/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com> * Copyright (C) 2013 Clément Bœsch <u pkh me> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "threadframe.h" #include "vp56.h" #include "vp9.h" #include "vp9data.h" #include "vp9dec.h" static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h, ptrdiff_t stride, int v) { switch (w) { case 1: do { *ptr = v; ptr += stride; } while (--h); break; case 2: { int v16 = v * 0x0101; do { AV_WN16A(ptr, v16); ptr += stride; } while (--h); break; } case 4: { uint32_t v32 = v * 0x01010101; do { AV_WN32A(ptr, v32); ptr += stride; } while (--h); break; } case 8: { #if HAVE_FAST_64BIT uint64_t v64 = v * 0x0101010101010101ULL; do { AV_WN64A(ptr, v64); ptr += stride; } while (--h); #else uint32_t v32 = v * 0x01010101; do { AV_WN32A(ptr, v32); AV_WN32A(ptr + 4, v32); ptr += stride; } while (--h); #endif break; } } } static void decode_mode(VP9TileData *td) { static const uint8_t left_ctx[N_BS_SIZES] = { 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf }; static const uint8_t above_ctx[N_BS_SIZES] = { 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf }; static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = { TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16, TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4 }; VP9Context *s = td->s; VP9Block *b = td->b; int row = td->row, col = td->col, row7 = td->row7; enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs]; int bw4 = ff_vp9_bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4); int bh4 = ff_vp9_bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y; int have_a = row > 0, have_l = col > td->tile_col_start; int vref, filter_id; if (!s->s.h.segmentation.enabled) { b->seg_id = 0; } else if (s->s.h.keyframe || s->s.h.intraonly) { b->seg_id = !s->s.h.segmentation.update_map ? 0 : vp8_rac_get_tree(td->c, ff_vp9_segmentation_tree, s->s.h.segmentation.prob); } else if (!s->s.h.segmentation.update_map || (s->s.h.segmentation.temporal && vp56_rac_get_prob_branchy(td->c, s->s.h.segmentation.pred_prob[s->above_segpred_ctx[col] + td->left_segpred_ctx[row7]]))) { if (!s->s.h.errorres && s->s.frames[REF_FRAME_SEGMAP].segmentation_map) { int pred = 8, x; uint8_t *refsegmap = s->s.frames[REF_FRAME_SEGMAP].segmentation_map; if (!s->s.frames[REF_FRAME_SEGMAP].uses_2pass) ff_thread_await_progress(&s->s.frames[REF_FRAME_SEGMAP].tf, row >> 3, 0); for (y = 0; y < h4; y++) { int idx_base = (y + row) * 8 * s->sb_cols + col; for (x = 0; x < w4; x++) pred = FFMIN(pred, refsegmap[idx_base + x]); } av_assert1(pred < 8); b->seg_id = pred; } else { b->seg_id = 0; } memset(&s->above_segpred_ctx[col], 1, w4); memset(&td->left_segpred_ctx[row7], 1, h4); } else { b->seg_id = vp8_rac_get_tree(td->c, ff_vp9_segmentation_tree, s->s.h.segmentation.prob); memset(&s->above_segpred_ctx[col], 0, w4); memset(&td->left_segpred_ctx[row7], 0, h4); } if (s->s.h.segmentation.enabled && (s->s.h.segmentation.update_map || s->s.h.keyframe || s->s.h.intraonly)) { setctx_2d(&s->s.frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col], bw4, bh4, 8 * s->sb_cols, b->seg_id); } b->skip = s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled; if (!b->skip) { int c = td->left_skip_ctx[row7] + s->above_skip_ctx[col]; b->skip = vp56_rac_get_prob(td->c, s->prob.p.skip[c]); td->counts.skip[c][b->skip]++; } if (s->s.h.keyframe || s->s.h.intraonly) { b->intra = 1; } else if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) { b->intra = !s->s.h.segmentation.feat[b->seg_id].ref_val; } else { int c, bit; if (have_a && have_l) { c = s->above_intra_ctx[col] + td->left_intra_ctx[row7]; c += (c == 2); } else { c = have_a ? 2 * s->above_intra_ctx[col] : have_l ? 2 * td->left_intra_ctx[row7] : 0; } bit = vp56_rac_get_prob(td->c, s->prob.p.intra[c]); td->counts.intra[c][bit]++; b->intra = !bit; } if ((b->intra || !b->skip) && s->s.h.txfmmode == TX_SWITCHABLE) { int c; if (have_a) { if (have_l) { c = (s->above_skip_ctx[col] ? max_tx : s->above_txfm_ctx[col]) + (td->left_skip_ctx[row7] ? max_tx : td->left_txfm_ctx[row7]) > max_tx; } else { c = s->above_skip_ctx[col] ? 1 : (s->above_txfm_ctx[col] * 2 > max_tx); } } else if (have_l) { c = td->left_skip_ctx[row7] ? 1 : (td->left_txfm_ctx[row7] * 2 > max_tx); } else { c = 1; } switch (max_tx) { case TX_32X32: b->tx = vp56_rac_get_prob(td->c, s->prob.p.tx32p[c][0]); if (b->tx) { b->tx += vp56_rac_get_prob(td->c, s->prob.p.tx32p[c][1]); if (b->tx == 2) b->tx += vp56_rac_get_prob(td->c, s->prob.p.tx32p[c][2]); } td->counts.tx32p[c][b->tx]++; break; case TX_16X16: b->tx = vp56_rac_get_prob(td->c, s->prob.p.tx16p[c][0]); if (b->tx) b->tx += vp56_rac_get_prob(td->c, s->prob.p.tx16p[c][1]); td->counts.tx16p[c][b->tx]++; break; case TX_8X8: b->tx = vp56_rac_get_prob(td->c, s->prob.p.tx8p[c]); td->counts.tx8p[c][b->tx]++; break; case TX_4X4: b->tx = TX_4X4; break; } } else { b->tx = FFMIN(max_tx, s->s.h.txfmmode); } if (s->s.h.keyframe || s->s.h.intraonly) { uint8_t *a = &s->above_mode_ctx[col * 2]; uint8_t *l = &td->left_mode_ctx[(row7) << 1]; b->comp = 0; if (b->bs > BS_8x8) { // FIXME the memory storage intermediates here aren't really // necessary, they're just there to make the code slightly // simpler for now b->mode[0] = a[0] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[0]][l[0]]); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[1]][b->mode[0]]); l[0] = a[1] = b->mode[1]; } else { l[0] = a[1] = b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = a[0] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[0]][l[1]]); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[1]][b->mode[2]]); l[1] = a[1] = b->mode[3]; } else { l[1] = a[1] = b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; l[1] = a[1] = b->mode[3] = b->mode[1]; } } else { b->mode[0] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[*a][*l]); b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0]; // FIXME this can probably be optimized memset(a, b->mode[0], ff_vp9_bwh_tab[0][b->bs][0]); memset(l, b->mode[0], ff_vp9_bwh_tab[0][b->bs][1]); } b->uvmode = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, ff_vp9_default_kf_uvmode_probs[b->mode[3]]); } else if (b->intra) { b->comp = 0; if (b->bs > BS_8x8) { b->mode[0] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); td->counts.y_mode[0][b->mode[0]]++; if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); td->counts.y_mode[0][b->mode[1]]++; } else { b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); td->counts.y_mode[0][b->mode[2]]++; if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); td->counts.y_mode[0][b->mode[3]]++; } else { b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; b->mode[3] = b->mode[1]; } } else { static const uint8_t size_group[10] = { 3, 3, 3, 3, 2, 2, 2, 1, 1, 1 }; int sz = size_group[b->bs]; b->mode[0] = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.y_mode[sz]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; td->counts.y_mode[sz][b->mode[3]]++; } b->uvmode = vp8_rac_get_tree(td->c, ff_vp9_intramode_tree, s->prob.p.uv_mode[b->mode[3]]); td->counts.uv_mode[b->mode[3]][b->uvmode]++; } else { static const uint8_t inter_mode_ctx_lut[14][14] = { { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 }, }; if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) { av_assert2(s->s.h.segmentation.feat[b->seg_id].ref_val != 0); b->comp = 0; b->ref[0] = s->s.h.segmentation.feat[b->seg_id].ref_val - 1; } else { // read comp_pred flag if (s->s.h.comppredmode != PRED_SWITCHABLE) { b->comp = s->s.h.comppredmode == PRED_COMPREF; } else { int c; // FIXME add intra as ref=0xff (or -1) to make these easier? if (have_a) { if (have_l) { if (s->above_comp_ctx[col] && td->left_comp_ctx[row7]) { c = 4; } else if (s->above_comp_ctx[col]) { c = 2 + (td->left_intra_ctx[row7] || td->left_ref_ctx[row7] == s->s.h.fixcompref); } else if (td->left_comp_ctx[row7]) { c = 2 + (s->above_intra_ctx[col] || s->above_ref_ctx[col] == s->s.h.fixcompref); } else { c = (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref) ^ (!td->left_intra_ctx[row7] && td->left_ref_ctx[row & 7] == s->s.h.fixcompref); } } else { c = s->above_comp_ctx[col] ? 3 : (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref); } } else if (have_l) { c = td->left_comp_ctx[row7] ? 3 : (!td->left_intra_ctx[row7] && td->left_ref_ctx[row7] == s->s.h.fixcompref); } else { c = 1; } b->comp = vp56_rac_get_prob(td->c, s->prob.p.comp[c]); td->counts.comp[c][b->comp]++; } // read actual references // FIXME probably cache a few variables here to prevent repetitive // memory accesses below if (b->comp) { /* two references */ int fix_idx = s->s.h.signbias[s->s.h.fixcompref], var_idx = !fix_idx, c, bit; b->ref[fix_idx] = s->s.h.fixcompref; // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (s->above_intra_ctx[col]) { if (td->left_intra_ctx[row7]) { c = 2; } else { c = 1 + 2 * (td->left_ref_ctx[row7] != s->s.h.varcompref[1]); } } else if (td->left_intra_ctx[row7]) { c = 1 + 2 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]); } else { int refl = td->left_ref_ctx[row7], refa = s->above_ref_ctx[col]; if (refl == refa && refa == s->s.h.varcompref[1]) { c = 0; } else if (!td->left_comp_ctx[row7] && !s->above_comp_ctx[col]) { if ((refa == s->s.h.fixcompref && refl == s->s.h.varcompref[0]) || (refl == s->s.h.fixcompref && refa == s->s.h.varcompref[0])) { c = 4; } else { c = (refa == refl) ? 3 : 1; } } else if (!td->left_comp_ctx[row7]) { if (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) { c = 1; } else { c = (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) ? 2 : 4; } } else if (!s->above_comp_ctx[col]) { if (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) { c = 1; } else { c = (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) ? 2 : 4; } } else { c = (refl == refa) ? 4 : 2; } } } else { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 4 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]); } else { c = 3 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]); } } } else if (have_l) { if (td->left_intra_ctx[row7]) { c = 2; } else if (td->left_comp_ctx[row7]) { c = 4 * (td->left_ref_ctx[row7] != s->s.h.varcompref[1]); } else { c = 3 * (td->left_ref_ctx[row7] != s->s.h.varcompref[1]); } } else { c = 2; } bit = vp56_rac_get_prob(td->c, s->prob.p.comp_ref[c]); b->ref[var_idx] = s->s.h.varcompref[bit]; td->counts.comp_ref[c][bit]++; } else /* single reference */ { int bit, c; if (have_a && !s->above_intra_ctx[col]) { if (have_l && !td->left_intra_ctx[row7]) { if (td->left_comp_ctx[row7]) { if (s->above_comp_ctx[col]) { c = 1 + (!s->s.h.fixcompref || !td->left_ref_ctx[row7] || !s->above_ref_ctx[col]); } else { c = (3 * !s->above_ref_ctx[col]) + (!s->s.h.fixcompref || !td->left_ref_ctx[row7]); } } else if (s->above_comp_ctx[col]) { c = (3 * !td->left_ref_ctx[row7]) + (!s->s.h.fixcompref || !s->above_ref_ctx[col]); } else { c = 2 * !td->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col]; } } else if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + (!s->s.h.fixcompref || !s->above_ref_ctx[col]); } else { c = 4 * (!s->above_ref_ctx[col]); } } else if (have_l && !td->left_intra_ctx[row7]) { if (td->left_intra_ctx[row7]) { c = 2; } else if (td->left_comp_ctx[row7]) { c = 1 + (!s->s.h.fixcompref || !td->left_ref_ctx[row7]); } else { c = 4 * (!td->left_ref_ctx[row7]); } } else { c = 2; } bit = vp56_rac_get_prob(td->c, s->prob.p.single_ref[c][0]); td->counts.single_ref[c][0][bit]++; if (!bit) { b->ref[0] = 0; } else { // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (td->left_intra_ctx[row7]) { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + 2 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1); } else if (!s->above_ref_ctx[col]) { c = 3; } else { c = 4 * (s->above_ref_ctx[col] == 1); } } else if (s->above_intra_ctx[col]) { if (td->left_intra_ctx[row7]) { c = 2; } else if (td->left_comp_ctx[row7]) { c = 1 + 2 * (s->s.h.fixcompref == 1 || td->left_ref_ctx[row7] == 1); } else if (!td->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (td->left_ref_ctx[row7] == 1); } } else if (s->above_comp_ctx[col]) { if (td->left_comp_ctx[row7]) { if (td->left_ref_ctx[row7] == s->above_ref_ctx[col]) { c = 3 * (s->s.h.fixcompref == 1 || td->left_ref_ctx[row7] == 1); } else { c = 2; } } else if (!td->left_ref_ctx[row7]) { c = 1 + 2 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 3 * (td->left_ref_ctx[row7] == 1) + (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1); } } else if (td->left_comp_ctx[row7]) { if (!s->above_ref_ctx[col]) { c = 1 + 2 * (s->s.h.fixcompref == 1 || td->left_ref_ctx[row7] == 1); } else { c = 3 * (s->above_ref_ctx[col] == 1) + (s->s.h.fixcompref == 1 || td->left_ref_ctx[row7] == 1); } } else if (!s->above_ref_ctx[col]) { if (!td->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (td->left_ref_ctx[row7] == 1); } } else if (!td->left_ref_ctx[row7]) { c = 4 * (s->above_ref_ctx[col] == 1); } else { c = 2 * (td->left_ref_ctx[row7] == 1) + 2 * (s->above_ref_ctx[col] == 1); } } else { if (s->above_intra_ctx[col] || (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) { c = 2; } else if (s->above_comp_ctx[col]) { c = 3 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 4 * (s->above_ref_ctx[col] == 1); } } } else if (have_l) { if (td->left_intra_ctx[row7] || (!td->left_comp_ctx[row7] && !td->left_ref_ctx[row7])) { c = 2; } else if (td->left_comp_ctx[row7]) { c = 3 * (s->s.h.fixcompref == 1 || td->left_ref_ctx[row7] == 1); } else { c = 4 * (td->left_ref_ctx[row7] == 1); } } else { c = 2; } bit = vp56_rac_get_prob(td->c, s->prob.p.single_ref[c][1]); td->counts.single_ref[c][1][bit]++; b->ref[0] = 1 + bit; } } } if (b->bs <= BS_8x8) { if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled) { b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV; } else { static const uint8_t off[10] = { 3, 0, 0, 1, 0, 0, 0, 0, 0, 0 }; // FIXME this needs to use the LUT tables from find_ref_mvs // because not all are -1,0/0,-1 int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]] [td->left_mode_ctx[row7 + off[b->bs]]]; b->mode[0] = vp8_rac_get_tree(td->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; td->counts.mv_mode[c][b->mode[0] - 10]++; } } if (s->s.h.filtermode == FILTER_SWITCHABLE) { int c; if (have_a && s->above_mode_ctx[col] >= NEARESTMV) { if (have_l && td->left_mode_ctx[row7] >= NEARESTMV) { c = s->above_filter_ctx[col] == td->left_filter_ctx[row7] ? td->left_filter_ctx[row7] : 3; } else { c = s->above_filter_ctx[col]; } } else if (have_l && td->left_mode_ctx[row7] >= NEARESTMV) { c = td->left_filter_ctx[row7]; } else { c = 3; } filter_id = vp8_rac_get_tree(td->c, ff_vp9_filter_tree, s->prob.p.filter[c]); td->counts.filter[c][filter_id]++; b->filter = ff_vp9_filter_lut[filter_id]; } else { b->filter = s->s.h.filtermode; } if (b->bs > BS_8x8) { int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][td->left_mode_ctx[row7]]; b->mode[0] = vp8_rac_get_tree(td->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); td->counts.mv_mode[c][b->mode[0] - 10]++; ff_vp9_fill_mv(td, b->mv[0], b->mode[0], 0); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(td->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); td->counts.mv_mode[c][b->mode[1] - 10]++; ff_vp9_fill_mv(td, b->mv[1], b->mode[1], 1); } else { b->mode[1] = b->mode[0]; AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(td->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); td->counts.mv_mode[c][b->mode[2] - 10]++; ff_vp9_fill_mv(td, b->mv[2], b->mode[2], 2); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(td->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); td->counts.mv_mode[c][b->mode[3] - 10]++; ff_vp9_fill_mv(td, b->mv[3], b->mode[3], 3); } else { b->mode[3] = b->mode[2]; AV_COPY32(&b->mv[3][0], &b->mv[2][0]); AV_COPY32(&b->mv[3][1], &b->mv[2][1]); } } else { b->mode[2] = b->mode[0]; AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); b->mode[3] = b->mode[1]; AV_COPY32(&b->mv[3][0], &b->mv[1][0]); AV_COPY32(&b->mv[3][1], &b->mv[1][1]); } } else { ff_vp9_fill_mv(td, b->mv[0], b->mode[0], -1); AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[3][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); AV_COPY32(&b->mv[3][1], &b->mv[0][1]); } vref = b->ref[b->comp ? s->s.h.signbias[s->s.h.varcompref[0]] : 0]; } #if HAVE_FAST_64BIT #define SPLAT_CTX(var, val, n) \ switch (n) { \ case 1: var = val; break; \ case 2: AV_WN16A(&var, val * 0x0101); break; \ case 4: AV_WN32A(&var, val * 0x01010101); break; \ case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \ case 16: { \ uint64_t v64 = val * 0x0101010101010101ULL; \ AV_WN64A( &var, v64); \ AV_WN64A(&((uint8_t *) &var)[8], v64); \ break; \ } \ } #else #define SPLAT_CTX(var, val, n) \ switch (n) { \ case 1: var = val; break; \ case 2: AV_WN16A(&var, val * 0x0101); break; \ case 4: AV_WN32A(&var, val * 0x01010101); break; \ case 8: { \ uint32_t v32 = val * 0x01010101; \ AV_WN32A( &var, v32); \ AV_WN32A(&((uint8_t *) &var)[4], v32); \ break; \ } \ case 16: { \ uint32_t v32 = val * 0x01010101; \ AV_WN32A( &var, v32); \ AV_WN32A(&((uint8_t *) &var)[4], v32); \ AV_WN32A(&((uint8_t *) &var)[8], v32); \ AV_WN32A(&((uint8_t *) &var)[12], v32); \ break; \ } \ } #endif switch (ff_vp9_bwh_tab[1][b->bs][0]) { #define SET_CTXS(perf, dir, off, n) \ do { \ SPLAT_CTX(perf->dir##_skip_ctx[off], b->skip, n); \ SPLAT_CTX(perf->dir##_txfm_ctx[off], b->tx, n); \ SPLAT_CTX(perf->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \ if (!s->s.h.keyframe && !s->s.h.intraonly) { \ SPLAT_CTX(perf->dir##_intra_ctx[off], b->intra, n); \ SPLAT_CTX(perf->dir##_comp_ctx[off], b->comp, n); \ SPLAT_CTX(perf->dir##_mode_ctx[off], b->mode[3], n); \ if (!b->intra) { \ SPLAT_CTX(perf->dir##_ref_ctx[off], vref, n); \ if (s->s.h.filtermode == FILTER_SWITCHABLE) { \ SPLAT_CTX(perf->dir##_filter_ctx[off], filter_id, n); \ } \ } \ } \ } while (0) case 1: SET_CTXS(s, above, col, 1); break; case 2: SET_CTXS(s, above, col, 2); break; case 4: SET_CTXS(s, above, col, 4); break; case 8: SET_CTXS(s, above, col, 8); break; } switch (ff_vp9_bwh_tab[1][b->bs][1]) { case 1: SET_CTXS(td, left, row7, 1); break; case 2: SET_CTXS(td, left, row7, 2); break; case 4: SET_CTXS(td, left, row7, 4); break; case 8: SET_CTXS(td, left, row7, 8); break; } #undef SPLAT_CTX #undef SET_CTXS if (!s->s.h.keyframe && !s->s.h.intraonly) { if (b->bs > BS_8x8) { int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); AV_COPY32(&td->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]); AV_COPY32(&td->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]); AV_WN32A(&td->left_mv_ctx[row7 * 2 + 1][0], mv0); AV_WN32A(&td->left_mv_ctx[row7 * 2 + 1][1], mv1); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1); } else { int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); for (n = 0; n < w4 * 2; n++) { AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1); } for (n = 0; n < h4 * 2; n++) { AV_WN32A(&td->left_mv_ctx[row7 * 2 + n][0], mv0); AV_WN32A(&td->left_mv_ctx[row7 * 2 + n][1], mv1); } } } // FIXME kinda ugly for (y = 0; y < h4; y++) { int x, o = (row + y) * s->sb_cols * 8 + col; VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[o]; if (b->intra) { for (x = 0; x < w4; x++) { mv[x].ref[0] = mv[x].ref[1] = -1; } } else if (b->comp) { for (x = 0; x < w4; x++) { mv[x].ref[0] = b->ref[0]; mv[x].ref[1] = b->ref[1]; AV_COPY32(&mv[x].mv[0], &b->mv[3][0]); AV_COPY32(&mv[x].mv[1], &b->mv[3][1]); } } else { for (x = 0; x < w4; x++) { mv[x].ref[0] = b->ref[0]; mv[x].ref[1] = -1; AV_COPY32(&mv[x].mv[0], &b->mv[3][0]); } } } } // FIXME merge cnt/eob arguments? static av_always_inline int decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs, int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, int16_t *qmul) { int i = 0, band = 0, band_left = band_counts[band]; const uint8_t *tp = p[0][nnz]; uint8_t cache[1024]; do { int val, rc; val = vp56_rac_get_prob_branchy(c, tp[0]); // eob eob[band][nnz][val]++; if (!val) break; skip_eob: if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero cnt[band][nnz][0]++; if (!--band_left) band_left = band_counts[++band]; cache[scan[i]] = 0; nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; if (++i == n_coeffs) break; //invalid input; blocks should end with EOB goto skip_eob; } rc = scan[i]; if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one cnt[band][nnz][1]++; val = 1; cache[rc] = 1; } else { cnt[band][nnz][2]++; if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4 if (!vp56_rac_get_prob_branchy(c, tp[4])) { cache[rc] = val = 2; } else { val = 3 + vp56_rac_get_prob(c, tp[5]); cache[rc] = 3; } } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2 cache[rc] = 4; if (!vp56_rac_get_prob_branchy(c, tp[7])) { val = vp56_rac_get_prob(c, 159) + 5; } else { val = (vp56_rac_get_prob(c, 165) << 1) + 7; val += vp56_rac_get_prob(c, 145); } } else { // cat 3-6 cache[rc] = 5; if (!vp56_rac_get_prob_branchy(c, tp[8])) { if (!vp56_rac_get_prob_branchy(c, tp[9])) { val = 11 + (vp56_rac_get_prob(c, 173) << 2); val += (vp56_rac_get_prob(c, 148) << 1); val += vp56_rac_get_prob(c, 140); } else { val = 19 + (vp56_rac_get_prob(c, 176) << 3); val += (vp56_rac_get_prob(c, 155) << 2); val += (vp56_rac_get_prob(c, 140) << 1); val += vp56_rac_get_prob(c, 135); } } else if (!vp56_rac_get_prob_branchy(c, tp[10])) { val = (vp56_rac_get_prob(c, 180) << 4) + 35; val += (vp56_rac_get_prob(c, 157) << 3); val += (vp56_rac_get_prob(c, 141) << 2); val += (vp56_rac_get_prob(c, 134) << 1); val += vp56_rac_get_prob(c, 130); } else { val = 67; if (!is8bitsperpixel) { if (bpp == 12) { val += vp56_rac_get_prob(c, 255) << 17; val += vp56_rac_get_prob(c, 255) << 16; } val += (vp56_rac_get_prob(c, 255) << 15); val += (vp56_rac_get_prob(c, 255) << 14); } val += (vp56_rac_get_prob(c, 254) << 13); val += (vp56_rac_get_prob(c, 254) << 12); val += (vp56_rac_get_prob(c, 254) << 11); val += (vp56_rac_get_prob(c, 252) << 10); val += (vp56_rac_get_prob(c, 249) << 9); val += (vp56_rac_get_prob(c, 243) << 8); val += (vp56_rac_get_prob(c, 230) << 7); val += (vp56_rac_get_prob(c, 196) << 6); val += (vp56_rac_get_prob(c, 177) << 5); val += (vp56_rac_get_prob(c, 153) << 4); val += (vp56_rac_get_prob(c, 140) << 3); val += (vp56_rac_get_prob(c, 133) << 2); val += (vp56_rac_get_prob(c, 130) << 1); val += vp56_rac_get_prob(c, 129); } } } #define STORE_COEF(c, i, v) do { \ if (is8bitsperpixel) { \ c[i] = v; \ } else { \ AV_WN32A(&c[i * 2], v); \ } \ } while (0) if (!--band_left) band_left = band_counts[++band]; if (is_tx32x32) STORE_COEF(coef, rc, (int)((vp8_rac_get(c) ? -val : val) * (unsigned)qmul[!!i]) / 2); else STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * (unsigned)qmul[!!i]); nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; } while (++i < n_coeffs); return i; } static int decode_coeffs_b_8bpp(VP9TileData *td, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, int16_t *qmul) { return decode_coeffs_b_generic(td->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b32_8bpp(VP9TileData *td, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, int16_t *qmul) { return decode_coeffs_b_generic(td->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b_16bpp(VP9TileData *td, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, int16_t *qmul) { return decode_coeffs_b_generic(td->c, coef, n_coeffs, 0, 0, td->s->s.h.bpp, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b32_16bpp(VP9TileData *td, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, int16_t *qmul) { return decode_coeffs_b_generic(td->c, coef, n_coeffs, 1, 0, td->s->s.h.bpp, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static av_always_inline int decode_coeffs(VP9TileData *td, int is8bitsperpixel) { VP9Context *s = td->s; VP9Block *b = td->b; int row = td->row, col = td->col; uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra]; unsigned (*c)[6][3] = td->counts.coef[b->tx][0 /* y */][!b->intra]; unsigned (*e)[6][2] = td->counts.eob[b->tx][0 /* y */][!b->intra]; int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1; int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int n, pl, x, y, ret; int16_t (*qmul)[2] = s->s.h.segmentation.feat[b->seg_id].qmul; int tx = 4 * s->s.h.lossless + b->tx; const int16_t * const *yscans = ff_vp9_scans[tx]; const int16_t (* const * ynbs)[2] = ff_vp9_scans_nb[tx]; const int16_t *uvscan = ff_vp9_scans[b->uvtx][DCT_DCT]; const int16_t (*uvnb)[2] = ff_vp9_scans_nb[b->uvtx][DCT_DCT]; uint8_t *a = &s->above_y_nnz_ctx[col * 2]; uint8_t *l = &td->left_y_nnz_ctx[(row & 7) << 1]; static const int16_t band_counts[4][8] = { { 1, 2, 3, 4, 3, 16 - 13 }, { 1, 2, 3, 4, 11, 64 - 21 }, { 1, 2, 3, 4, 11, 256 - 21 }, { 1, 2, 3, 4, 11, 1024 - 21 }, }; const int16_t *y_band_counts = band_counts[b->tx]; const int16_t *uv_band_counts = band_counts[b->uvtx]; int bytesperpixel = is8bitsperpixel ? 1 : 2; int total_coeff = 0; #define MERGE(la, end, step, rd) \ for (n = 0; n < end; n += step) \ la[n] = !!rd(&la[n]) #define MERGE_CTX(step, rd) \ do { \ MERGE(l, end_y, step, rd); \ MERGE(a, end_x, step, rd); \ } while (0) #define DECODE_Y_COEF_LOOP(step, mode_index, v) \ for (n = 0, y = 0; y < end_y; y += step) { \ for (x = 0; x < end_x; x += step, n += step * step) { \ enum TxfmType txtp = ff_vp9_intra_txfm_type[b->mode[mode_index]]; \ ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \ (td, td->block + 16 * n * bytesperpixel, 16 * step * step, \ c, e, p, a[x] + l[y], yscans[txtp], \ ynbs[txtp], y_band_counts, qmul[0]); \ a[x] = l[y] = !!ret; \ total_coeff |= !!ret; \ if (step >= 4) { \ AV_WN16A(&td->eob[n], ret); \ } else { \ td->eob[n] = ret; \ } \ } \ } #define SPLAT(la, end, step, cond) \ if (step == 2) { \ for (n = 1; n < end; n += step) \ la[n] = la[n - 1]; \ } else if (step == 4) { \ if (cond) { \ for (n = 0; n < end; n += step) \ AV_WN32A(&la[n], la[n] * 0x01010101); \ } else { \ for (n = 0; n < end; n += step) \ memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \ } \ } else /* step == 8 */ { \ if (cond) { \ if (HAVE_FAST_64BIT) { \ for (n = 0; n < end; n += step) \ AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \ } else { \ for (n = 0; n < end; n += step) { \ uint32_t v32 = la[n] * 0x01010101; \ AV_WN32A(&la[n], v32); \ AV_WN32A(&la[n + 4], v32); \ } \ } \ } else { \ for (n = 0; n < end; n += step) \ memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \ } \ } #define SPLAT_CTX(step) \ do { \ SPLAT(a, end_x, step, end_x == w4); \ SPLAT(l, end_y, step, end_y == h4); \ } while (0) /* y tokens */ switch (b->tx) { case TX_4X4: DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,); break; case TX_8X8: MERGE_CTX(2, AV_RN16A); DECODE_Y_COEF_LOOP(2, 0,); SPLAT_CTX(2); break; case TX_16X16: MERGE_CTX(4, AV_RN32A); DECODE_Y_COEF_LOOP(4, 0,); SPLAT_CTX(4); break; case TX_32X32: MERGE_CTX(8, AV_RN64A); DECODE_Y_COEF_LOOP(8, 0, 32); SPLAT_CTX(8); break; } #define DECODE_UV_COEF_LOOP(step, v) \ for (n = 0, y = 0; y < end_y; y += step) { \ for (x = 0; x < end_x; x += step, n += step * step) { \ ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \ (td, td->uvblock[pl] + 16 * n * bytesperpixel, \ 16 * step * step, c, e, p, a[x] + l[y], \ uvscan, uvnb, uv_band_counts, qmul[1]); \ a[x] = l[y] = !!ret; \ total_coeff |= !!ret; \ if (step >= 4) { \ AV_WN16A(&td->uveob[pl][n], ret); \ } else { \ td->uveob[pl][n] = ret; \ } \ } \ } p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra]; c = td->counts.coef[b->uvtx][1 /* uv */][!b->intra]; e = td->counts.eob[b->uvtx][1 /* uv */][!b->intra]; w4 >>= s->ss_h; end_x >>= s->ss_h; h4 >>= s->ss_v; end_y >>= s->ss_v; for (pl = 0; pl < 2; pl++) { a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h]; l = &td->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v]; switch (b->uvtx) { case TX_4X4: DECODE_UV_COEF_LOOP(1,); break; case TX_8X8: MERGE_CTX(2, AV_RN16A); DECODE_UV_COEF_LOOP(2,); SPLAT_CTX(2); break; case TX_16X16: MERGE_CTX(4, AV_RN32A); DECODE_UV_COEF_LOOP(4,); SPLAT_CTX(4); break; case TX_32X32: MERGE_CTX(8, AV_RN64A); DECODE_UV_COEF_LOOP(8, 32); SPLAT_CTX(8); break; } } return total_coeff; } static int decode_coeffs_8bpp(VP9TileData *td) { return decode_coeffs(td, 1); } static int decode_coeffs_16bpp(VP9TileData *td) { return decode_coeffs(td, 0); } static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v, int row_and_7, int col_and_7, int w, int h, int col_end, int row_end, enum TxfmMode tx, int skip_inter) { static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 }; static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 }; // FIXME I'm pretty sure all loops can be replaced by a single LUT if // we make VP9Filter.mask uint64_t (i.e. row/col all single variable) // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7) // the intended behaviour of the vp9 loopfilter is to work on 8-pixel // edges. This means that for UV, we work on two subsampled blocks at // a time, and we only use the topleft block's mode information to set // things like block strength. Thus, for any block size smaller than // 16x16, ignore the odd portion of the block. if (tx == TX_4X4 && (ss_v | ss_h)) { if (h == ss_v) { if (row_and_7 & 1) return; if (!row_end) h += 1; } if (w == ss_h) { if (col_and_7 & 1) return; if (!col_end) w += 1; } } if (tx == TX_4X4 && !skip_inter) { int t = 1 << col_and_7, m_col = (t << w) - t, y; // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8; for (y = row_and_7; y < h + row_and_7; y++) { int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]); mask[0][y][1] |= m_row_8; mask[0][y][2] |= m_row_4; // for odd lines, if the odd col is not being filtered, // skip odd row also: // .---. <-- a // | | // |___| <-- b // ^ ^ // c d // // if a/c are even row/col and b/d are odd, and d is skipped, // e.g. right edge of size-66x66.webm, then skip b also (bug) if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) { mask[1][y][col_mask_id] |= (t << (w - 1)) - t; } else { mask[1][y][col_mask_id] |= m_col; } if (!ss_h) mask[0][y][3] |= m_col; if (!ss_v) { if (ss_h && (col_end & 1)) mask[1][y][3] |= (t << (w - 1)) - t; else mask[1][y][3] |= m_col; } } } else { int y, t = 1 << col_and_7, m_col = (t << w) - t; if (!skip_inter) { int mask_id = (tx == TX_8X8); int l2 = tx + ss_h - 1, step1d; static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 }; int m_row = m_col & masks[l2]; // at odd UV col/row edges tx16/tx32 loopfilter edges, force // 8wd loopfilter to prevent going off the visible edge. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) { int m_row_16 = ((t << (w - 1)) - t) & masks[l2]; int m_row_8 = m_row - m_row_16; for (y = row_and_7; y < h + row_and_7; y++) { mask[0][y][0] |= m_row_16; mask[0][y][1] |= m_row_8; } } else { for (y = row_and_7; y < h + row_and_7; y++) mask[0][y][mask_id] |= m_row; } l2 = tx + ss_v - 1; step1d = 1 << l2; if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) { for (y = row_and_7; y < h + row_and_7 - 1; y += step1d) mask[1][y][0] |= m_col; if (y - row_and_7 == h - 1) mask[1][y][1] |= m_col; } else { for (y = row_and_7; y < h + row_and_7; y += step1d) mask[1][y][mask_id] |= m_col; } } else if (tx != TX_4X4) { int mask_id; mask_id = (tx == TX_8X8) || (h == ss_v); mask[1][row_and_7][mask_id] |= m_col; mask_id = (tx == TX_8X8) || (w == ss_h); for (y = row_and_7; y < h + row_and_7; y++) mask[0][y][mask_id] |= t; } else { int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8; for (y = row_and_7; y < h + row_and_7; y++) { mask[0][y][2] |= t4; mask[0][y][1] |= t8; } mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col; } } } void ff_vp9_decode_block(VP9TileData *td, int row, int col, VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl, enum BlockPartition bp) { VP9Context *s = td->s; VP9Block *b = td->b; enum BlockSize bs = bl * 3 + bp; int bytesperpixel = s->bytesperpixel; int w4 = ff_vp9_bwh_tab[1][bs][0], h4 = ff_vp9_bwh_tab[1][bs][1], lvl; int emu[2]; AVFrame *f = s->s.frames[CUR_FRAME].tf.f; td->row = row; td->row7 = row & 7; td->col = col; td->col7 = col & 7; td->min_mv.x = -(128 + col * 64); td->min_mv.y = -(128 + row * 64); td->max_mv.x = 128 + (s->cols - col - w4) * 64; td->max_mv.y = 128 + (s->rows - row - h4) * 64; if (s->pass < 2) { b->bs = bs; b->bl = bl; b->bp = bp; decode_mode(td); b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) || (s->ss_v && h4 * 2 == (1 << b->tx))); if (td->block_structure) { td->block_structure[td->nb_block_structure].row = row; td->block_structure[td->nb_block_structure].col = col; td->block_structure[td->nb_block_structure].block_size_idx_x = av_log2(w4); td->block_structure[td->nb_block_structure].block_size_idx_y = av_log2(h4); td->nb_block_structure++; } if (!b->skip) { int has_coeffs; if (bytesperpixel == 1) { has_coeffs = decode_coeffs_8bpp(td); } else { has_coeffs = decode_coeffs_16bpp(td); } if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) { b->skip = 1; memset(&s->above_skip_ctx[col], 1, w4); memset(&td->left_skip_ctx[td->row7], 1, h4); } } else { int row7 = td->row7; #define SPLAT_ZERO_CTX(v, n) \ switch (n) { \ case 1: v = 0; break; \ case 2: AV_ZERO16(&v); break; \ case 4: AV_ZERO32(&v); break; \ case 8: AV_ZERO64(&v); break; \ case 16: AV_ZERO128(&v); break; \ } #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \ do { \ SPLAT_ZERO_CTX(dir##_y_##var[off * 2], n * 2); \ if (s->ss_##dir2) { \ SPLAT_ZERO_CTX(dir##_uv_##var[0][off], n); \ SPLAT_ZERO_CTX(dir##_uv_##var[1][off], n); \ } else { \ SPLAT_ZERO_CTX(dir##_uv_##var[0][off * 2], n * 2); \ SPLAT_ZERO_CTX(dir##_uv_##var[1][off * 2], n * 2); \ } \ } while (0) switch (w4) { case 1: SPLAT_ZERO_YUV(s->above, nnz_ctx, col, 1, h); break; case 2: SPLAT_ZERO_YUV(s->above, nnz_ctx, col, 2, h); break; case 4: SPLAT_ZERO_YUV(s->above, nnz_ctx, col, 4, h); break; case 8: SPLAT_ZERO_YUV(s->above, nnz_ctx, col, 8, h); break; } switch (h4) { case 1: SPLAT_ZERO_YUV(td->left, nnz_ctx, row7, 1, v); break; case 2: SPLAT_ZERO_YUV(td->left, nnz_ctx, row7, 2, v); break; case 4: SPLAT_ZERO_YUV(td->left, nnz_ctx, row7, 4, v); break; case 8: SPLAT_ZERO_YUV(td->left, nnz_ctx, row7, 8, v); break; } } if (s->pass == 1) { s->td[0].b++; s->td[0].block += w4 * h4 * 64 * bytesperpixel; s->td[0].uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v); s->td[0].uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v); s->td[0].eob += 4 * w4 * h4; s->td[0].uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v); s->td[0].uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v); return; } } // emulated overhangs if the stride of the target buffer can't hold. This // makes it possible to support emu-edge and so on even if we have large block // overhangs emu[0] = (col + w4) * 8 * bytesperpixel > f->linesize[0] || (row + h4) > s->rows; emu[1] = ((col + w4) * 8 >> s->ss_h) * bytesperpixel > f->linesize[1] || (row + h4) > s->rows; if (emu[0]) { td->dst[0] = td->tmp_y; td->y_stride = 128; } else { td->dst[0] = f->data[0] + yoff; td->y_stride = f->linesize[0]; } if (emu[1]) { td->dst[1] = td->tmp_uv[0]; td->dst[2] = td->tmp_uv[1]; td->uv_stride = 128; } else { td->dst[1] = f->data[1] + uvoff; td->dst[2] = f->data[2] + uvoff; td->uv_stride = f->linesize[1]; } if (b->intra) { if (s->s.h.bpp > 8) { ff_vp9_intra_recon_16bpp(td, yoff, uvoff); } else { ff_vp9_intra_recon_8bpp(td, yoff, uvoff); } } else { if (s->s.h.bpp > 8) { ff_vp9_inter_recon_16bpp(td); } else { ff_vp9_inter_recon_8bpp(td); } } if (emu[0]) { int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0; for (n = 0; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o * bytesperpixel, f->linesize[0], td->tmp_y + o * bytesperpixel, 128, h, 0, 0); o += bw; } } } if (emu[1]) { int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h; int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0; for (n = s->ss_h; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o * bytesperpixel, f->linesize[1], td->tmp_uv[0] + o * bytesperpixel, 128, h, 0, 0); s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o * bytesperpixel, f->linesize[2], td->tmp_uv[1] + o * bytesperpixel, 128, h, 0, 0); o += bw; } } } // pick filter level and find edges to apply filter to if (s->s.h.filter.level && (lvl = s->s.h.segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1] [b->mode[3] != ZEROMV]) > 0) { int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4); int skip_inter = !b->intra && b->skip, col7 = td->col7, row7 = td->row7; setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl); mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter); if (s->ss_h || s->ss_v) mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end, s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0, s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0, b->uvtx, skip_inter); } if (s->pass == 2) { s->td[0].b++; s->td[0].block += w4 * h4 * 64 * bytesperpixel; s->td[0].uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h); s->td[0].uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h); s->td[0].eob += 4 * w4 * h4; s->td[0].uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h); s->td[0].uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h); } }