/* * Copyright (c) 2015-2016 mawen1250 * Copyright (c) 2018 Paul B Mahol * * This file is part of FFmpeg. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /** * @todo * - opponent color space * - temporal support */ #include #include "libavutil/cpu.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/tx.h" #include "avfilter.h" #include "filters.h" #include "framesync.h" #include "internal.h" #include "video.h" #define MAX_NB_THREADS 32 enum FilterModes { BASIC, FINAL, NB_MODES, }; typedef struct ThreadData { const uint8_t *src; int src_linesize; const uint8_t *ref; int ref_linesize; int plane; } ThreadData; typedef struct PosCode { int x, y; } PosCode; typedef struct PosPairCode { double score; int x, y; } PosPairCode; typedef struct SliceContext { AVTXContext *gdctf, *gdcti; av_tx_fn tx_fn_g, itx_fn_g; AVTXContext *dctf, *dcti; av_tx_fn tx_fn, itx_fn; float *bufferh; float *buffert; float *bufferv; float *bufferz; float *buffer; float *rbufferh; float *rbufferv; float *rbufferz; float *rbuffer; float *num, *den; PosPairCode match_blocks[256]; int nb_match_blocks; PosCode *search_positions; } SliceContext; typedef struct BM3DContext { const AVClass *class; float sigma; int block_size; int block_step; int group_size; int bm_range; int bm_step; float th_mse; float hard_threshold; int mode; int ref; int planes; int depth; int max; int nb_planes; int planewidth[4]; int planeheight[4]; int pblock_size; int pgroup_size; SliceContext slices[MAX_NB_THREADS]; FFFrameSync fs; int nb_threads; void (*get_block_row)(const uint8_t *srcp, int src_linesize, int y, int x, int block_size, float *dst); double (*do_block_ssd)(struct BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x); void (*do_output)(struct BM3DContext *s, uint8_t *dst, int dst_linesize, int plane, int nb_jobs); void (*block_filtering)(struct BM3DContext *s, const uint8_t *src, int src_linesize, const uint8_t *ref, int ref_linesize, int y, int x, int plane, int jobnr); } BM3DContext; #define OFFSET(x) offsetof(BM3DContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption bm3d_options[] = { { "sigma", "set denoising strength", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 99999.9, FLAGS }, { "block", "set size of local patch", OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=16}, 8, 64, FLAGS }, { "bstep", "set sliding step for processing blocks", OFFSET(block_step), AV_OPT_TYPE_INT, {.i64=4}, 1, 64, FLAGS }, { "group", "set maximal number of similar blocks", OFFSET(group_size), AV_OPT_TYPE_INT, {.i64=1}, 1, 256, FLAGS }, { "range", "set block matching range", OFFSET(bm_range), AV_OPT_TYPE_INT, {.i64=9}, 1, INT32_MAX, FLAGS }, { "mstep", "set step for block matching", OFFSET(bm_step), AV_OPT_TYPE_INT, {.i64=1}, 1, 64, FLAGS }, { "thmse", "set threshold of mean square error for block matching", OFFSET(th_mse), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT32_MAX, FLAGS }, { "hdthr", "set hard threshold for 3D transfer domain", OFFSET(hard_threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.7}, 0, INT32_MAX, FLAGS }, { "estim", "set filtering estimation mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BASIC}, 0, NB_MODES-1, FLAGS, .unit = "mode" }, { "basic", "basic estimate", 0, AV_OPT_TYPE_CONST, {.i64=BASIC}, 0, 0, FLAGS, .unit = "mode" }, { "final", "final estimate", 0, AV_OPT_TYPE_CONST, {.i64=FINAL}, 0, 0, FLAGS, .unit = "mode" }, { "ref", "have reference stream", OFFSET(ref), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(bm3d); static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; static int do_search_boundary(int pos, int plane_boundary, int search_range, int search_step) { int search_boundary; search_range = search_range / search_step * search_step; if (pos == plane_boundary) { search_boundary = plane_boundary; } else if (pos > plane_boundary) { search_boundary = pos - search_range; while (search_boundary < plane_boundary) { search_boundary += search_step; } } else { search_boundary = pos + search_range; while (search_boundary > plane_boundary) { search_boundary -= search_step; } } return search_boundary; } static int search_boundary(int plane_boundary, int search_range, int search_step, int vertical, int y, int x) { return do_search_boundary(vertical ? y : x, plane_boundary, search_range, search_step); } static int cmp_scores(const void *a, const void *b) { const struct PosPairCode *pair1 = a; const struct PosPairCode *pair2 = b; return FFDIFFSIGN(pair1->score, pair2->score); } static double do_block_ssd(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x) { const uint8_t *srcp = src + pos->y * src_stride + pos->x; const uint8_t *refp = src + r_y * src_stride + r_x; const int block_size = s->block_size; double dist = 0.; int x, y; for (y = 0; y < block_size; y++) { for (x = 0; x < block_size; x++) { double temp = refp[x] - srcp[x]; dist += temp * temp; } srcp += src_stride; refp += src_stride; } return dist; } static double do_block_ssd16(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x) { const uint16_t *srcp = (uint16_t *)src + pos->y * src_stride / 2 + pos->x; const uint16_t *refp = (uint16_t *)src + r_y * src_stride / 2 + r_x; const int block_size = s->block_size; double dist = 0.; int x, y; for (y = 0; y < block_size; y++) { for (x = 0; x < block_size; x++) { double temp = refp[x] - srcp[x]; dist += temp * temp; } srcp += src_stride / 2; refp += src_stride / 2; } return dist; } static void do_block_matching_multi(BM3DContext *s, const uint8_t *src, int src_stride, int src_range, const PosCode *search_pos, int search_size, float th_mse, int r_y, int r_x, int plane, int jobnr) { SliceContext *sc = &s->slices[jobnr]; double MSE2SSE = s->group_size * s->block_size * s->block_size * src_range * src_range / (double)(s->max * s->max); double distMul = 1. / MSE2SSE; double th_sse = th_mse * MSE2SSE; int index = sc->nb_match_blocks; for (int i = 0; i < search_size; i++) { PosCode pos = search_pos[i]; double dist; dist = s->do_block_ssd(s, &pos, src, src_stride, r_y, r_x); // Only match similar blocks but not identical blocks if (dist <= th_sse && dist != 0) { const double score = dist * distMul; if (index >= s->group_size && score >= sc->match_blocks[index - 1].score) { continue; } if (index >= s->group_size) index = s->group_size - 1; sc->match_blocks[index].score = score; sc->match_blocks[index].y = pos.y; sc->match_blocks[index].x = pos.x; index++; qsort(sc->match_blocks, index, sizeof(PosPairCode), cmp_scores); } } sc->nb_match_blocks = index; } static void block_matching_multi(BM3DContext *s, const uint8_t *ref, int ref_linesize, int y, int x, int exclude_cur_pos, int plane, int jobnr) { SliceContext *sc = &s->slices[jobnr]; const int width = s->planewidth[plane]; const int height = s->planeheight[plane]; const int block_size = s->block_size; const int step = s->bm_step; const int range = s->bm_range / step * step; int l = search_boundary(0, range, step, 0, y, x); int r = search_boundary(width - block_size, range, step, 0, y, x); int t = search_boundary(0, range, step, 1, y, x); int b = search_boundary(height - block_size, range, step, 1, y, x); int index = 0; for (int j = t; j <= b; j += step) { for (int i = l; i <= r; i += step) { PosCode pos; if (exclude_cur_pos > 0 && j == y && i == x) { continue; } pos.y = j; pos.x = i; sc->search_positions[index++] = pos; } } if (exclude_cur_pos == 1) { sc->match_blocks[0].score = 0; sc->match_blocks[0].y = y; sc->match_blocks[0].x = x; sc->nb_match_blocks = 1; } do_block_matching_multi(s, ref, ref_linesize, s->bm_range, sc->search_positions, index, s->th_mse, y, x, plane, jobnr); } static void block_matching(BM3DContext *s, const uint8_t *ref, int ref_linesize, int j, int i, int plane, int jobnr) { SliceContext *sc = &s->slices[jobnr]; if (s->group_size == 1 || s->th_mse <= 0.f) { sc->match_blocks[0].score = 1; sc->match_blocks[0].x = i; sc->match_blocks[0].y = j; sc->nb_match_blocks = 1; return; } sc->nb_match_blocks = 0; block_matching_multi(s, ref, ref_linesize, j, i, 1, plane, jobnr); } static void get_block_row(const uint8_t *srcp, int src_linesize, int y, int x, int block_size, float *dst) { const uint8_t *src = srcp + y * src_linesize + x; for (int j = 0; j < block_size; j++) dst[j] = src[j]; } static void get_block_row16(const uint8_t *srcp, int src_linesize, int y, int x, int block_size, float *dst) { const uint16_t *src = (uint16_t *)srcp + y * src_linesize / 2 + x; for (int j = 0; j < block_size; j++) dst[j] = src[j]; } static void basic_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize, const uint8_t *ref, int ref_linesize, int y, int x, int plane, int jobnr) { SliceContext *sc = &s->slices[jobnr]; const int pblock_size = s->pblock_size; const int buffer_linesize = s->pblock_size * s->pblock_size; const int nb_match_blocks = sc->nb_match_blocks; const int block_size = s->block_size; const int width = s->planewidth[plane]; const int pgroup_size = s->pgroup_size; const int group_size = s->group_size; float *buffer = sc->buffer; float *bufferh = sc->bufferh; float *buffert = sc->buffert; float *bufferv = sc->bufferv; float *bufferz = sc->bufferz; float threshold[4]; float den_weight, num_weight; int retained = 0; for (int k = 0; k < nb_match_blocks; k++) { const int y = sc->match_blocks[k].y; const int x = sc->match_blocks[k].x; for (int i = 0; i < block_size; i++) { s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + pblock_size * i); sc->tx_fn(sc->dctf, buffert, bufferh + pblock_size * i, sizeof(float)); for (int j = 0; j < block_size; j++) bufferv[j * pblock_size + i] = buffert[j]; } for (int i = 0; i < block_size; i++) { sc->tx_fn(sc->dctf, buffert, bufferv + i * pblock_size, sizeof(float)); memcpy(buffer + k * buffer_linesize + i * pblock_size, buffert, block_size * sizeof(float)); } } for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { for (int k = 0; k < nb_match_blocks; k++) bufferz[k] = buffer[buffer_linesize * k + i * pblock_size + j]; if (group_size > 1) sc->tx_fn_g(sc->gdctf, bufferz, bufferz, sizeof(float)); bufferz += pgroup_size; } } threshold[0] = s->hard_threshold * s->sigma * M_SQRT2 * 4.f * block_size * block_size * (1 << (s->depth - 8)) / 255.f; threshold[1] = threshold[0] * sqrtf(2.f); threshold[2] = threshold[0] * 2.f; threshold[3] = threshold[0] * sqrtf(8.f); bufferz = sc->bufferz; for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { for (int k = 0; k < nb_match_blocks; k++) { const float thresh = threshold[(j == 0) + (i == 0) + (k == 0)]; if (bufferz[k] > thresh || bufferz[k] < -thresh) { retained++; } else { bufferz[k] = 0; } } bufferz += pgroup_size; } } bufferz = sc->bufferz; buffer = sc->buffer; for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { if (group_size > 1) sc->itx_fn_g(sc->gdcti, bufferz, bufferz, sizeof(float)); for (int k = 0; k < nb_match_blocks; k++) buffer[buffer_linesize * k + i * pblock_size + j] = bufferz[k]; bufferz += pgroup_size; } } den_weight = retained < 1 ? 1.f : 1.f / retained; num_weight = den_weight; buffer = sc->buffer; for (int k = 0; k < nb_match_blocks; k++) { float *num = sc->num + y * width + x; float *den = sc->den + y * width + x; for (int i = 0; i < block_size; i++) { memcpy(bufferv + i * pblock_size, buffer + k * buffer_linesize + i * pblock_size, block_size * sizeof(float)); } for (int i = 0; i < block_size; i++) { sc->itx_fn(sc->dcti, buffert, bufferv + i * pblock_size, sizeof(float)); for (int j = 0; j < block_size; j++) bufferh[j * pblock_size + i] = buffert[j]; } for (int i = 0; i < block_size; i++) { sc->itx_fn(sc->dcti, buffert, bufferh + pblock_size * i, sizeof(float)); for (int j = 0; j < block_size; j++) { num[j] += buffert[j] * num_weight; den[j] += den_weight; } num += width; den += width; } } } static void final_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize, const uint8_t *ref, int ref_linesize, int y, int x, int plane, int jobnr) { SliceContext *sc = &s->slices[jobnr]; const int pblock_size = s->pblock_size; const int buffer_linesize = s->pblock_size * s->pblock_size; const int nb_match_blocks = sc->nb_match_blocks; const int block_size = s->block_size; const int width = s->planewidth[plane]; const int pgroup_size = s->pgroup_size; const int group_size = s->group_size; const float sigma_sqr = s->sigma * s->sigma; float *buffer = sc->buffer; float *bufferh = sc->bufferh; float *bufferv = sc->bufferv; float *bufferz = sc->bufferz; float *rbuffer = sc->rbuffer; float *rbufferh = sc->rbufferh; float *rbufferv = sc->rbufferv; float *rbufferz = sc->rbufferz; float den_weight, num_weight; float l2_wiener = 0; for (int k = 0; k < nb_match_blocks; k++) { const int y = sc->match_blocks[k].y; const int x = sc->match_blocks[k].x; for (int i = 0; i < block_size; i++) { s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + pblock_size * i); s->get_block_row(ref, ref_linesize, y + i, x, block_size, rbufferh + pblock_size * i); sc->tx_fn(sc->dctf, bufferh + pblock_size * i, bufferh + pblock_size * i, sizeof(float)); sc->tx_fn(sc->dctf, rbufferh + pblock_size * i, rbufferh + pblock_size * i, sizeof(float)); } for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { bufferv[i * pblock_size + j] = bufferh[j * pblock_size + i]; rbufferv[i * pblock_size + j] = rbufferh[j * pblock_size + i]; } sc->tx_fn(sc->dctf, bufferv + i * pblock_size, bufferv + i * pblock_size, sizeof(float)); sc->tx_fn(sc->dctf, rbufferv + i * pblock_size, rbufferv + i * pblock_size, sizeof(float)); } for (int i = 0; i < block_size; i++) { memcpy(buffer + k * buffer_linesize + i * pblock_size, bufferv + i * pblock_size, block_size * sizeof(float)); memcpy(rbuffer + k * buffer_linesize + i * pblock_size, rbufferv + i * pblock_size, block_size * sizeof(float)); } } for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { for (int k = 0; k < nb_match_blocks; k++) { bufferz[k] = buffer[buffer_linesize * k + i * pblock_size + j]; rbufferz[k] = rbuffer[buffer_linesize * k + i * pblock_size + j]; } if (group_size > 1) { sc->tx_fn_g(sc->gdctf, bufferz, bufferz, sizeof(float)); sc->tx_fn_g(sc->gdctf, rbufferz, rbufferz, sizeof(float)); } bufferz += pgroup_size; rbufferz += pgroup_size; } } bufferz = sc->bufferz; rbufferz = sc->rbufferz; for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { for (int k = 0; k < nb_match_blocks; k++) { const float ref_sqr = rbufferz[k] * rbufferz[k]; float wiener_coef = ref_sqr / (ref_sqr + sigma_sqr); if (isnan(wiener_coef)) wiener_coef = 1; bufferz[k] *= wiener_coef; l2_wiener += wiener_coef * wiener_coef; } bufferz += pgroup_size; rbufferz += pgroup_size; } } bufferz = sc->bufferz; buffer = sc->buffer; for (int i = 0; i < block_size; i++) { for (int j = 0; j < block_size; j++) { if (group_size > 1) sc->itx_fn_g(sc->gdcti, bufferz, bufferz, sizeof(float)); for (int k = 0; k < nb_match_blocks; k++) { buffer[buffer_linesize * k + i * pblock_size + j] = bufferz[k]; } bufferz += pgroup_size; } } l2_wiener = FFMAX(l2_wiener, 1e-15f); den_weight = 1.f / l2_wiener; num_weight = den_weight; for (int k = 0; k < nb_match_blocks; k++) { float *num = sc->num + y * width + x; float *den = sc->den + y * width + x; for (int i = 0; i < block_size; i++) { memcpy(bufferv + i * pblock_size, buffer + k * buffer_linesize + i * pblock_size, block_size * sizeof(float)); } for (int i = 0; i < block_size; i++) { sc->itx_fn(sc->dcti, bufferv + pblock_size * i, bufferv + pblock_size * i, sizeof(float)); for (int j = 0; j < block_size; j++) { bufferh[j * pblock_size + i] = bufferv[i * pblock_size + j]; } } for (int i = 0; i < block_size; i++) { sc->itx_fn(sc->dcti, bufferh + pblock_size * i, bufferh + pblock_size * i, sizeof(float)); for (int j = 0; j < block_size; j++) { num[j] += bufferh[i * pblock_size + j] * num_weight; den[j] += den_weight; } num += width; den += width; } } } static void do_output(BM3DContext *s, uint8_t *dst, int dst_linesize, int plane, int nb_jobs) { const int height = s->planeheight[plane]; const int width = s->planewidth[plane]; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { uint8_t *dstp = dst + i * dst_linesize; float sum_den = 0.f; float sum_num = 0.f; for (int k = 0; k < nb_jobs; k++) { SliceContext *sc = &s->slices[k]; float num = sc->num[i * width + j]; float den = sc->den[i * width + j]; sum_num += num; sum_den += den; } dstp[j] = av_clip_uint8(lrintf(sum_num / sum_den)); } } } static void do_output16(BM3DContext *s, uint8_t *dst, int dst_linesize, int plane, int nb_jobs) { const int height = s->planeheight[plane]; const int width = s->planewidth[plane]; const int depth = s->depth; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { uint16_t *dstp = (uint16_t *)dst + i * dst_linesize / 2; float sum_den = 0.f; float sum_num = 0.f; for (int k = 0; k < nb_jobs; k++) { SliceContext *sc = &s->slices[k]; float num = sc->num[i * width + j]; float den = sc->den[i * width + j]; sum_num += num; sum_den += den; } dstp[j] = av_clip_uintp2_c(lrintf(sum_num / sum_den), depth); } } } static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { BM3DContext *s = ctx->priv; SliceContext *sc = &s->slices[jobnr]; const int block_step = s->block_step; ThreadData *td = arg; const uint8_t *src = td->src; const uint8_t *ref = td->ref; const int src_linesize = td->src_linesize; const int ref_linesize = td->ref_linesize; const int plane = td->plane; const int width = s->planewidth[plane]; const int height = s->planeheight[plane]; const int block_pos_bottom = FFMAX(0, height - s->block_size); const int block_pos_right = FFMAX(0, width - s->block_size); const int slice_start = (((height + block_step - 1) / block_step) * jobnr / nb_jobs) * block_step; const int slice_end = (jobnr == nb_jobs - 1) ? block_pos_bottom + block_step : (((height + block_step - 1) / block_step) * (jobnr + 1) / nb_jobs) * block_step; memset(sc->num, 0, width * height * sizeof(float)); memset(sc->den, 0, width * height * sizeof(float)); for (int j = slice_start; j < slice_end; j += block_step) { if (j > block_pos_bottom) { j = block_pos_bottom; } for (int i = 0; i < block_pos_right + block_step; i += block_step) { if (i > block_pos_right) { i = block_pos_right; } block_matching(s, ref, ref_linesize, j, i, plane, jobnr); s->block_filtering(s, src, src_linesize, ref, ref_linesize, j, i, plane, jobnr); } } return 0; } static int filter_frame(AVFilterContext *ctx, AVFrame **out, AVFrame *in, AVFrame *ref) { BM3DContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int p; *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!*out) return AVERROR(ENOMEM); av_frame_copy_props(*out, in); for (p = 0; p < s->nb_planes; p++) { const int nb_jobs = FFMAX(1, FFMIN(s->nb_threads, s->planeheight[p] / s->block_size)); ThreadData td; if (!((1 << p) & s->planes) || ctx->is_disabled) { av_image_copy_plane((*out)->data[p], (*out)->linesize[p], in->data[p], in->linesize[p], s->planewidth[p] * (1 + (s->depth > 8)), s->planeheight[p]); continue; } td.src = in->data[p]; td.src_linesize = in->linesize[p]; td.ref = ref->data[p]; td.ref_linesize = ref->linesize[p]; td.plane = p; ff_filter_execute(ctx, filter_slice, &td, NULL, nb_jobs); s->do_output(s, (*out)->data[p], (*out)->linesize[p], p, nb_jobs); } return 0; } #define SQR(x) ((x) * (x)) static int config_input(AVFilterLink *inlink) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); AVFilterContext *ctx = inlink->dst; BM3DContext *s = ctx->priv; s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_NB_THREADS); s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->depth = desc->comp[0].depth; s->max = (1 << s->depth) - 1; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->pblock_size = FFALIGN(s->block_size * 2, av_cpu_max_align()); s->pgroup_size = FFALIGN(s->group_size * 2, av_cpu_max_align()); for (int i = 0; i < s->nb_threads; i++) { SliceContext *sc = &s->slices[i]; float iscale = 0.5f / s->block_size; float scale = 1.f; int ret; sc->num = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(float)); sc->den = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(float)); if (!sc->num || !sc->den) return AVERROR(ENOMEM); ret = av_tx_init(&sc->dctf, &sc->tx_fn, AV_TX_FLOAT_DCT, 0, s->block_size >> 0, &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&sc->dcti, &sc->itx_fn, AV_TX_FLOAT_DCT, 1, s->block_size >> 1, &iscale, 0); if (ret < 0) return ret; if (s->group_size > 1) { float iscale = 0.5f / s->group_size; ret = av_tx_init(&sc->gdctf, &sc->tx_fn_g, AV_TX_FLOAT_DCT, 0, s->group_size >> 0, &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&sc->gdcti, &sc->itx_fn_g, AV_TX_FLOAT_DCT, 1, s->group_size >> 1, &iscale, 0); if (ret < 0) return ret; } sc->buffer = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->buffer)); sc->bufferz = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->bufferz)); sc->bufferh = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->bufferh)); sc->bufferv = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->bufferv)); sc->buffert = av_calloc(s->pblock_size, sizeof(*sc->buffert)); if (!sc->bufferh || !sc->bufferv || !sc->buffer || !sc->bufferz || !sc->buffert) return AVERROR(ENOMEM); if (s->mode == FINAL) { sc->rbuffer = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->rbuffer)); sc->rbufferz = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->rbufferz)); sc->rbufferh = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->rbufferh)); sc->rbufferv = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->rbufferv)); if (!sc->rbufferh || !sc->rbufferv || !sc->rbuffer || !sc->rbufferz) return AVERROR(ENOMEM); } sc->search_positions = av_calloc(SQR(2 * s->bm_range / s->bm_step + 1), sizeof(*sc->search_positions)); if (!sc->search_positions) return AVERROR(ENOMEM); } s->do_output = do_output; s->do_block_ssd = do_block_ssd; s->get_block_row = get_block_row; if (s->depth > 8) { s->do_output = do_output16; s->do_block_ssd = do_block_ssd16; s->get_block_row = get_block_row16; } return 0; } static int activate(AVFilterContext *ctx) { BM3DContext *s = ctx->priv; if (!s->ref) { AVFrame *frame = NULL; AVFrame *out = NULL; int ret, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(ctx->outputs[0], ctx->inputs[0]); if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &frame)) > 0) { ret = filter_frame(ctx, &out, frame, frame); av_frame_free(&frame); if (ret < 0) return ret; ret = ff_filter_frame(ctx->outputs[0], out); } if (ret < 0) { return ret; } else if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) { ff_outlink_set_status(ctx->outputs[0], status, pts); return 0; } else { if (ff_outlink_frame_wanted(ctx->outputs[0])) ff_inlink_request_frame(ctx->inputs[0]); return 0; } } else { return ff_framesync_activate(&s->fs); } } static int process_frame(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; BM3DContext *s = fs->opaque; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out = NULL, *src, *ref; int ret; if ((ret = ff_framesync_get_frame(&s->fs, 0, &src, 0)) < 0 || (ret = ff_framesync_get_frame(&s->fs, 1, &ref, 0)) < 0) return ret; if ((ret = filter_frame(ctx, &out, src, ref)) < 0) return ret; out->pts = av_rescale_q(src->pts, s->fs.time_base, outlink->time_base); return ff_filter_frame(outlink, out); } static av_cold int init(AVFilterContext *ctx) { BM3DContext *s = ctx->priv; AVFilterPad pad = { 0 }; int ret; if (s->mode == BASIC) { if (s->th_mse == 0.f) s->th_mse = 400.f + s->sigma * 80.f; s->block_filtering = basic_block_filtering; } else if (s->mode == FINAL) { if (!s->ref) { av_log(ctx, AV_LOG_WARNING, "Reference stream is mandatory in final estimation mode.\n"); s->ref = 1; } if (s->th_mse == 0.f) s->th_mse = 200.f + s->sigma * 10.f; s->block_filtering = final_block_filtering; } else { return AVERROR_BUG; } if (s->block_step > s->block_size) { av_log(ctx, AV_LOG_WARNING, "bstep: %d can't be bigger than block size. Changing to %d.\n", s->block_step, s->block_size); s->block_step = s->block_size; } if (s->bm_step > s->bm_range) { av_log(ctx, AV_LOG_WARNING, "mstep: %d can't be bigger than block matching range. Changing to %d.\n", s->bm_step, s->bm_range); s->bm_step = s->bm_range; } pad.type = AVMEDIA_TYPE_VIDEO; pad.name = "source"; pad.config_props = config_input; if ((ret = ff_append_inpad(ctx, &pad)) < 0) return ret; if (s->ref) { pad.type = AVMEDIA_TYPE_VIDEO; pad.name = "reference"; pad.config_props = NULL; if ((ret = ff_append_inpad(ctx, &pad)) < 0) return ret; } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; BM3DContext *s = ctx->priv; AVFilterLink *src = ctx->inputs[0]; AVFilterLink *ref; FFFrameSyncIn *in; int ret; if (s->ref) { ref = ctx->inputs[1]; if (src->w != ref->w || src->h != ref->h) { av_log(ctx, AV_LOG_ERROR, "First input link %s parameters " "(size %dx%d) do not match the corresponding " "second input link %s parameters (%dx%d) ", ctx->input_pads[0].name, src->w, src->h, ctx->input_pads[1].name, ref->w, ref->h); return AVERROR(EINVAL); } } outlink->w = src->w; outlink->h = src->h; outlink->time_base = src->time_base; outlink->sample_aspect_ratio = src->sample_aspect_ratio; outlink->frame_rate = src->frame_rate; if (!s->ref) return 0; if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0) return ret; in = s->fs.in; in[0].time_base = src->time_base; in[1].time_base = ref->time_base; in[0].sync = 1; in[0].before = EXT_STOP; in[0].after = EXT_STOP; in[1].sync = 1; in[1].before = EXT_STOP; in[1].after = EXT_STOP; s->fs.opaque = s; s->fs.on_event = process_frame; return ff_framesync_configure(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { BM3DContext *s = ctx->priv; if (s->ref) ff_framesync_uninit(&s->fs); for (int i = 0; i < s->nb_threads; i++) { SliceContext *sc = &s->slices[i]; av_freep(&sc->num); av_freep(&sc->den); av_tx_uninit(&sc->gdctf); av_tx_uninit(&sc->gdcti); av_tx_uninit(&sc->dctf); av_tx_uninit(&sc->dcti); av_freep(&sc->buffer); av_freep(&sc->bufferh); av_freep(&sc->buffert); av_freep(&sc->bufferv); av_freep(&sc->bufferz); av_freep(&sc->rbuffer); av_freep(&sc->rbufferh); av_freep(&sc->rbufferv); av_freep(&sc->rbufferz); av_freep(&sc->search_positions); } } static const AVFilterPad bm3d_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_bm3d = { .name = "bm3d", .description = NULL_IF_CONFIG_SMALL("Block-Matching 3D denoiser."), .priv_size = sizeof(BM3DContext), .init = init, .uninit = uninit, .activate = activate, .inputs = NULL, FILTER_OUTPUTS(bm3d_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .priv_class = &bm3d_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_DYNAMIC_INPUTS | AVFILTER_FLAG_SLICE_THREADS, };