/* * Copyright (c) 2022 James Almer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Derive PTS by reordering DTS from supported streams */ #include "libavutil/avassert.h" #include "libavutil/fifo.h" #include "libavutil/mem.h" #include "libavutil/tree.h" #include "libavcodec/bsf.h" #include "libavcodec/bsf_internal.h" #include "libavcodec/cbs.h" #include "libavcodec/cbs_h264.h" #include "libavcodec/h264_parse.h" #include "libavcodec/h264_ps.h" typedef struct DTS2PTSNode { int64_t dts; int64_t duration; int poc; int gop; } DTS2PTSNode; typedef struct DTS2PTSFrame { AVPacket *pkt; int poc; int poc_diff; int gop; } DTS2PTSFrame; typedef struct DTS2PTSH264Context { H264POCContext poc; SPS sps; int poc_diff; int last_poc; int highest_poc; int picture_structure; } DTS2PTSH264Context; typedef struct DTS2PTSContext { struct AVTreeNode *root; AVFifo *fifo; // Codec specific function pointers and constants int (*init)(AVBSFContext *ctx); int (*filter)(AVBSFContext *ctx); void (*flush)(AVBSFContext *ctx); size_t fifo_size; CodedBitstreamContext *cbc; CodedBitstreamFragment au; union { DTS2PTSH264Context h264; } u; int nb_frame; int gop; int eof; } DTS2PTSContext; // AVTreeNode callbacks static int cmp_insert(const void *key, const void *node) { int ret = ((const DTS2PTSNode *)key)->poc - ((const DTS2PTSNode *)node)->poc; if (!ret) ret = ((const DTS2PTSNode *)key)->gop - ((const DTS2PTSNode *)node)->gop; return ret; } static int cmp_find(const void *key, const void *node) { const DTS2PTSFrame * key1 = key; const DTS2PTSNode *node1 = node; int ret = FFDIFFSIGN(key1->poc, node1->poc); if (!ret) ret = key1->gop - node1->gop; return ret; } static int dec_poc(void *opaque, void *elem) { DTS2PTSNode *node = elem; int dec = *(int *)opaque; node->poc -= dec; return 0; } static int free_node(void *opaque, void *elem) { DTS2PTSNode *node = elem; av_free(node); return 0; } // Shared functions static int alloc_and_insert_node(AVBSFContext *ctx, int64_t ts, int64_t duration, int poc, int poc_diff, int gop) { DTS2PTSContext *s = ctx->priv_data; for (int i = 0; i < poc_diff; i++) { struct AVTreeNode *node = av_tree_node_alloc(); DTS2PTSNode *poc_node, *ret; if (!node) return AVERROR(ENOMEM); poc_node = av_malloc(sizeof(*poc_node)); if (!poc_node) { av_free(node); return AVERROR(ENOMEM); } if (i && ts != AV_NOPTS_VALUE) ts += duration / poc_diff; *poc_node = (DTS2PTSNode) { ts, duration, poc++, gop }; ret = av_tree_insert(&s->root, poc_node, cmp_insert, &node); if (ret && ret != poc_node) { *ret = *poc_node; av_free(poc_node); av_free(node); } } return 0; } // H.264 static const CodedBitstreamUnitType h264_decompose_unit_types[] = { H264_NAL_SPS, H264_NAL_PPS, H264_NAL_IDR_SLICE, H264_NAL_SLICE, }; static int h264_init(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSH264Context *h264 = &s->u.h264; s->cbc->decompose_unit_types = h264_decompose_unit_types; s->cbc->nb_decompose_unit_types = FF_ARRAY_ELEMS(h264_decompose_unit_types); s->nb_frame = -(ctx->par_in->video_delay << 1); h264->last_poc = h264->highest_poc = INT_MIN; return 0; } static int get_mmco_reset(const H264RawSliceHeader *header) { if (header->nal_unit_header.nal_ref_idc == 0 || !header->adaptive_ref_pic_marking_mode_flag) return 0; for (int i = 0; i < H264_MAX_MMCO_COUNT; i++) { if (header->mmco[i].memory_management_control_operation == 0) return 0; else if (header->mmco[i].memory_management_control_operation == 5) return 1; } return 0; } static int h264_queue_frame(AVBSFContext *ctx, AVPacket *pkt, int poc, int *queued) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSH264Context *h264 = &s->u.h264; DTS2PTSFrame frame; int poc_diff, ret; poc_diff = (h264->picture_structure == 3) + 1; if (h264->sps.frame_mbs_only_flag && h264->poc_diff) poc_diff = FFMIN(poc_diff, h264->poc_diff); if (poc < 0) { av_tree_enumerate(s->root, &poc_diff, NULL, dec_poc); s->nb_frame -= poc_diff; } // Check if there was a POC reset (Like an IDR slice) if (s->nb_frame > h264->highest_poc) { s->nb_frame = 0; s->gop = (s->gop + 1) % s->fifo_size; h264->highest_poc = h264->last_poc; } ret = alloc_and_insert_node(ctx, pkt->dts, pkt->duration, s->nb_frame, poc_diff, s->gop); if (ret < 0) return ret; av_log(ctx, AV_LOG_DEBUG, "Queueing frame with POC %d, GOP %d, dts %"PRId64"\n", poc, s->gop, pkt->dts); s->nb_frame += poc_diff; // Add frame to output FIFO only once if (*queued) return 0; frame = (DTS2PTSFrame) { pkt, poc, poc_diff, s->gop }; ret = av_fifo_write(s->fifo, &frame, 1); av_assert2(ret >= 0); *queued = 1; return 0; } static int h264_filter(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSH264Context *h264 = &s->u.h264; CodedBitstreamFragment *au = &s->au; AVPacket *in; int output_picture_number = INT_MIN; int field_poc[2]; int queued = 0, ret; ret = ff_bsf_get_packet(ctx, &in); if (ret < 0) return ret; ret = ff_cbs_read_packet(s->cbc, au, in); if (ret < 0) { av_log(ctx, AV_LOG_WARNING, "Failed to parse access unit.\n"); goto fail; } for (int i = 0; i < au->nb_units; i++) { CodedBitstreamUnit *unit = &au->units[i]; switch (unit->type) { case H264_NAL_IDR_SLICE: h264->poc.prev_frame_num = 0; h264->poc.prev_frame_num_offset = 0; h264->poc.prev_poc_msb = h264->poc.prev_poc_lsb = 0; // fall-through case H264_NAL_SLICE: { const H264RawSlice *slice = unit->content; const H264RawSliceHeader *header = &slice->header; const CodedBitstreamH264Context *cbs_h264 = s->cbc->priv_data; const H264RawSPS *sps = cbs_h264->active_sps; int got_reset; if (!sps) { av_log(ctx, AV_LOG_ERROR, "No active SPS for a slice\n"); goto fail; } // Initialize the SPS struct with the fields ff_h264_init_poc() cares about h264->sps.frame_mbs_only_flag = sps->frame_mbs_only_flag; h264->sps.log2_max_frame_num = sps->log2_max_frame_num_minus4 + 4; h264->sps.poc_type = sps->pic_order_cnt_type; h264->sps.log2_max_poc_lsb = sps->log2_max_pic_order_cnt_lsb_minus4 + 4; h264->sps.offset_for_non_ref_pic = sps->offset_for_non_ref_pic; h264->sps.offset_for_top_to_bottom_field = sps->offset_for_top_to_bottom_field; h264->sps.poc_cycle_length = sps->num_ref_frames_in_pic_order_cnt_cycle; for (int i = 0; i < h264->sps.poc_cycle_length; i++) h264->sps.offset_for_ref_frame[i] = sps->offset_for_ref_frame[i]; h264->picture_structure = sps->frame_mbs_only_flag ? 3 : (header->field_pic_flag ? header->field_pic_flag + header->bottom_field_flag : 3); h264->poc.frame_num = header->frame_num; h264->poc.poc_lsb = header->pic_order_cnt_lsb; h264->poc.delta_poc_bottom = header->delta_pic_order_cnt_bottom; h264->poc.delta_poc[0] = header->delta_pic_order_cnt[0]; h264->poc.delta_poc[1] = header->delta_pic_order_cnt[1]; field_poc[0] = field_poc[1] = INT_MAX; ret = ff_h264_init_poc(field_poc, &output_picture_number, &h264->sps, &h264->poc, h264->picture_structure, header->nal_unit_header.nal_ref_idc); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "ff_h264_init_poc() failure\n"); goto fail; } got_reset = get_mmco_reset(header); h264->poc.prev_frame_num = got_reset ? 0 : h264->poc.frame_num; h264->poc.prev_frame_num_offset = got_reset ? 0 : h264->poc.frame_num_offset; if (header->nal_unit_header.nal_ref_idc != 0) { h264->poc.prev_poc_msb = got_reset ? 0 : h264->poc.poc_msb; if (got_reset) h264->poc.prev_poc_lsb = h264->picture_structure == 2 ? 0 : field_poc[0]; else h264->poc.prev_poc_lsb = h264->poc.poc_lsb; } if (output_picture_number != h264->last_poc) { if (h264->last_poc != INT_MIN) { int64_t diff = FFABS(h264->last_poc - (int64_t)output_picture_number); if ((output_picture_number < 0) && !h264->last_poc) h264->poc_diff = 0; else if (FFABS((int64_t)output_picture_number) < h264->poc_diff) { diff = FFABS(output_picture_number); h264->poc_diff = 0; } if ((!h264->poc_diff || (h264->poc_diff > diff)) && diff <= INT_MAX) { h264->poc_diff = diff; if (h264->poc_diff == 1 && h264->sps.frame_mbs_only_flag) { av_tree_enumerate(s->root, &h264->poc_diff, NULL, dec_poc); s->nb_frame -= 2; } } } h264->last_poc = output_picture_number; h264->highest_poc = FFMAX(h264->highest_poc, output_picture_number); ret = h264_queue_frame(ctx, in, output_picture_number, &queued); if (ret < 0) goto fail; } break; } default: break; } } if (output_picture_number == INT_MIN) { av_log(ctx, AV_LOG_ERROR, "No slices in access unit\n"); ret = AVERROR_INVALIDDATA; goto fail; } ret = 0; fail: ff_cbs_fragment_reset(au); if (!queued) av_packet_free(&in); return ret; } static void h264_flush(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSH264Context *h264 = &s->u.h264; memset(&h264->sps, 0, sizeof(h264->sps)); memset(&h264->poc, 0, sizeof(h264->poc)); s->nb_frame = -(ctx->par_in->video_delay << 1); h264->last_poc = h264->highest_poc = INT_MIN; } // Core functions static const struct { enum AVCodecID id; int (*init)(AVBSFContext *ctx); int (*filter)(AVBSFContext *ctx); void (*flush)(AVBSFContext *ctx); size_t fifo_size; } func_tab[] = { { AV_CODEC_ID_H264, h264_init, h264_filter, h264_flush, H264_MAX_DPB_FRAMES * 2 * 2 }, }; static int dts2pts_init(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; CodedBitstreamFragment *au = &s->au; int i, ret; for (i = 0; i < FF_ARRAY_ELEMS(func_tab); i++) { if (func_tab[i].id == ctx->par_in->codec_id) { s->init = func_tab[i].init; s->filter = func_tab[i].filter; s->flush = func_tab[i].flush; s->fifo_size = func_tab[i].fifo_size; break; } } if (i == FF_ARRAY_ELEMS(func_tab)) return AVERROR_BUG; av_assert0(s->filter && s->fifo_size); s->fifo = av_fifo_alloc2(s->fifo_size, sizeof(DTS2PTSFrame), 0); if (!s->fifo) return AVERROR(ENOMEM); ret = ff_cbs_init(&s->cbc, ctx->par_in->codec_id, ctx); if (ret < 0) return ret; if (s->init) { ret = s->init(ctx); if (ret < 0) return ret; } if (!ctx->par_in->extradata_size) return 0; ret = ff_cbs_read_extradata(s->cbc, au, ctx->par_in); if (ret < 0) av_log(ctx, AV_LOG_WARNING, "Failed to parse extradata.\n"); ff_cbs_fragment_reset(au); return 0; } static int dts2pts_filter(AVBSFContext *ctx, AVPacket *out) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSNode *poc_node = NULL, *next[2] = { NULL, NULL }; DTS2PTSFrame frame; int ret; // Fill up the FIFO and POC tree while (!s->eof && av_fifo_can_write(s->fifo)) { ret = s->filter(ctx); if (ret < 0) { if (ret != AVERROR_EOF) return ret; s->eof = 1; } } if (!av_fifo_can_read(s->fifo)) return AVERROR_EOF; // Fetch a packet from the FIFO ret = av_fifo_read(s->fifo, &frame, 1); av_assert2(ret >= 0); av_packet_move_ref(out, frame.pkt); av_packet_free(&frame.pkt); // Search the timestamp for the requested POC and set PTS poc_node = av_tree_find(s->root, &frame, cmp_find, (void **)next); if (!poc_node) { poc_node = next[1]; if (!poc_node || poc_node->poc != frame.poc) poc_node = next[0]; } if (poc_node && poc_node->poc == frame.poc) { out->pts = poc_node->dts; if (!s->eof) { // Remove the found entry from the tree DTS2PTSFrame dup = (DTS2PTSFrame) { NULL, frame.poc + 1, frame.poc_diff, frame.gop }; for (; dup.poc_diff > 0; dup.poc++, dup.poc_diff--) { struct AVTreeNode *node = NULL; if (!poc_node || poc_node->dts != out->pts) continue; av_tree_insert(&s->root, poc_node, cmp_insert, &node); av_free(poc_node); av_free(node); poc_node = av_tree_find(s->root, &dup, cmp_find, NULL); } } } else if (s->eof && frame.poc > INT_MIN) { DTS2PTSFrame dup = (DTS2PTSFrame) { NULL, frame.poc - 1, frame.poc_diff, frame.gop }; poc_node = av_tree_find(s->root, &dup, cmp_find, NULL); if (poc_node && poc_node->poc == dup.poc) { out->pts = poc_node->dts; if (out->pts != AV_NOPTS_VALUE) out->pts += poc_node->duration; ret = alloc_and_insert_node(ctx, out->pts, out->duration, frame.poc, frame.poc_diff, frame.gop); if (ret < 0) { av_packet_unref(out); return ret; } if (!ret) av_log(ctx, AV_LOG_DEBUG, "Queueing frame for POC %d, GOP %d, dts %"PRId64", " "generated from POC %d, GOP %d, dts %"PRId64", duration %"PRId64"\n", frame.poc, frame.gop, out->pts, poc_node->poc, poc_node->gop, poc_node->dts, poc_node->duration); } else av_log(ctx, AV_LOG_WARNING, "No timestamp for POC %d in tree\n", frame.poc); } else av_log(ctx, AV_LOG_WARNING, "No timestamp for POC %d in tree\n", frame.poc); av_log(ctx, AV_LOG_DEBUG, "Returning frame for POC %d, GOP %d, dts %"PRId64", pts %"PRId64"\n", frame.poc, frame.gop, out->dts, out->pts); return 0; } static void dts2pts_flush(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; DTS2PTSFrame frame; if (s->flush) s->flush(ctx); s->eof = 0; s->gop = 0; while (s->fifo && av_fifo_read(s->fifo, &frame, 1) >= 0) av_packet_free(&frame.pkt); av_tree_enumerate(s->root, NULL, NULL, free_node); av_tree_destroy(s->root); s->root = NULL; ff_cbs_fragment_reset(&s->au); if (s->cbc) ff_cbs_flush(s->cbc); } static void dts2pts_close(AVBSFContext *ctx) { DTS2PTSContext *s = ctx->priv_data; dts2pts_flush(ctx); av_fifo_freep2(&s->fifo); ff_cbs_fragment_free(&s->au); ff_cbs_close(&s->cbc); } static const enum AVCodecID dts2pts_codec_ids[] = { AV_CODEC_ID_H264, AV_CODEC_ID_NONE, }; const FFBitStreamFilter ff_dts2pts_bsf = { .p.name = "dts2pts", .p.codec_ids = dts2pts_codec_ids, .priv_data_size = sizeof(DTS2PTSContext), .init = dts2pts_init, .flush = dts2pts_flush, .close = dts2pts_close, .filter = dts2pts_filter, };