/* * OpenEXR (.exr) image decoder * Copyright (c) 2009 Jimmy Christensen * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR decoder * @author Jimmy Christensen * * For more information on the OpenEXR format, visit: * http://openexr.com/ * * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger */ #include <zlib.h> #include "get_bits.h" #include "avcodec.h" #include "bytestream.h" #include "mathops.h" #include "thread.h" #include "libavutil/imgutils.h" #include "libavutil/avassert.h" enum ExrCompr { EXR_RAW = 0, EXR_RLE = 1, EXR_ZIP1 = 2, EXR_ZIP16 = 3, EXR_PIZ = 4, EXR_PXR24 = 5, EXR_B44 = 6, EXR_B44A = 7, }; enum ExrPixelType { EXR_UINT, EXR_HALF, EXR_FLOAT }; typedef struct EXRChannel { int xsub, ysub; enum ExrPixelType pixel_type; } EXRChannel; typedef struct EXRThreadData { uint8_t *uncompressed_data; int uncompressed_size; uint8_t *tmp; int tmp_size; uint8_t *bitmap; uint16_t *lut; } EXRThreadData; typedef struct EXRContext { AVFrame *picture; int compr; enum ExrPixelType pixel_type; int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha const AVPixFmtDescriptor *desc; uint32_t xmax, xmin; uint32_t ymax, ymin; uint32_t xdelta, ydelta; int ysize; uint64_t scan_line_size; int scan_lines_per_block; const uint8_t *buf, *table; int buf_size; EXRChannel *channels; int nb_channels; EXRThreadData *thread_data; int thread_data_size; } EXRContext; /** * Converts from 32-bit float as uint32_t to uint16_t * * @param v 32-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_flt2uint(uint32_t v) { unsigned int exp = v >> 23; // "HACK": negative values result in exp< 0, so clipping them to 0 // is also handled by this condition, avoids explicit check for sign bit. if (exp<= 127 + 7 - 24) // we would shift out all bits anyway return 0; if (exp >= 127) return 0xffff; v &= 0x007fffff; return (v + (1 << 23)) >> (127 + 7 - exp); } /** * Converts from 16-bit float as uint16_t to uint16_t * * @param v 16-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_halflt2uint(uint16_t v) { unsigned exp = 14 - (v >> 10); if (exp >= 14) { if (exp == 14) return (v >> 9) & 1; else return (v & 0x8000) ? 0 : 0xffff; } v <<= 6; return (v + (1 << 16)) >> (exp + 1); } /** * Gets the size of the header variable * * @param **buf the current pointer location in the header where * the variable data starts * @param *buf_end pointer location of the end of the buffer * @return size of variable data */ static unsigned int get_header_variable_length(const uint8_t **buf, const uint8_t *buf_end) { unsigned int variable_buffer_data_size = bytestream_get_le32(buf); if (variable_buffer_data_size >= buf_end - *buf) return 0; return variable_buffer_data_size; } /** * Checks if the variable name corresponds with it's data type * * @param *avctx the AVCodecContext * @param **buf the current pointer location in the header where * the variable name starts * @param *buf_end pointer location of the end of the buffer * @param *value_name name of the varible to check * @param *value_type type of the varible to check * @param minimum_length minimum length of the variable data * @param variable_buffer_data_size variable length read from the header * after it's checked * @return negative if variable is invalid */ static int check_header_variable(AVCodecContext *avctx, const uint8_t **buf, const uint8_t *buf_end, const char *value_name, const char *value_type, unsigned int minimum_length, unsigned int *variable_buffer_data_size) { if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) { *buf += strlen(value_name)+1; if (!strcmp(*buf, value_type)) { *buf += strlen(value_type)+1; *variable_buffer_data_size = get_header_variable_length(buf, buf_end); if (!*variable_buffer_data_size) av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return 1; } *buf -= strlen(value_name)+1; av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name); } return -1; } static void predictor(uint8_t *src, int size) { uint8_t *t = src + 1; uint8_t *stop = src + size; while (t < stop) { int d = (int)t[-1] + (int)t[0] - 128; t[0] = d; ++t; } } static void reorder_pixels(uint8_t *src, uint8_t *dst, int size) { const int8_t *t1 = src; const int8_t *t2 = src + (size + 1) / 2; int8_t *s = dst; int8_t *stop = s + size; while (1) { if (s < stop) *(s++) = *(t1++); else break; if (s < stop) *(s++) = *(t2++); else break; } } static int zip_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR(EINVAL); predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } static int rle_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { int8_t *d = (int8_t *)td->tmp; const int8_t *s = (const int8_t *)src; int ssize = compressed_size; int dsize = uncompressed_size; int8_t *dend = d + dsize; int count; while (ssize > 0) { count = *s++; if (count < 0) { count = -count; if ((dsize -= count ) < 0 || (ssize -= count + 1) < 0) return -1; while (count--) *d++ = *s++; } else { count++; if ((dsize -= count) < 0 || (ssize -= 2 ) < 0) return -1; while (count--) *d++ = *s; s++; } } if (dend != d) return AVERROR_INVALIDDATA; predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } #define USHORT_RANGE (1 << 16) #define BITMAP_SIZE (1 << 13) static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut) { int i, k = 0; for (i = 0; i < USHORT_RANGE; i++) { if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; } i = k - 1; memset(lut + k, 0, (USHORT_RANGE - k) * 2); return i; } static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize) { int i; for (i = 0; i < dsize; ++i) dst[i] = lut[dst[i]]; } #define HUF_ENCBITS 16 // literal (value) bit length #define HUF_DECBITS 14 // decoding bit size (>= 8) #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size #define HUF_DECMASK (HUF_DECSIZE - 1) typedef struct HufDec { int len; int lit; int *p; } HufDec; static void huf_canonical_code_table(uint64_t *hcode) { uint64_t c, n[59] = { 0 }; int i; for (i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; c = 0; for (i = 58; i > 0; --i) { uint64_t nc = ((c + n[i]) >> 1); n[i] = c; c = nc; } for (i = 0; i < HUF_ENCSIZE; ++i) { int l = hcode[i]; if (l > 0) hcode[i] = l | (n[l]++ << 6); } } #define SHORT_ZEROCODE_RUN 59 #define LONG_ZEROCODE_RUN 63 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN) #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN) static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *hcode) { GetBitContext gbit; init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb)); for (; im <= iM; im++) { uint64_t l = hcode[im] = get_bits(&gbit, 6); if (l == LONG_ZEROCODE_RUN) { int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) hcode[im++] = 0; im--; } else if (l >= (uint64_t) SHORT_ZEROCODE_RUN) { int zerun = l - SHORT_ZEROCODE_RUN + 2; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) hcode[im++] = 0; im--; } } bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8); huf_canonical_code_table(hcode); return 0; } static int huf_build_dec_table(const uint64_t *hcode, int im, int iM, HufDec *hdecod) { for (; im <= iM; im++) { uint64_t c = hcode[im] >> 6; int i, l = hcode[im] & 63; if (c >> l) return AVERROR_INVALIDDATA; if (l > HUF_DECBITS) { HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); if (pl->len) return AVERROR_INVALIDDATA; pl->lit++; pl->p = av_realloc_f(pl->p, pl->lit, sizeof(int)); if (!pl->p) return AVERROR(ENOMEM); pl->p[pl->lit - 1] = im; } else if (l) { HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) { if (pl->len || pl->p) return AVERROR_INVALIDDATA; pl->len = l; pl->lit = im; } } } return 0; } #define get_char(c, lc, gb) { \ c = (c << 8) | bytestream2_get_byte(gb); \ lc += 8; \ } #define get_code(po, rlc, c, lc, gb, out, oe) { \ if (po == rlc) { \ if (lc < 8) \ get_char(c, lc, gb); \ lc -= 8; \ \ cs = c >> lc; \ \ if (out + cs > oe) \ return AVERROR_INVALIDDATA; \ \ s = out[-1]; \ \ while (cs-- > 0) \ *out++ = s; \ } else if (out < oe) { \ *out++ = po; \ } else { \ return AVERROR_INVALIDDATA; \ } \ } static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, GetByteContext *gb, int nbits, int rlc, int no, uint16_t *out) { uint64_t c = 0; uint16_t *outb = out; uint16_t *oe = out + no; const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size uint8_t cs, s; int i, lc = 0; while (gb->buffer < ie) { get_char(c, lc, gb); while (lc >= HUF_DECBITS) { const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK]; if (pl.len) { lc -= pl.len; get_code(pl.lit, rlc, c, lc, gb, out, oe); } else { int j; if (!pl.p) return AVERROR_INVALIDDATA; for (j = 0; j < pl.lit; j++) { int l = hcode[pl.p[j]] & 63; while (lc < l && bytestream2_get_bytes_left(gb) > 0) get_char(c, lc, gb); if (lc >= l) { if ((hcode[pl.p[j]] >> 6) == ((c >> (lc - l)) & ((1LL << l) - 1))) { lc -= l; get_code(pl.p[j], rlc, c, lc, gb, out, oe); break; } } } if (j == pl.lit) return AVERROR_INVALIDDATA; } } } i = (8 - nbits) & 7; c >>= i; lc -= i; while (lc > 0) { const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; if (pl.len) { lc -= pl.len; get_code(pl.lit, rlc, c, lc, gb, out, oe); } else { return AVERROR_INVALIDDATA; } } if (out - outb != no) return AVERROR_INVALIDDATA; return 0; } static int huf_uncompress(GetByteContext *gb, uint16_t *dst, int dst_size) { int32_t src_size, im, iM; uint32_t nBits; uint64_t *freq; HufDec *hdec; int ret, i; src_size = bytestream2_get_le32(gb); im = bytestream2_get_le32(gb); iM = bytestream2_get_le32(gb); bytestream2_skip(gb, 4); nBits = bytestream2_get_le32(gb); if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE || src_size < 0) return AVERROR_INVALIDDATA; bytestream2_skip(gb, 4); freq = av_calloc(HUF_ENCSIZE, sizeof(*freq)); hdec = av_calloc(HUF_DECSIZE, sizeof(*hdec)); if (!freq || !hdec) { ret = AVERROR(ENOMEM); goto fail; } if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0) goto fail; if (nBits > 8 * bytestream2_get_bytes_left(gb)) { ret = AVERROR_INVALIDDATA; goto fail; } if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0) goto fail; ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst); fail: for (i = 0; i < HUF_DECSIZE; i++) { if (hdec) av_freep(&hdec[i].p); } av_free(freq); av_free(hdec); return ret; } static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int16_t ls = l; int16_t hs = h; int hi = hs; int ai = ls + (hi & 1) + (hi >> 1); int16_t as = ai; int16_t bs = ai - hi; *a = as; *b = bs; } #define NBITS 16 #define A_OFFSET (1 << (NBITS - 1)) #define MOD_MASK ((1 << NBITS) - 1) static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int m = l; int d = h; int bb = (m - (d >> 1)) & MOD_MASK; int aa = (d + bb - A_OFFSET) & MOD_MASK; *b = bb; *a = aa; } static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx) { int w14 = (mx < (1 << 14)); int n = (nx > ny) ? ny: nx; int p = 1; int p2; while (p <= n) p <<= 1; p >>= 1; p2 = p; p >>= 1; while (p >= 1) { uint16_t *py = in; uint16_t *ey = in + oy * (ny - p2); uint16_t i00, i01, i10, i11; int oy1 = oy * p; int oy2 = oy * p2; int ox1 = ox * p; int ox2 = ox * p2; for (; py <= ey; py += oy2) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; uint16_t *p10 = px + oy1; uint16_t *p11 = p10 + ox1; if (w14) { wdec14(*px, *p10, &i00, &i10); wdec14(*p01, *p11, &i01, &i11); wdec14(i00, i01, px, p01); wdec14(i10, i11, p10, p11); } else { wdec16(*px, *p10, &i00, &i10); wdec16(*p01, *p11, &i01, &i11); wdec16(i00, i01, px, p01); wdec16(i10, i11, p10, p11); } } if (nx & p) { uint16_t *p10 = px + oy1; if (w14) wdec14(*px, *p10, &i00, p10); else wdec16(*px, *p10, &i00, p10); *px = i00; } } if (ny & p) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; if (w14) wdec14(*px, *p01, &i00, p01); else wdec16(*px, *p01, &i00, p01); *px = i00; } } p2 = p; p >>= 1; } } static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td) { GetByteContext gb; uint16_t maxval, min_non_zero, max_non_zero; uint16_t *ptr, *tmp = (uint16_t *)td->tmp; int8_t *out; int ret, i, j; if (!td->bitmap) td->bitmap = av_malloc(BITMAP_SIZE); if (!td->lut) td->lut = av_malloc(1 << 17); if (!td->bitmap || !td->lut) return AVERROR(ENOMEM); bytestream2_init(&gb, src, ssize); min_non_zero = bytestream2_get_le16(&gb); max_non_zero = bytestream2_get_le16(&gb); if (max_non_zero >= BITMAP_SIZE) return AVERROR_INVALIDDATA; memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE)); if (min_non_zero <= max_non_zero) bytestream2_get_buffer(&gb, td->bitmap + min_non_zero, max_non_zero - min_non_zero + 1); memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero); maxval = reverse_lut(td->bitmap, td->lut); ret = huf_uncompress(&gb, tmp, dsize / sizeof(int16_t)); if (ret) return ret; ptr = tmp; for (i = 0; i < s->nb_channels; i++) { EXRChannel *channel = &s->channels[i]; int size = channel->pixel_type; for (j = 0; j < size; j++) wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval); ptr += s->xdelta * s->ysize * size; } apply_lut(td->lut, tmp, dsize / sizeof(int16_t)); out = td->uncompressed_data; for (i = 0; i < s->ysize; i++) { for (j = 0; j < s->nb_channels; j++) { uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta; memcpy(out, in, s->xdelta * 2); out += s->xdelta * 2; } } return 0; } static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; const uint8_t *in = td->tmp; uint8_t *out; int c, i, j; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR(EINVAL); out = td->uncompressed_data; for (i = 0; i < s->ysize; i++) { for (c = 0; c < s->nb_channels; c++) { EXRChannel *channel = &s->channels[c]; const uint8_t *ptr[4]; uint32_t pixel = 0; switch (channel->pixel_type) { case EXR_FLOAT: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; ptr[2] = ptr[1] + s->xdelta; in = ptr[2] + s->xdelta; for (j = 0; j < s->xdelta; ++j) { uint32_t diff = (*(ptr[0]++) << 24) | (*(ptr[1]++) << 16) | (*(ptr[2]++) << 8); pixel += diff; bytestream_put_le32(&out, pixel); } break; case EXR_HALF: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; in = ptr[1] + s->xdelta; for (j = 0; j < s->xdelta; j++) { uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++); pixel += diff; bytestream_put_le16(&out, pixel); } break; default: av_assert1(0); } } } return 0; } static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { EXRContext *s = avctx->priv_data; AVFrame *const p = s->picture; EXRThreadData *td = &s->thread_data[threadnr]; const uint8_t *channel_buffer[4] = { 0 }; const uint8_t *buf = s->buf; uint64_t line_offset, uncompressed_size; uint32_t xdelta = s->xdelta; uint16_t *ptr_x; uint8_t *ptr; int32_t data_size, line; const uint8_t *src; int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; int bxmin = s->xmin * 2 * s->desc->nb_components; int i, x, buf_size = s->buf_size; int av_unused ret; line_offset = AV_RL64(s->table + jobnr * 8); // Check if the buffer has the required bytes needed from the offset if (line_offset > buf_size - 8) return AVERROR_INVALIDDATA; src = buf + line_offset + 8; line = AV_RL32(src - 8); if (line < s->ymin || line > s->ymax) return AVERROR_INVALIDDATA; data_size = AV_RL32(src - 4); if (data_size <= 0 || data_size > buf_size) return AVERROR_INVALIDDATA; s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); uncompressed_size = s->scan_line_size * s->ysize; if ((s->compr == EXR_RAW && (data_size != uncompressed_size || line_offset > buf_size - uncompressed_size)) || (s->compr != EXR_RAW && (data_size > uncompressed_size || line_offset > buf_size - data_size))) { return AVERROR_INVALIDDATA; } if (data_size < uncompressed_size) { av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size); av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size); if (!td->uncompressed_data || !td->tmp) return AVERROR(ENOMEM); switch (s->compr) { case EXR_ZIP1: case EXR_ZIP16: ret = zip_uncompress(src, data_size, uncompressed_size, td); break; case EXR_PIZ: ret = piz_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_PXR24: ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_RLE: ret = rle_uncompress(src, data_size, uncompressed_size, td); } src = td->uncompressed_data; } channel_buffer[0] = src + xdelta * s->channel_offsets[0]; channel_buffer[1] = src + xdelta * s->channel_offsets[1]; channel_buffer[2] = src + xdelta * s->channel_offsets[2]; if (s->channel_offsets[3] >= 0) channel_buffer[3] = src + xdelta * s->channel_offsets[3]; ptr = p->data[0] + line * p->linesize[0]; for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) { const uint8_t *r, *g, *b, *a; r = channel_buffer[0]; g = channel_buffer[1]; b = channel_buffer[2]; if (channel_buffer[3]) a = channel_buffer[3]; ptr_x = (uint16_t *)ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += s->xmin * s->desc->nb_components; if (s->pixel_type == EXR_FLOAT) { // 32-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b)); if (channel_buffer[3]) *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); } } else { // 16-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b)); if (channel_buffer[3]) *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); } } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); channel_buffer[0] += s->scan_line_size; channel_buffer[1] += s->scan_line_size; channel_buffer[2] += s->scan_line_size; if (channel_buffer[3]) channel_buffer[3] += s->scan_line_size; } return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; unsigned int buf_size = avpkt->size; const uint8_t *buf_end = buf + buf_size; EXRContext *const s = avctx->priv_data; ThreadFrame frame = { .f = data }; AVFrame *picture = data; uint8_t *ptr; int i, y, magic_number, version, flags, ret; int w = 0; int h = 0; int out_line_size; int scan_line_blocks; unsigned int current_channel_offset = 0; s->xmin = ~0; s->xmax = ~0; s->ymin = ~0; s->ymax = ~0; s->xdelta = ~0; s->ydelta = ~0; s->channel_offsets[0] = -1; s->channel_offsets[1] = -1; s->channel_offsets[2] = -1; s->channel_offsets[3] = -1; s->pixel_type = -1; s->nb_channels = 0; s->compr = -1; s->buf = buf; s->buf_size = buf_size; if (buf_size < 10) { av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n"); return AVERROR_INVALIDDATA; } magic_number = bytestream_get_le32(&buf); if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number); return AVERROR_INVALIDDATA; } version = bytestream_get_byte(&buf); if (version != 2) { avpriv_report_missing_feature(avctx, "Version %d", version); return AVERROR_PATCHWELCOME; } flags = bytestream_get_le24(&buf); if (flags & 0x2) { avpriv_report_missing_feature(avctx, "Tile support"); return AVERROR_PATCHWELCOME; } // Parse the header while (buf < buf_end && buf[0]) { unsigned int variable_buffer_data_size; // Process the channel list if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) { const uint8_t *channel_list_end; if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; channel_list_end = buf + variable_buffer_data_size; while (channel_list_end - buf >= 19) { EXRChannel *channel; enum ExrPixelType current_pixel_type; int channel_index = -1; int xsub, ysub; if (!strcmp(buf, "R")) channel_index = 0; else if (!strcmp(buf, "G")) channel_index = 1; else if (!strcmp(buf, "B")) channel_index = 2; else if (!strcmp(buf, "A")) channel_index = 3; else av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf); while (bytestream_get_byte(&buf) && buf < channel_list_end) continue; /* skip */ if (channel_list_end - * &buf < 4) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } current_pixel_type = bytestream_get_le32(&buf); if (current_pixel_type > 2) { av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n"); return AVERROR_INVALIDDATA; } buf += 4; xsub = bytestream_get_le32(&buf); ysub = bytestream_get_le32(&buf); if (xsub != 1 || ysub != 1) { avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub); return AVERROR_PATCHWELCOME; } if (channel_index >= 0) { if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) { av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n"); return AVERROR_INVALIDDATA; } s->pixel_type = current_pixel_type; s->channel_offsets[channel_index] = current_channel_offset; } s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel)); if (!s->channels) return AVERROR(ENOMEM); channel = &s->channels[s->nb_channels - 1]; channel->pixel_type = current_pixel_type; channel->xsub = xsub; channel->ysub = ysub; current_channel_offset += 1 << current_pixel_type; } /* Check if all channels are set with an offset or if the channels * are causing an overflow */ if (FFMIN3(s->channel_offsets[0], s->channel_offsets[1], s->channel_offsets[2]) < 0) { if (s->channel_offsets[0] < 0) av_log(avctx, AV_LOG_ERROR, "Missing red channel\n"); if (s->channel_offsets[1] < 0) av_log(avctx, AV_LOG_ERROR, "Missing green channel\n"); if (s->channel_offsets[2] < 0) av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n"); return AVERROR_INVALIDDATA; } buf = channel_list_end; continue; } else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; s->xmin = AV_RL32(buf); s->ymin = AV_RL32(buf + 4); s->xmax = AV_RL32(buf + 8); s->ymax = AV_RL32(buf + 12); s->xdelta = (s->xmax - s->xmin) + 1; s->ydelta = (s->ymax - s->ymin) + 1; buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; w = AV_RL32(buf + 8) + 1; h = AV_RL32(buf + 12) + 1; buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf); if (*buf > 2) { av_log(avctx, AV_LOG_ERROR, "Unknown line order\n"); return AVERROR_INVALIDDATA; } buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255); buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; if (s->compr == -1) s->compr = *buf; else av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n"); buf += variable_buffer_data_size; continue; } // Check if there is enough bytes for a header if (buf_end - buf <= 9) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } // Process unknown variables for (i = 0; i < 2; i++) { // Skip variable name/type while (++buf < buf_end) if (buf[0] == 0x0) break; } buf++; // Skip variable length if (buf_end - buf >= 5) { variable_buffer_data_size = get_header_variable_length(&buf, buf_end); if (!variable_buffer_data_size) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } buf += variable_buffer_data_size; } } if (s->compr == -1) { av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n"); return AVERROR_INVALIDDATA; } if (buf >= buf_end) { av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n"); return AVERROR_INVALIDDATA; } buf++; switch (s->pixel_type) { case EXR_FLOAT: case EXR_HALF: if (s->channel_offsets[3] >= 0) avctx->pix_fmt = AV_PIX_FMT_RGBA64; else avctx->pix_fmt = AV_PIX_FMT_RGB48; break; case EXR_UINT: avpriv_request_sample(avctx, "32-bit unsigned int"); return AVERROR_PATCHWELCOME; default: av_log(avctx, AV_LOG_ERROR, "Missing channel list\n"); return AVERROR_INVALIDDATA; } switch (s->compr) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: s->scan_lines_per_block = 1; break; case EXR_PXR24: case EXR_ZIP16: s->scan_lines_per_block = 16; break; case EXR_PIZ: s->scan_lines_per_block = 32; break; default: avpriv_report_missing_feature(avctx, "Compression %d", s->compr); return AVERROR_PATCHWELCOME; } if (av_image_check_size(w, h, 0, avctx)) return AVERROR_INVALIDDATA; // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size if (s->xmin > s->xmax || s->ymin > s->ymax || s->xdelta != s->xmax - s->xmin + 1 || s->xmax >= w || s->ymax >= h) { av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n"); return AVERROR_INVALIDDATA; } if (w != avctx->width || h != avctx->height) { avcodec_set_dimensions(avctx, w, h); } s->desc = av_pix_fmt_desc_get(avctx->pix_fmt); out_line_size = avctx->width * 2 * s->desc->nb_components; s->scan_line_size = s->xdelta * current_channel_offset; scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block; if (s->compr != EXR_RAW) { size_t thread_data_size, prev_size; EXRThreadData *m; prev_size = s->thread_data_size; if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size)) return AVERROR(EINVAL); m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size); if (!m) return AVERROR(ENOMEM); s->thread_data = m; memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size); } if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (buf_end - buf < scan_line_blocks * 8) return AVERROR_INVALIDDATA; s->table = buf; ptr = picture->data[0]; // Zero out the start if ymin is not 0 for (y = 0; y < s->ymin; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } s->picture = picture; avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks); // Zero out the end if ymax+1 is not h for (y = s->ymax + 1; y < avctx->height; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } picture->pict_type = AV_PICTURE_TYPE_I; *got_frame = 1; return buf_size; } static av_cold int decode_end(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; int i; for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) { EXRThreadData *td = &s->thread_data[i]; av_freep(&td->uncompressed_data); av_freep(&td->tmp); av_freep(&td->bitmap); av_freep(&td->lut); } av_freep(&s->thread_data); s->thread_data_size = 0; av_freep(&s->channels); return 0; } AVCodec ff_exr_decoder = { .name = "exr", .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_EXR, .priv_data_size = sizeof(EXRContext), .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS, };