d\n", book, cbits, cval, get_bits_count(gb)); cval = cval >> cbits; if (book > -1) { int v = get_vlc2(gb, vc->codebooks[book].vlc.table, vc->codebooks[book].nb_bits, 3); if (v < 0) return AVERROR_INVALIDDATA; floor1_Y[offset+j] = v; } else { floor1_Y[offset+j] = 0; } ff_dlog(NULL, " floor(%d) = %d \n", vf->list[offset+j].x, floor1_Y[offset+j]); } offset+=cdim; } // Amplitude calculation from the differences floor1_flag[0] = 1; floor1_flag[1] = 1; floor1_Y_final[0] = floor1_Y[0]; floor1_Y_final[1] = floor1_Y[1]; for (i = 2; i < vf->x_list_dim; ++i) { unsigned val, highroom, lowroom, room, high_neigh_offs, low_neigh_offs; low_neigh_offs = vf->list[i].low; high_neigh_offs = vf->list[i].high; dy = floor1_Y_final[high_neigh_offs] - floor1_Y_final[low_neigh_offs]; // render_point begin adx = vf->list[high_neigh_offs].x - vf->list[low_neigh_offs].x; ady = FFABS(dy); err = ady * (vf->list[i].x - vf->list[low_neigh_offs].x); off = err / adx; if (dy < 0) { predicted = floor1_Y_final[low_neigh_offs] - off; } else { predicted = floor1_Y_final[low_neigh_offs] + off; } // render_point end val = floor1_Y[i]; highroom = range-predicted; lowroom = predicted; if (highroom < lowroom) { room = highroom * 2; } else { room = lowroom * 2; // SPEC misspelling } if (val) { floor1_flag[low_neigh_offs] = 1; floor1_flag[high_neigh_offs] = 1; floor1_flag[i] = 1; if (val >= room) { if (highroom > lowroom) { floor1_Y_final[i] = av_clip_uint16(val - lowroom + predicted); } else { floor1_Y_final[i] = av_clip_uint16(predicted - val + highroom - 1); } } else { if (val & 1) { floor1_Y_final[i] = av_clip_uint16(predicted - (val + 1) / 2); } else { floor1_Y_final[i] = av_clip_uint16(predicted + val / 2); } } } else { floor1_flag[i] = 0; floor1_Y_final[i] = av_clip_uint16(predicted); } ff_dlog(NULL, " Decoded floor(%d) = %u / val %u\n", vf->list[i].x, floor1_Y_final[i], val); } // Curve synth - connect the calculated dots and convert from dB scale FIXME optimize ? ff_vorbis_floor1_render_list(vf->list, vf->x_list_dim, floor1_Y_final, floor1_flag, vf->multiplier, vec, vf->list[1].x); ff_dlog(NULL, " Floor decoded\n"); return 0; } static av_always_inline int setup_classifs(vorbis_context *vc, vorbis_residue *vr, uint8_t *do_not_decode, unsigned ch_used, int partition_count, int ptns_to_read ) { vorbis_codebook *codebook = vc->codebooks + vr->classbook; int p, j, i; unsigned c_p_c = codebook->dimensions; unsigned inverse_class = ff_inverse[vr->classifications]; int temp, temp2; for (p = 0, j = 0; j < ch_used; ++j) { if (!do_not_decode[j]) { temp = get_vlc2(&vc->gb, codebook->vlc.table, codebook->nb_bits, 3); ff_dlog(NULL, "Classword: %u\n", temp); av_assert0(temp < 65536); if (temp < 0) { av_log(vc->avctx, AV_LOG_ERROR, "Invalid vlc code decoding %d channel.", j); return AVERROR_INVALIDDATA; } if (vr->classifications == 1) { for (i = partition_count + c_p_c - 1; i >= partition_count; i--) { if (i < ptns_to_read) vr->classifs[p + i] = 0; } } else { for (i = partition_count + c_p_c - 1; i >= partition_count; i--) { temp2 = (((uint64_t)temp) * inverse_class) >> 32; if (i < ptns_to_read) vr->classifs[p + i] = temp - temp2 * vr->classifications; temp = temp2; } } } p += ptns_to_read; } return 0; } // Read and decode residue static av_always_inline int vorbis_residue_decode_internal(vorbis_context *vc, vorbis_residue *vr, unsigned ch, uint8_t *do_not_decode, float *vec, unsigned vlen, unsigned ch_left, int vr_type) { GetBitContext *gb = &vc->gb; unsigned c_p_c = vc->codebooks[vr->classbook].dimensions; uint8_t *classifs = vr->classifs; unsigned pass, ch_used, i, j, k, l; unsigned max_output = (ch - 1) * vlen; int ptns_to_read = vr->ptns_to_read; int libvorbis_bug = 0; if (vr_type == 2) { for (j = 1; j < ch; ++j) do_not_decode[0] &= do_not_decode[j]; // FIXME - clobbering input if (do_not_decode[0]) return 0; ch_used = 1; max_output += vr->end / ch; } else { ch_used = ch; max_output += vr->end; } if (max_output > ch_left * vlen) { if (max_output <= ch_left * vlen + vr->partition_size*ch_used/ch) { ptns_to_read--; libvorbis_bug = 1; } else { av_log(vc->avctx, AV_LOG_ERROR, "Insufficient output buffer\n"); return AVERROR_INVALIDDATA; } } ff_dlog(NULL, " residue type 0/1/2 decode begin, ch: %d cpc %d \n", ch, c_p_c); for (pass = 0; pass <= vr->maxpass; ++pass) { // FIXME OPTIMIZE? int voffset, partition_count, j_times_ptns_to_read; voffset = vr->begin; for (partition_count = 0; partition_count < ptns_to_read;) { // SPEC error if (!pass) { int ret = setup_classifs(vc, vr, do_not_decode, ch_used, partition_count, ptns_to_read); if (ret < 0) return ret; } for (i = 0; (i < c_p_c) && (partition_count < ptns_to_read); ++i) { for (j_times_ptns_to_read = 0, j = 0; j < ch_used; ++j) { unsigned voffs; if (!do_not_decode[j]) { unsigned vqclass = classifs[j_times_ptns_to_read + partition_count]; int vqbook = vr->books[vqclass][pass]; if (vqbook >= 0 && vc->codebooks[vqbook].codevectors) { int coffs; unsigned dim = vc->codebooks[vqbook].dimensions; unsigned step = FASTDIV(vr->partition_size << 1, dim << 1); vorbis_codebook codebook = vc->codebooks[vqbook]; if (vr_type == 0) { voffs = voffset+j*vlen; for (k = 0; k < step; ++k) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= dim; for (l = 0; l < dim; ++l) vec[voffs + k + l * step] += codebook.codevectors[coffs + l]; } } else if (vr_type == 1) { voffs = voffset + j * vlen; for (k = 0; k < step; ++k) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= dim; for (l = 0; l < dim; ++l, ++voffs) { vec[voffs]+=codebook.codevectors[coffs+l]; ff_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d \n", pass, voffs, vec[voffs], codebook.codevectors[coffs+l], coffs); } } } else if (vr_type == 2 && ch == 2 && (voffset & 1) == 0 && (dim & 1) == 0) { // most frequent case optimized voffs = voffset >> 1; if (dim == 2) { for (k = 0; k < step; ++k) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= 2; vec[voffs + k ] += codebook.codevectors[coffs ]; vec[voffs + k + vlen] += codebook.codevectors[coffs + 1]; } } else if (dim == 4) { for (k = 0; k < step; ++k, voffs += 2) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= 4; vec[voffs ] += codebook.codevectors[coffs ]; vec[voffs + 1 ] += codebook.codevectors[coffs + 2]; vec[voffs + vlen ] += codebook.codevectors[coffs + 1]; vec[voffs + vlen + 1] += codebook.codevectors[coffs + 3]; } } else for (k = 0; k < step; ++k) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= dim; for (l = 0; l < dim; l += 2, voffs++) { vec[voffs ] += codebook.codevectors[coffs + l ]; vec[voffs + vlen] += codebook.codevectors[coffs + l + 1]; ff_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n", pass, voffset / ch + (voffs % ch) * vlen, vec[voffset / ch + (voffs % ch) * vlen], codebook.codevectors[coffs + l], coffs, l); } } } else if (vr_type == 2) { unsigned voffs_div = ch == 1 ? voffset : FASTDIV(voffset, ch); unsigned voffs_mod = voffset - voffs_div * ch; for (k = 0; k < step; ++k) { coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3); if (coffs < 0) return coffs; coffs *= dim; for (l = 0; l < dim; ++l) { vec[voffs_div + voffs_mod * vlen] += codebook.codevectors[coffs + l]; ff_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n", pass, voffs_div + voffs_mod * vlen, vec[voffs_div + voffs_mod * vlen], codebook.codevectors[coffs + l], coffs, l); if (++voffs_mod == ch) { voffs_div++; voffs_mod = 0; } } } } } } j_times_ptns_to_read += ptns_to_read; } ++partition_count; voffset += vr->partition_size; } } if (libvorbis_bug && !pass) { for (j = 0; j < ch_used; ++j) { if (!do_not_decode[j]) { get_vlc2(&vc->gb, vc->codebooks[vr->classbook].vlc.table, vc->codebooks[vr->classbook].nb_bits, 3); } } } } return 0; } static inline int vorbis_residue_decode(vorbis_context *vc, vorbis_residue *vr, unsigned ch, uint8_t *do_not_decode, float *vec, unsigned vlen, unsigned ch_left) { if (vr->type == 2) return vorbis_residue_decode_internal(vc, vr, ch, do_not_decode, vec, vlen, ch_left, 2); else if (vr->type == 1) return vorbis_residue_decode_internal(vc, vr, ch, do_not_decode, vec, vlen, ch_left, 1); else if (vr->type == 0) return vorbis_residue_decode_internal(vc, vr, ch, do_not_decode, vec, vlen, ch_left, 0); else { av_log(vc->avctx, AV_LOG_ERROR, " Invalid residue type while residue decode?! \n"); return AVERROR_INVALIDDATA; } } // Decode the audio packet using the functions above static int vorbis_parse_audio_packet(vorbis_context *vc, float **floor_ptr) { GetBitContext *gb = &vc->gb; AVTXContext *mdct; av_tx_fn mdct_fn; int previous_window = vc->previous_window; unsigned mode_number, blockflag, blocksize; int i, j; uint8_t no_residue[255]; uint8_t do_not_decode[255]; vorbis_mapping *mapping; float *ch_res_ptr = vc->channel_residues; uint8_t res_chan[255]; unsigned res_num = 0; int retlen = 0; unsigned ch_left = vc->audio_channels; unsigned vlen; if (get_bits1(gb)) { av_log(vc->avctx, AV_LOG_ERROR, "Not a Vorbis I audio packet.\n"); return AVERROR_INVALIDDATA; // packet type not audio } if (vc->mode_count == 1) { mode_number = 0; } else { GET_VALIDATED_INDEX(mode_number, ilog(vc->mode_count-1), vc->mode_count) } vc->mode_number = mode_number; mapping = &vc->mappings[vc->modes[mode_number].mapping]; ff_dlog(NULL, " Mode number: %u , mapping: %d , blocktype %d\n", mode_number, vc->modes[mode_number].mapping, vc->modes[mode_number].blockflag); blockflag = vc->modes[mode_number].blockflag; blocksize = vc->blocksize[blockflag]; vlen = blocksize / 2; if (blockflag) { int code = get_bits(gb, 2); if (previous_window < 0) previous_window = code>>1; } else if (previous_window < 0) previous_window = 0; memset(ch_res_ptr, 0, sizeof(float) * vc->audio_channels * vlen); //FIXME can this be removed ? for (i = 0; i < vc->audio_channels; ++i) memset(floor_ptr[i], 0, vlen * sizeof(floor_ptr[0][0])); //FIXME can this be removed ? // Decode floor for (i = 0; i < vc->audio_channels; ++i) { vorbis_floor *floor; int ret; if (mapping->submaps > 1) { floor = &vc->floors[mapping->submap_floor[mapping->mux[i]]]; } else { floor = &vc->floors[mapping->submap_floor[0]]; } ret = floor->decode(vc, &floor->data, floor_ptr[i]); if (ret < 0) { av_log(vc->avctx, AV_LOG_ERROR, "Invalid codebook in vorbis_floor_decode.\n"); return AVERROR_INVALIDDATA; } no_residue[i] = ret; } // Nonzero vector propagate for (i = mapping->coupling_steps - 1; i >= 0; --i) { if (!(no_residue[mapping->magnitude[i]] & no_residue[mapping->angle[i]])) { no_residue[mapping->magnitude[i]] = 0; no_residue[mapping->angle[i]] = 0; } } // Decode residue for (i = 0; i < mapping->submaps; ++i) { vorbis_residue *residue; unsigned ch = 0; int ret; for (j = 0; j < vc->audio_channels; ++j) { if ((mapping->submaps == 1) || (i == mapping->mux[j])) { res_chan[j] = res_num; if (no_residue[j]) { do_not_decode[ch] = 1; } else { do_not_decode[ch] = 0; } ++ch; ++res_num; } } residue = &vc->residues[mapping->submap_residue[i]]; if (ch_left < ch) { av_log(vc->avctx, AV_LOG_ERROR, "Too many channels in vorbis_floor_decode.\n"); return AVERROR_INVALIDDATA; } if (ch) { ret = vorbis_residue_decode(vc, residue, ch, do_not_decode, ch_res_ptr, vlen, ch_left); if (ret < 0) return ret; } ch_res_ptr += ch * vlen; ch_left -= ch; } if (ch_left > 0) return AVERROR_INVALIDDATA; // Inverse coupling for (i = mapping->coupling_steps - 1; i >= 0; --i) { //warning: i has to be signed float *mag, *ang; mag = vc->channel_residues+res_chan[mapping->magnitude[i]] * blocksize / 2; ang = vc->channel_residues+res_chan[mapping->angle[i]] * blocksize / 2; vc->dsp.vorbis_inverse_coupling(mag, ang, blocksize / 2); } // Dotproduct, MDCT mdct = vc->mdct[blockflag]; mdct_fn = vc->mdct_fn[blockflag]; for (j = vc->audio_channels-1;j >= 0; j--) { ch_res_ptr = vc->channel_residues + res_chan[j] * blocksize / 2; vc->fdsp->vector_fmul(floor_ptr[j], floor_ptr[j], ch_res_ptr, blocksize / 2); mdct_fn(mdct, ch_res_ptr, floor_ptr[j], sizeof(float)); } // Overlap/add, save data for next overlapping retlen = (blocksize + vc->blocksize[previous_window]) / 4; for (j = 0; j < vc->audio_channels; j++) { unsigned bs0 = vc->blocksize[0]; unsigned bs1 = vc->blocksize[1]; float *residue = vc->channel_residues + res_chan[j] * blocksize / 2; float *saved = vc->saved + j * bs1 / 4; float *ret = floor_ptr[j]; float *buf = residue; const float *win = vc->win[blockflag & previous_window]; if (blockflag == previous_window) { vc->fdsp->vector_fmul_window(ret, saved, buf, win, blocksize / 4); } else if (blockflag > previous_window) { vc->fdsp->vector_fmul_window(ret, saved, buf, win, bs0 / 4); memcpy(ret+bs0/2, buf+bs0/4, ((bs1-bs0)/4) * sizeof(float)); } else { memcpy(ret, saved, ((bs1 - bs0) / 4) * sizeof(float)); vc->fdsp->vector_fmul_window(ret + (bs1 - bs0) / 4, saved + (bs1 - bs0) / 4, buf, win, bs0 / 4); } memcpy(saved, buf + blocksize / 4, blocksize / 4 * sizeof(float)); } vc->previous_window = blockflag; return retlen; } // Return the decoded audio packet through the standard api static int vorbis_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; vorbis_context *vc = avctx->priv_data; GetBitContext *gb = &vc->gb; float *channel_ptrs[255]; int i, len, ret; ff_dlog(NULL, "packet length %d \n", buf_size); if (*buf == 1 && buf_size > 7) { if ((ret = init_get_bits8(gb, buf + 1, buf_size - 1)) < 0) return ret; vorbis_free(vc); if ((ret = vorbis_parse_id_hdr(vc))) { av_log(avctx, AV_LOG_ERROR, "Id header corrupt.\n"); vorbis_free(vc); return ret; } av_channel_layout_uninit(&avctx->ch_layout); if (vc->audio_channels > 8) { avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; avctx->ch_layout.nb_channels = vc->audio_channels; } else { av_channel_layout_copy(&avctx->ch_layout, &ff_vorbis_ch_layouts[vc->audio_channels - 1]); } avctx->sample_rate = vc->audio_samplerate; return buf_size; } if (*buf == 3 && buf_size > 7) { av_log(avctx, AV_LOG_DEBUG, "Ignoring comment header\n"); return buf_size; } if (*buf == 5 && buf_size > 7 && vc->channel_residues && !vc->modes) { if ((ret = init_get_bits8(gb, buf + 1, buf_size - 1)) < 0) return ret; if ((ret = vorbis_parse_setup_hdr(vc))) { av_log(avctx, AV_LOG_ERROR, "Setup header corrupt.\n"); vorbis_free(vc); return ret; } return buf_size; } if (!vc->channel_residues || !vc->modes) { av_log(avctx, AV_LOG_ERROR, "Data packet before valid headers\n"); return AVERROR_INVALIDDATA; } /* get output buffer */ frame->nb_samples = vc->blocksize[1] / 2; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; if (vc->audio_channels > 8) { for (i = 0; i < vc->audio_channels; i++) channel_ptrs[i] = (float *)frame->extended_data[i]; } else { for (i = 0; i < vc->audio_channels; i++) { int ch = ff_vorbis_channel_layout_offsets[vc->audio_channels - 1][i]; channel_ptrs[ch] = (float *)frame->extended_data[i]; } } if ((ret = init_get_bits8(gb, buf, buf_size)) < 0) return ret; if ((len = vorbis_parse_audio_packet(vc, channel_ptrs)) <= 0) return len; if (!vc->first_frame) { vc->first_frame = 1; avctx->internal->skip_samples = len; } ff_dlog(NULL, "parsed %d bytes %d bits, returned %d samples (*ch*bits) \n", get_bits_count(gb) / 8, get_bits_count(gb) % 8, len); frame->nb_samples = len; *got_frame_ptr = 1; return buf_size; } // Close decoder static av_cold int vorbis_decode_close(AVCodecContext *avctx) { vorbis_context *vc = avctx->priv_data; vorbis_free(vc); return 0; } static av_cold void vorbis_decode_flush(AVCodecContext *avctx) { vorbis_context *vc = avctx->priv_data; if (vc->saved) { memset(vc->saved, 0, (vc->blocksize[1] / 4) * vc->audio_channels * sizeof(*vc->saved)); } vc->previous_window = -1; vc->first_frame = 0; } const FFCodec ff_vorbis_decoder = { .p.name = "vorbis", CODEC_LONG_NAME("Vorbis"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_VORBIS, .priv_data_size = sizeof(vorbis_context), .init = vorbis_decode_init, .close = vorbis_decode_close, FF_CODEC_DECODE_CB(vorbis_decode_frame), .flush = vorbis_decode_flush, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, .p.ch_layouts = ff_vorbis_ch_layouts, .p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, };