/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "config_components.h" #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/hwcontext.h" #include "libavutil/hwcontext_amf.h" #include "libavutil/hwcontext_amf_internal.h" #if CONFIG_D3D11VA #include "libavutil/hwcontext_d3d11va.h" #endif #if CONFIG_DXVA2 #define COBJMACROS #include "libavutil/hwcontext_dxva2.h" #endif #include "libavutil/mem.h" #include "libavutil/pixdesc.h" #include "libavutil/time.h" #include "amfenc.h" #include "encode.h" #include "internal.h" #include "libavutil/mastering_display_metadata.h" #define AMF_AV_FRAME_REF L"av_frame_ref" static int amf_save_hdr_metadata(AVCodecContext *avctx, const AVFrame *frame, AMFHDRMetadata *hdrmeta) { AVFrameSideData *sd_display; AVFrameSideData *sd_light; AVMasteringDisplayMetadata *display_meta; AVContentLightMetadata *light_meta; sd_display = av_frame_get_side_data(frame, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA); if (sd_display) { display_meta = (AVMasteringDisplayMetadata *)sd_display->data; if (display_meta->has_luminance) { const unsigned int luma_den = 10000; hdrmeta->maxMasteringLuminance = (amf_uint32)(luma_den * av_q2d(display_meta->max_luminance)); hdrmeta->minMasteringLuminance = FFMIN((amf_uint32)(luma_den * av_q2d(display_meta->min_luminance)), hdrmeta->maxMasteringLuminance); } if (display_meta->has_primaries) { const unsigned int chroma_den = 50000; hdrmeta->redPrimary[0] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[0][0])), chroma_den); hdrmeta->redPrimary[1] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[0][1])), chroma_den); hdrmeta->greenPrimary[0] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[1][0])), chroma_den); hdrmeta->greenPrimary[1] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[1][1])), chroma_den); hdrmeta->bluePrimary[0] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[2][0])), chroma_den); hdrmeta->bluePrimary[1] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[2][1])), chroma_den); hdrmeta->whitePoint[0] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->white_point[0])), chroma_den); hdrmeta->whitePoint[1] = FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->white_point[1])), chroma_den); } sd_light = av_frame_get_side_data(frame, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL); if (sd_light) { light_meta = (AVContentLightMetadata *)sd_light->data; if (light_meta) { hdrmeta->maxContentLightLevel = (amf_uint16)light_meta->MaxCLL; hdrmeta->maxFrameAverageLightLevel = (amf_uint16)light_meta->MaxFALL; } } return 0; } return 1; } #if CONFIG_D3D11VA #include #endif #ifdef _WIN32 #include "compat/w32dlfcn.h" #else #include #endif #define FFMPEG_AMF_WRITER_ID L"ffmpeg_amf" #define PTS_PROP L"PtsProp" const enum AVPixelFormat ff_amf_pix_fmts[] = { AV_PIX_FMT_NV12, AV_PIX_FMT_YUV420P, #if CONFIG_D3D11VA AV_PIX_FMT_D3D11, #endif #if CONFIG_DXVA2 AV_PIX_FMT_DXVA2_VLD, #endif AV_PIX_FMT_P010, AV_PIX_FMT_AMF_SURFACE, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_X2BGR10, AV_PIX_FMT_RGBAF16, AV_PIX_FMT_NONE }; static int amf_init_encoder(AVCodecContext *avctx) { AMFEncoderContext *ctx = avctx->priv_data; const wchar_t *codec_id = NULL; AMF_RESULT res; enum AVPixelFormat pix_fmt; AVHWDeviceContext *hw_device_ctx = (AVHWDeviceContext*)ctx->device_ctx_ref->data; AVAMFDeviceContext *amf_device_ctx = (AVAMFDeviceContext *)hw_device_ctx->hwctx; switch (avctx->codec->id) { case AV_CODEC_ID_H264: codec_id = AMFVideoEncoderVCE_AVC; break; case AV_CODEC_ID_HEVC: codec_id = AMFVideoEncoder_HEVC; break; case AV_CODEC_ID_AV1 : codec_id = AMFVideoEncoder_AV1; break; default: break; } AMF_RETURN_IF_FALSE(ctx, codec_id != NULL, AVERROR(EINVAL), "Codec %d is not supported\n", avctx->codec->id); if (avctx->hw_frames_ctx) pix_fmt = ((AVHWFramesContext*)avctx->hw_frames_ctx->data)->sw_format; else pix_fmt = avctx->pix_fmt; if (pix_fmt == AV_PIX_FMT_P010) { AMF_RETURN_IF_FALSE(ctx, amf_device_ctx->version >= AMF_MAKE_FULL_VERSION(1, 4, 32, 0), AVERROR_UNKNOWN, "10-bit encoder is not supported by AMD GPU drivers versions lower than 23.30.\n"); } ctx->format = av_av_to_amf_format(pix_fmt); AMF_RETURN_IF_FALSE(ctx, ctx->format != AMF_SURFACE_UNKNOWN, AVERROR(EINVAL), "Format %s is not supported\n", av_get_pix_fmt_name(pix_fmt)); res = amf_device_ctx->factory->pVtbl->CreateComponent(amf_device_ctx->factory, amf_device_ctx->context, codec_id, &ctx->encoder); AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_ENCODER_NOT_FOUND, "CreateComponent(%ls) failed with error %d\n", codec_id, res); ctx->submitted_frame = 0; ctx->encoded_frame = 0; ctx->eof = 0; return 0; } int av_cold ff_amf_encode_close(AVCodecContext *avctx) { AMFEncoderContext *ctx = avctx->priv_data; if (ctx->encoder) { ctx->encoder->pVtbl->Terminate(ctx->encoder); ctx->encoder->pVtbl->Release(ctx->encoder); ctx->encoder = NULL; } av_buffer_unref(&ctx->device_ctx_ref); av_fifo_freep2(&ctx->timestamp_list); return 0; } static int amf_copy_surface(AVCodecContext *avctx, const AVFrame *frame, AMFSurface* surface) { AMFPlane *plane; uint8_t *dst_data[4] = {0}; int dst_linesize[4] = {0}; int planes; int i; planes = (int)surface->pVtbl->GetPlanesCount(surface); av_assert0(planes < FF_ARRAY_ELEMS(dst_data)); for (i = 0; i < planes; i++) { plane = surface->pVtbl->GetPlaneAt(surface, i); dst_data[i] = plane->pVtbl->GetNative(plane); dst_linesize[i] = plane->pVtbl->GetHPitch(plane); } av_image_copy2(dst_data, dst_linesize, frame->data, frame->linesize, frame->format, avctx->width, avctx->height); return 0; } static int amf_copy_buffer(AVCodecContext *avctx, AVPacket *pkt, AMFBuffer *buffer) { AMFEncoderContext *ctx = avctx->priv_data; int ret; AMFVariantStruct var = {0}; int64_t timestamp = AV_NOPTS_VALUE; int64_t size = buffer->pVtbl->GetSize(buffer); if ((ret = ff_get_encode_buffer(avctx, pkt, size, 0)) < 0) { return ret; } memcpy(pkt->data, buffer->pVtbl->GetNative(buffer), size); switch (avctx->codec->id) { case AV_CODEC_ID_H264: buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE, &var); if(var.int64Value == AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE_IDR) { pkt->flags = AV_PKT_FLAG_KEY; } break; case AV_CODEC_ID_HEVC: buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE, &var); if (var.int64Value == AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE_IDR) { pkt->flags = AV_PKT_FLAG_KEY; } break; case AV_CODEC_ID_AV1: buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_AV1_OUTPUT_FRAME_TYPE, &var); if (var.int64Value == AMF_VIDEO_ENCODER_AV1_OUTPUT_FRAME_TYPE_KEY) { pkt->flags = AV_PKT_FLAG_KEY; } default: break; } buffer->pVtbl->GetProperty(buffer, PTS_PROP, &var); pkt->pts = var.int64Value; // original pts AMF_RETURN_IF_FALSE(ctx, av_fifo_read(ctx->timestamp_list, ×tamp, 1) >= 0, AVERROR_UNKNOWN, "timestamp_list is empty\n"); // calc dts shift if max_b_frames > 0 if ((ctx->max_b_frames > 0 || ((ctx->pa_adaptive_mini_gop == 1) ? true : false)) && ctx->dts_delay == 0) { int64_t timestamp_last = AV_NOPTS_VALUE; size_t can_read = av_fifo_can_read(ctx->timestamp_list); AMF_RETURN_IF_FALSE(ctx, can_read > 0, AVERROR_UNKNOWN, "timestamp_list is empty while max_b_frames = %d\n", avctx->max_b_frames); av_fifo_peek(ctx->timestamp_list, ×tamp_last, 1, can_read - 1); if (timestamp < 0 || timestamp_last < AV_NOPTS_VALUE) { return AVERROR(ERANGE); } ctx->dts_delay = timestamp_last - timestamp; } pkt->dts = timestamp - ctx->dts_delay; return 0; } // amfenc API implementation int ff_amf_encode_init(AVCodecContext *avctx) { int ret; AMFEncoderContext *ctx = avctx->priv_data; AVHWDeviceContext *hwdev_ctx = NULL; // hardcoded to current HW queue size - will auto-realloc if too small ctx->timestamp_list = av_fifo_alloc2(avctx->max_b_frames + 16, sizeof(int64_t), AV_FIFO_FLAG_AUTO_GROW); if (!ctx->timestamp_list) { return AVERROR(ENOMEM); } ctx->dts_delay = 0; ctx->hwsurfaces_in_queue = 0; if (avctx->hw_device_ctx) { hwdev_ctx = (AVHWDeviceContext*)avctx->hw_device_ctx->data; if (hwdev_ctx->type == AV_HWDEVICE_TYPE_AMF) { ctx->device_ctx_ref = av_buffer_ref(avctx->hw_device_ctx); } else { ret = av_hwdevice_ctx_create_derived(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, avctx->hw_device_ctx, 0); AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create derived AMF device context: %s\n", av_err2str(ret)); } } else if (avctx->hw_frames_ctx) { AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; if (frames_ctx->device_ref ) { if (frames_ctx->format == AV_PIX_FMT_AMF_SURFACE) { ctx->device_ctx_ref = av_buffer_ref(frames_ctx->device_ref); } else { ret = av_hwdevice_ctx_create_derived(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, frames_ctx->device_ref, 0); AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create derived AMF device context: %s\n", av_err2str(ret)); } } } else { ret = av_hwdevice_ctx_create(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, NULL, NULL, 0); AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create hardware device context (AMF) : %s\n", av_err2str(ret)); } if ((ret = amf_init_encoder(avctx)) == 0) { return 0; } ff_amf_encode_close(avctx); return ret; } static AMF_RESULT amf_set_property_buffer(AMFSurface *object, const wchar_t *name, AMFBuffer *val) { AMF_RESULT res; AMFVariantStruct var; res = AMFVariantInit(&var); if (res == AMF_OK) { AMFGuid guid_AMFInterface = IID_AMFInterface(); AMFInterface *amf_interface; res = val->pVtbl->QueryInterface(val, &guid_AMFInterface, (void**)&amf_interface); if (res == AMF_OK) { res = AMFVariantAssignInterface(&var, amf_interface); amf_interface->pVtbl->Release(amf_interface); } if (res == AMF_OK) { res = object->pVtbl->SetProperty(object, name, var); } AMFVariantClear(&var); } return res; } static AMF_RESULT amf_store_attached_frame_ref(const AVFrame *frame, AMFSurface *surface) { AMF_RESULT res = AMF_FAIL; int64_t data; AVFrame *frame_ref = av_frame_clone(frame); if (frame_ref) { memcpy(&data, &frame_ref, sizeof(frame_ref)); // store pointer in 8 bytes AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_AV_FRAME_REF, data); } return res; } static AMF_RESULT amf_release_attached_frame_ref(AMFBuffer *buffer) { AMFVariantStruct var = {0}; AMF_RESULT res = buffer->pVtbl->GetProperty(buffer, AMF_AV_FRAME_REF, &var); if(res == AMF_OK && var.int64Value){ AVFrame *frame_ref; memcpy(&frame_ref, &var.int64Value, sizeof(frame_ref)); av_frame_free(&frame_ref); } return res; } int ff_amf_receive_packet(AVCodecContext *avctx, AVPacket *avpkt) { AMFEncoderContext *ctx = avctx->priv_data; AVHWDeviceContext *hw_device_ctx = (AVHWDeviceContext*)ctx->device_ctx_ref->data; AVAMFDeviceContext *amf_device_ctx = (AVAMFDeviceContext *)hw_device_ctx->hwctx; AMFSurface *surface; AMF_RESULT res; int ret; AMF_RESULT res_query; AMFData *data = NULL; AVFrame *frame = av_frame_alloc(); int block_and_wait; int input_full = 0; int hw_surface = 0; int64_t pts = 0; int max_b_frames = ctx->max_b_frames < 0 ? 0 : ctx->max_b_frames; if (!ctx->encoder){ av_frame_free(&frame); return AVERROR(EINVAL); } ret = ff_encode_get_frame(avctx, frame); if(ret < 0){ if(ret != AVERROR_EOF){ av_frame_free(&frame); if(ret == AVERROR(EAGAIN)){ if(ctx->submitted_frame <= ctx->encoded_frame + max_b_frames + 1) // too soon to poll return ret; } } } if(ret != AVERROR(EAGAIN)){ if (!frame->buf[0]) { // submit drain if (!ctx->eof) { // submit drain one time only if(!ctx->delayed_drain) { res = ctx->encoder->pVtbl->Drain(ctx->encoder); if (res == AMF_INPUT_FULL) { ctx->delayed_drain = 1; // input queue is full: resubmit Drain() in receive loop } else { if (res == AMF_OK) { ctx->eof = 1; // drain started } AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Drain() failed with error %d\n", res); } } } } else { // submit frame // prepare surface from frame switch (frame->format) { #if CONFIG_D3D11VA case AV_PIX_FMT_D3D11: { static const GUID AMFTextureArrayIndexGUID = { 0x28115527, 0xe7c3, 0x4b66, { 0x99, 0xd3, 0x4f, 0x2a, 0xe6, 0xb4, 0x7f, 0xaf } }; ID3D11Texture2D *texture = (ID3D11Texture2D*)frame->data[0]; // actual texture int index = (intptr_t)frame->data[1]; // index is a slice in texture array is - set to tell AMF which slice to use av_assert0(frame->hw_frames_ctx && avctx->hw_frames_ctx && frame->hw_frames_ctx->data == avctx->hw_frames_ctx->data); texture->lpVtbl->SetPrivateData(texture, &AMFTextureArrayIndexGUID, sizeof(index), &index); res = amf_device_ctx->context->pVtbl->CreateSurfaceFromDX11Native(amf_device_ctx->context, texture, &surface, NULL); // wrap to AMF surface AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "CreateSurfaceFromDX11Native() failed with error %d\n", res); hw_surface = 1; } break; #endif #if CONFIG_DXVA2 case AV_PIX_FMT_DXVA2_VLD: { IDirect3DSurface9 *texture = (IDirect3DSurface9 *)frame->data[3]; // actual texture res = amf_device_ctx->context->pVtbl->CreateSurfaceFromDX9Native(amf_device_ctx->context, texture, &surface, NULL); // wrap to AMF surface AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "CreateSurfaceFromDX9Native() failed with error %d\n", res); hw_surface = 1; } break; #endif case AV_PIX_FMT_AMF_SURFACE: { surface = (AMFSurface*)frame->data[0]; surface->pVtbl->Acquire(surface); hw_surface = 1; } break; default: { res = amf_device_ctx->context->pVtbl->AllocSurface(amf_device_ctx->context, AMF_MEMORY_HOST, ctx->format, avctx->width, avctx->height, &surface); AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "AllocSurface() failed with error %d\n", res); amf_copy_surface(avctx, frame, surface); } break; } if (hw_surface) { amf_store_attached_frame_ref(frame, surface); ctx->hwsurfaces_in_queue++; // input HW surfaces can be vertically aligned by 16; tell AMF the real size surface->pVtbl->SetCrop(surface, 0, 0, frame->width, frame->height); } // HDR10 metadata if (frame->color_trc == AVCOL_TRC_SMPTE2084) { AMFBuffer * hdrmeta_buffer = NULL; res = amf_device_ctx->context->pVtbl->AllocBuffer(amf_device_ctx->context, AMF_MEMORY_HOST, sizeof(AMFHDRMetadata), &hdrmeta_buffer); if (res == AMF_OK) { AMFHDRMetadata * hdrmeta = (AMFHDRMetadata*)hdrmeta_buffer->pVtbl->GetNative(hdrmeta_buffer); if (amf_save_hdr_metadata(avctx, frame, hdrmeta) == 0) { switch (avctx->codec->id) { case AV_CODEC_ID_H264: AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_INPUT_HDR_METADATA, hdrmeta_buffer); break; case AV_CODEC_ID_HEVC: AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_HEVC_INPUT_HDR_METADATA, hdrmeta_buffer); break; case AV_CODEC_ID_AV1: AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_AV1_INPUT_HDR_METADATA, hdrmeta_buffer); break; } res = amf_set_property_buffer(surface, L"av_frame_hdrmeta", hdrmeta_buffer); AMF_RETURN_IF_FALSE(avctx, res == AMF_OK, AVERROR_UNKNOWN, "SetProperty failed for \"av_frame_hdrmeta\" with error %d\n", res); } hdrmeta_buffer->pVtbl->Release(hdrmeta_buffer); } } surface->pVtbl->SetPts(surface, frame->pts); AMF_ASSIGN_PROPERTY_INT64(res, surface, PTS_PROP, frame->pts); switch (avctx->codec->id) { case AV_CODEC_ID_H264: AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_AUD, !!ctx->aud); switch (frame->pict_type) { case AV_PICTURE_TYPE_I: if (ctx->forced_idr) { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_SPS, 1); AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_PPS, 1); AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_IDR); } else { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_I); } break; case AV_PICTURE_TYPE_P: AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_P); break; case AV_PICTURE_TYPE_B: AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_B); break; } break; case AV_CODEC_ID_HEVC: AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_INSERT_AUD, !!ctx->aud); switch (frame->pict_type) { case AV_PICTURE_TYPE_I: if (ctx->forced_idr) { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_INSERT_HEADER, 1); AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_IDR); } else { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_I); } break; case AV_PICTURE_TYPE_P: AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_P); break; } break; case AV_CODEC_ID_AV1: if (frame->pict_type == AV_PICTURE_TYPE_I) { if (ctx->forced_idr) { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_INSERT_SEQUENCE_HEADER, 1); AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE_KEY); } else { AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE_INTRA_ONLY); } } break; default: break; } pts = frame->pts; // submit surface res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)surface); av_frame_free(&frame); if (res == AMF_INPUT_FULL) { // handle full queue //store surface for later submission input_full = 1; } else { surface->pVtbl->Release(surface); AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "SubmitInput() failed with error %d\n", res); ctx->submitted_frame++; ret = av_fifo_write(ctx->timestamp_list, &pts, 1); if (ret < 0) return ret; if(ctx->submitted_frame <= ctx->encoded_frame + max_b_frames + 1) return AVERROR(EAGAIN); // if frame just submiited - don't poll or wait } } } av_frame_free(&frame); do { block_and_wait = 0; // poll data res_query = ctx->encoder->pVtbl->QueryOutput(ctx->encoder, &data); if (data) { // copy data to packet AMFBuffer *buffer; AMFGuid guid = IID_AMFBuffer(); data->pVtbl->QueryInterface(data, &guid, (void**)&buffer); // query for buffer interface ret = amf_copy_buffer(avctx, avpkt, buffer); if (amf_release_attached_frame_ref(buffer) == AMF_OK) { ctx->hwsurfaces_in_queue--; } ctx->encoded_frame++; buffer->pVtbl->Release(buffer); data->pVtbl->Release(data); AMF_RETURN_IF_FALSE(ctx, ret >= 0, ret, "amf_copy_buffer() failed with error %d\n", ret); if (ctx->delayed_drain) { // try to resubmit drain res = ctx->encoder->pVtbl->Drain(ctx->encoder); if (res != AMF_INPUT_FULL) { ctx->delayed_drain = 0; ctx->eof = 1; // drain started AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Repeated Drain() failed with error %d\n", res); } else { av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed drain submission got AMF_INPUT_FULL- should not happen\n"); } } } else if (ctx->delayed_drain || (ctx->eof && res_query != AMF_EOF) || (ctx->hwsurfaces_in_queue >= ctx->hwsurfaces_in_queue_max) || input_full) { block_and_wait = 1; // Only sleep if the driver doesn't support waiting in QueryOutput() // or if we already have output data so we will skip calling it. if (!ctx->query_timeout_supported || avpkt->data || avpkt->buf) { av_usleep(1000); } } } while (block_and_wait); if (res_query == AMF_EOF) { ret = AVERROR_EOF; } else if (data == NULL) { ret = AVERROR(EAGAIN); } else { if(input_full) { // resubmit surface res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)surface); surface->pVtbl->Release(surface); if (res == AMF_INPUT_FULL) { av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed SubmitInput returned AMF_INPUT_FULL- should not happen\n"); } else { AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "SubmitInput() failed with error %d\n", res); ret = av_fifo_write(ctx->timestamp_list, &pts, 1); ctx->submitted_frame++; if (ret < 0) return ret; } } ret = 0; } return ret; } int ff_amf_get_color_profile(AVCodecContext *avctx) { amf_int64 color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_UNKNOWN; if (avctx->color_range == AVCOL_RANGE_JPEG) { /// Color Space for Full (JPEG) Range switch (avctx->colorspace) { case AVCOL_SPC_SMPTE170M: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_601; break; case AVCOL_SPC_BT709: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_709; break; case AVCOL_SPC_BT2020_NCL: case AVCOL_SPC_BT2020_CL: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_2020; break; } } else { /// Color Space for Limited (MPEG) range switch (avctx->colorspace) { case AVCOL_SPC_SMPTE170M: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_601; break; case AVCOL_SPC_BT709: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_709; break; case AVCOL_SPC_BT2020_NCL: case AVCOL_SPC_BT2020_CL: color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_2020; break; } } return color_profile; } const AVCodecHWConfigInternal *const ff_amfenc_hw_configs[] = { #if CONFIG_D3D11VA HW_CONFIG_ENCODER_FRAMES(D3D11, D3D11VA), HW_CONFIG_ENCODER_DEVICE(NONE, D3D11VA), #endif #if CONFIG_DXVA2 HW_CONFIG_ENCODER_FRAMES(DXVA2_VLD, DXVA2), HW_CONFIG_ENCODER_DEVICE(NONE, DXVA2), #endif HW_CONFIG_ENCODER_FRAMES(AMF_SURFACE, AMF), HW_CONFIG_ENCODER_DEVICE(NONE, AMF), NULL, };