/* * audio resampling * Copyright (c) 2004-2012 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio resampling * @author Michael Niedermayer */ #if defined(TEMPLATE_RESAMPLE_DBL) # define RENAME(N) N ## _double # define FILTER_SHIFT 0 # define DELEM double # define FELEM double # define FELEM2 double # define FELEML double # define OUT(d, v) d = v #elif defined(TEMPLATE_RESAMPLE_FLT) \ || defined(TEMPLATE_RESAMPLE_FLT_SSE) # define FILTER_SHIFT 0 # define DELEM float # define FELEM float # define FELEM2 float # define FELEML float # define OUT(d, v) d = v # if defined(TEMPLATE_RESAMPLE_FLT) # define RENAME(N) N ## _float # elif defined(TEMPLATE_RESAMPLE_FLT_SSE) # define COMMON_CORE COMMON_CORE_FLT_SSE # define RENAME(N) N ## _float_sse # endif #elif defined(TEMPLATE_RESAMPLE_S32) # define RENAME(N) N ## _int32 # define FILTER_SHIFT 30 # define DELEM int32_t # define FELEM int32_t # define FELEM2 int64_t # define FELEML int64_t # define FELEM_MAX INT32_MAX # define FELEM_MIN INT32_MIN # define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v #elif defined(TEMPLATE_RESAMPLE_S16) \ || defined(TEMPLATE_RESAMPLE_S16_MMX2) \ || defined(TEMPLATE_RESAMPLE_S16_SSE2) # define FILTER_SHIFT 15 # define DELEM int16_t # define FELEM int16_t # define FELEM2 int32_t # define FELEML int64_t # define FELEM_MAX INT16_MAX # define FELEM_MIN INT16_MIN # define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v # if defined(TEMPLATE_RESAMPLE_S16) # define RENAME(N) N ## _int16 # elif defined(TEMPLATE_RESAMPLE_S16_MMX2) # define COMMON_CORE COMMON_CORE_INT16_MMX2 # define RENAME(N) N ## _int16_mmx2 # elif defined(TEMPLATE_RESAMPLE_S16_SSE2) # define COMMON_CORE COMMON_CORE_INT16_SSE2 # define RENAME(N) N ## _int16_sse2 # endif #endif int RENAME(swri_resample)(ResampleContext *c, DELEM *dst, const DELEM *src, int *consumed, int src_size, int dst_size, int update_ctx){ int dst_index, i; int index= c->index; int frac= c->frac; int dst_incr_frac= c->dst_incr % c->src_incr; int dst_incr= c->dst_incr / c->src_incr; int compensation_distance= c->compensation_distance; av_assert1(c->filter_shift == FILTER_SHIFT); av_assert1(c->felem_size == sizeof(FELEM)); if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){ int64_t index2= ((int64_t)index)<<32; int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr); for(dst_index=0; dst_index < dst_size; dst_index++){ dst[dst_index] = src[index2>>32]; index2 += incr; } index += dst_index * dst_incr; index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr; frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr; av_assert2(index >= 0); *consumed= index >> c->phase_shift; index &= c->phase_mask; }else if(compensation_distance == 0 && !c->linear && index >= 0){ int sample_index = 0; for(dst_index=0; dst_index < dst_size; dst_index++){ FELEM *filter; sample_index += index >> c->phase_shift; index &= c->phase_mask; filter= ((FELEM*)c->filter_bank) + c->filter_alloc*index; if(sample_index + c->filter_length > src_size){ break; }else{ #ifdef COMMON_CORE COMMON_CORE #else FELEM2 val=0; for(i=0; ifilter_length; i++){ val += src[sample_index + i] * (FELEM2)filter[i]; } OUT(dst[dst_index], val); #endif } frac += dst_incr_frac; index += dst_incr; if(frac >= c->src_incr){ frac -= c->src_incr; index++; } } *consumed = sample_index; }else{ int sample_index = 0; for(dst_index=0; dst_index < dst_size; dst_index++){ FELEM *filter; FELEM2 val=0; sample_index += index >> c->phase_shift; index &= c->phase_mask; filter = ((FELEM*)c->filter_bank) + c->filter_alloc*index; if(sample_index + c->filter_length > src_size || -sample_index >= src_size){ break; }else if(sample_index < 0){ for(i=0; ifilter_length; i++) val += src[FFABS(sample_index + i)] * (FELEM2)filter[i]; OUT(dst[dst_index], val); }else if(c->linear){ FELEM2 v2=0; for(i=0; ifilter_length; i++){ val += src[sample_index + i] * (FELEM2)filter[i]; v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_alloc]; } val+=(v2-val)*(FELEML)frac / c->src_incr; OUT(dst[dst_index], val); }else{ #ifdef COMMON_CORE COMMON_CORE #else for(i=0; ifilter_length; i++){ val += src[sample_index + i] * (FELEM2)filter[i]; } OUT(dst[dst_index], val); #endif } frac += dst_incr_frac; index += dst_incr; if(frac >= c->src_incr){ frac -= c->src_incr; index++; } if(dst_index + 1 == compensation_distance){ compensation_distance= 0; dst_incr_frac= c->ideal_dst_incr % c->src_incr; dst_incr= c->ideal_dst_incr / c->src_incr; } } *consumed= FFMAX(sample_index, 0); index += FFMIN(sample_index, 0) << c->phase_shift; if(compensation_distance){ compensation_distance -= dst_index; av_assert1(compensation_distance > 0); } } if(update_ctx){ c->frac= frac; c->index= index; c->dst_incr= dst_incr_frac + c->src_incr*dst_incr; c->compensation_distance= compensation_distance; } return dst_index; } #undef COMMON_CORE #undef RENAME #undef FILTER_SHIFT #undef DELEM #undef FELEM #undef FELEM2 #undef FELEML #undef FELEM_MAX #undef FELEM_MIN #undef OUT