/* * huffyuv decoder * * Copyright (c) 2002-2014 Michael Niedermayer * * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of * the algorithm used * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA */ /** * @file * huffyuv decoder */ #include "avcodec.h" #include "get_bits.h" #include "huffyuv.h" #include "huffyuvdsp.h" #include "thread.h" #include "libavutil/pixdesc.h" #define classic_shift_luma_table_size 42 static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = { 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8, 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70, 69,68, 0, 0,0,0,0,0,0,0,0, }; #define classic_shift_chroma_table_size 59 static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = { 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183, 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119, 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0, 0,0,0,0,0,0,0,0, }; static const unsigned char classic_add_luma[256] = { 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37, 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36, 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36, 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39, 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37, 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29, 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16, 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14, 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6, 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15, 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25, 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49, 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60, 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52, 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43, 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8, }; static const unsigned char classic_add_chroma[256] = { 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9, 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7, 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77, 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63, 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22, 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111, 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1, 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134, 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96, 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41, 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36, 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26, 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13, 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8, 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2, }; static int read_len_table(uint8_t *dst, GetBitContext *gb, int n) { int i, val, repeat; for (i = 0; i < n;) { repeat = get_bits(gb, 3); val = get_bits(gb, 5); if (repeat == 0) repeat = get_bits(gb, 8); if (i + repeat > n || get_bits_left(gb) < 0) { av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n"); return -1; } while (repeat--) dst[i++] = val; } return 0; } static int generate_joint_tables(HYuvContext *s) { uint16_t symbols[1 << VLC_BITS]; uint16_t bits[1 << VLC_BITS]; uint8_t len[1 << VLC_BITS]; int ret; if (s->bitstream_bpp < 24 || s->version > 2) { int p, i, y, u; for (p = 0; p < 4; p++) { int p0 = s->version > 2 ? p : 0; for (i = y = 0; y < s->vlc_n; y++) { int len0 = s->len[p0][y]; int limit = VLC_BITS - len0; if(limit <= 0 || !len0) continue; if((sign_extend(y, 8) & (s->vlc_n-1)) != y) continue; for (u = 0; u < s->vlc_n; u++) { int len1 = s->len[p][u]; if (len1 > limit || !len1) continue; if((sign_extend(u, 8) & (s->vlc_n-1)) != u) continue; av_assert0(i < (1 << VLC_BITS)); len[i] = len0 + len1; bits[i] = (s->bits[p0][y] << len1) + s->bits[p][u]; symbols[i] = (y << 8) + (u & 0xFF); i++; } } ff_free_vlc(&s->vlc[4 + p]); if ((ret = ff_init_vlc_sparse(&s->vlc[4 + p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0)) < 0) return ret; } } else { uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map; int i, b, g, r, code; int p0 = s->decorrelate; int p1 = !s->decorrelate; // restrict the range to +/-16 because that's pretty much guaranteed to // cover all the combinations that fit in 11 bits total, and it doesn't // matter if we miss a few rare codes. for (i = 0, g = -16; g < 16; g++) { int len0 = s->len[p0][g & 255]; int limit0 = VLC_BITS - len0; if (limit0 < 2 || !len0) continue; for (b = -16; b < 16; b++) { int len1 = s->len[p1][b & 255]; int limit1 = limit0 - len1; if (limit1 < 1 || !len1) continue; code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255]; for (r = -16; r < 16; r++) { int len2 = s->len[2][r & 255]; if (len2 > limit1 || !len2) continue; av_assert0(i < (1 << VLC_BITS)); len[i] = len0 + len1 + len2; bits[i] = (code << len2) + s->bits[2][r & 255]; if (s->decorrelate) { map[i][G] = g; map[i][B] = g + b; map[i][R] = g + r; } else { map[i][B] = g; map[i][G] = b; map[i][R] = r; } i++; } } } ff_free_vlc(&s->vlc[4]); if ((ret = init_vlc(&s->vlc[4], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0)) < 0) return ret; } return 0; } static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length) { GetBitContext gb; int i; int ret; int count = 3; init_get_bits(&gb, src, length * 8); if (s->version > 2) count = 1 + s->alpha + 2*s->chroma; for (i = 0; i < count; i++) { if (read_len_table(s->len[i], &gb, s->vlc_n) < 0) return -1; if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) { return -1; } ff_free_vlc(&s->vlc[i]); if ((ret = init_vlc(&s->vlc[i], VLC_BITS, s->vlc_n, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0) return ret; } if ((ret = generate_joint_tables(s)) < 0) return ret; return (get_bits_count(&gb) + 7) / 8; } static int read_old_huffman_tables(HYuvContext *s) { GetBitContext gb; int i; int ret; init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size * 8); if (read_len_table(s->len[0], &gb, 256) < 0) return -1; init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size * 8); if (read_len_table(s->len[1], &gb, 256) < 0) return -1; for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i]; for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i]; if (s->bitstream_bpp >= 24) { memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t)); memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t)); } memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t)); memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t)); for (i = 0; i < 4; i++) { ff_free_vlc(&s->vlc[i]); if ((ret = init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0) return ret; } if ((ret = generate_joint_tables(s)) < 0) return ret; return 0; } static av_cold int decode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; ff_huffyuvdsp_init(&s->hdsp); memset(s->vlc, 0, 4 * sizeof(VLC)); s->interlaced = avctx->height > 288; s->bgr32 = 1; if (avctx->extradata_size) { if ((avctx->bits_per_coded_sample & 7) && avctx->bits_per_coded_sample != 12) s->version = 1; // do such files exist at all? else if (avctx->extradata_size > 3 && avctx->extradata[3] == 0) s->version = 2; else s->version = 3; } else s->version = 0; s->bps = 8; s->n = 1<bps; s->vlc_n = FFMIN(s->n, MAX_VLC_N); s->chroma = 1; if (s->version >= 2) { int method, interlace; if (avctx->extradata_size < 4) return -1; method = ((uint8_t*)avctx->extradata)[0]; s->decorrelate = method & 64 ? 1 : 0; s->predictor = method & 63; if (s->version == 2) { s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1]; if (s->bitstream_bpp == 0) s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; } else { s->bps = (avctx->extradata[1] >> 4) + 1; s->n = 1<bps; s->vlc_n = FFMIN(s->n, MAX_VLC_N); s->chroma_h_shift = avctx->extradata[1] & 3; s->chroma_v_shift = (avctx->extradata[1] >> 2) & 3; s->yuv = !!(((uint8_t*)avctx->extradata)[2] & 1); s->chroma= !!(((uint8_t*)avctx->extradata)[2] & 3); s->alpha = !!(((uint8_t*)avctx->extradata)[2] & 4); } interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4; s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced; s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0; if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4, avctx->extradata_size - 4) < 0) return AVERROR_INVALIDDATA; }else{ switch (avctx->bits_per_coded_sample & 7) { case 1: s->predictor = LEFT; s->decorrelate = 0; break; case 2: s->predictor = LEFT; s->decorrelate = 1; break; case 3: s->predictor = PLANE; s->decorrelate = avctx->bits_per_coded_sample >= 24; break; case 4: s->predictor = MEDIAN; s->decorrelate = 0; break; default: s->predictor = LEFT; //OLD s->decorrelate = 0; break; } s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; s->context = 0; if (read_old_huffman_tables(s) < 0) return AVERROR_INVALIDDATA; } if (s->version <= 2) { switch (s->bitstream_bpp) { case 12: avctx->pix_fmt = AV_PIX_FMT_YUV420P; s->yuv = 1; break; case 16: if (s->yuy2) { avctx->pix_fmt = AV_PIX_FMT_YUYV422; } else { avctx->pix_fmt = AV_PIX_FMT_YUV422P; } s->yuv = 1; break; case 24: if (s->bgr32) { avctx->pix_fmt = AV_PIX_FMT_0RGB32; } else { avctx->pix_fmt = AV_PIX_FMT_BGR24; } break; case 32: av_assert0(s->bgr32); avctx->pix_fmt = AV_PIX_FMT_RGB32; s->alpha = 1; break; default: return AVERROR_INVALIDDATA; } av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); } else { switch ( (s->chroma<<10) | (s->yuv<<9) | (s->alpha<<8) | ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2)) { case 0x070: avctx->pix_fmt = AV_PIX_FMT_GRAY8; break; case 0x0F0: avctx->pix_fmt = AV_PIX_FMT_GRAY16; break; case 0x170: avctx->pix_fmt = AV_PIX_FMT_GRAY8A; break; case 0x470: avctx->pix_fmt = AV_PIX_FMT_GBRP; break; case 0x480: avctx->pix_fmt = AV_PIX_FMT_GBRP9; break; case 0x490: avctx->pix_fmt = AV_PIX_FMT_GBRP10; break; case 0x4B0: avctx->pix_fmt = AV_PIX_FMT_GBRP12; break; case 0x4D0: avctx->pix_fmt = AV_PIX_FMT_GBRP14; break; case 0x4F0: avctx->pix_fmt = AV_PIX_FMT_GBRP16; break; case 0x570: avctx->pix_fmt = AV_PIX_FMT_GBRAP; break; case 0x670: avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case 0x680: avctx->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 0x690: avctx->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 0x6B0: avctx->pix_fmt = AV_PIX_FMT_YUV444P12; break; case 0x6D0: avctx->pix_fmt = AV_PIX_FMT_YUV444P14; break; case 0x6F0: avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break; case 0x671: avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case 0x681: avctx->pix_fmt = AV_PIX_FMT_YUV422P9; break; case 0x691: avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break; case 0x6B1: avctx->pix_fmt = AV_PIX_FMT_YUV422P12; break; case 0x6D1: avctx->pix_fmt = AV_PIX_FMT_YUV422P14; break; case 0x6F1: avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break; case 0x672: avctx->pix_fmt = AV_PIX_FMT_YUV411P; break; case 0x674: avctx->pix_fmt = AV_PIX_FMT_YUV440P; break; case 0x675: avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 0x685: avctx->pix_fmt = AV_PIX_FMT_YUV420P9; break; case 0x695: avctx->pix_fmt = AV_PIX_FMT_YUV420P10; break; case 0x6B5: avctx->pix_fmt = AV_PIX_FMT_YUV420P12; break; case 0x6D5: avctx->pix_fmt = AV_PIX_FMT_YUV420P14; break; case 0x6F5: avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break; case 0x67A: avctx->pix_fmt = AV_PIX_FMT_YUV410P; break; case 0x770: avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; case 0x780: avctx->pix_fmt = AV_PIX_FMT_YUVA444P9; break; case 0x790: avctx->pix_fmt = AV_PIX_FMT_YUVA444P10; break; case 0x7F0: avctx->pix_fmt = AV_PIX_FMT_YUVA444P16; break; case 0x771: avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case 0x781: avctx->pix_fmt = AV_PIX_FMT_YUVA422P9; break; case 0x791: avctx->pix_fmt = AV_PIX_FMT_YUVA422P10; break; case 0x7F1: avctx->pix_fmt = AV_PIX_FMT_YUVA422P16; break; case 0x775: avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break; case 0x785: avctx->pix_fmt = AV_PIX_FMT_YUVA420P9; break; case 0x795: avctx->pix_fmt = AV_PIX_FMT_YUVA420P10; break; case 0x7F5: avctx->pix_fmt = AV_PIX_FMT_YUVA420P16; break; default: return AVERROR_INVALIDDATA; } } ff_huffyuv_common_init(avctx); if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) && avctx->width & 1) { av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n"); return AVERROR_INVALIDDATA; } if (s->predictor == MEDIAN && avctx->pix_fmt == AV_PIX_FMT_YUV422P && avctx->width%4) { av_log(avctx, AV_LOG_ERROR, "width must be a multiple of 4 this colorspace and predictor\n"); return AVERROR_INVALIDDATA; } if (ff_huffyuv_alloc_temp(s)) { ff_huffyuv_common_end(s); return AVERROR(ENOMEM); } return 0; } static av_cold int decode_init_thread_copy(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; if (ff_huffyuv_alloc_temp(s)) { ff_huffyuv_common_end(s); return AVERROR(ENOMEM); } for (i = 0; i < 8; i++) s->vlc[i].table = NULL; if (s->version >= 2) { if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4, avctx->extradata_size) < 0) return AVERROR_INVALIDDATA; } else { if (read_old_huffman_tables(s) < 0) return AVERROR_INVALIDDATA; } return 0; } /** Subset of GET_VLC for use in hand-roller VLC code */ #define VLC_INTERN(dst, table, gb, name, bits, max_depth) \ code = table[index][0]; \ n = table[index][1]; \ if (max_depth > 1 && n < 0) { \ LAST_SKIP_BITS(name, gb, bits); \ UPDATE_CACHE(name, gb); \ \ nb_bits = -n; \ index = SHOW_UBITS(name, gb, nb_bits) + code; \ code = table[index][0]; \ n = table[index][1]; \ if (max_depth > 2 && n < 0) { \ LAST_SKIP_BITS(name, gb, nb_bits); \ UPDATE_CACHE(name, gb); \ \ nb_bits = -n; \ index = SHOW_UBITS(name, gb, nb_bits) + code; \ code = table[index][0]; \ n = table[index][1]; \ } \ } \ dst = code; \ LAST_SKIP_BITS(name, gb, n) #define GET_VLC_DUAL(dst0, dst1, name, gb, dtable, table1, table2, \ bits, max_depth, OP) \ do { \ unsigned int index = SHOW_UBITS(name, gb, bits); \ int code, n = dtable[index][1]; \ \ if (n<=0) { \ int nb_bits; \ VLC_INTERN(dst0, table1, gb, name, bits, max_depth); \ \ UPDATE_CACHE(re, gb); \ index = SHOW_UBITS(name, gb, bits); \ VLC_INTERN(dst1, table2, gb, name, bits, max_depth); \ } else { \ code = dtable[index][0]; \ OP(dst0, dst1, code); \ LAST_SKIP_BITS(name, gb, n); \ } \ } while (0) #define OP8bits(dst0, dst1, code) dst0 = code>>8; dst1 = code #define READ_2PIX(dst0, dst1, plane1)\ UPDATE_CACHE(re, &s->gb); \ GET_VLC_DUAL(dst0, dst1, re, &s->gb, s->vlc[4+plane1].table, \ s->vlc[0].table, s->vlc[plane1].table, VLC_BITS, 3, OP8bits) static void decode_422_bitstream(HYuvContext *s, int count) { int i; OPEN_READER(re, &s->gb); count /= 2; if (count >= (get_bits_left(&s->gb)) / (32 * 4)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } for (; i < count; i++) s->temp[0][2 * i ] = s->temp[1][i] = s->temp[0][2 * i + 1] = s->temp[2][i] = 128; } else { for (i = 0; i < count; i++) { READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } } CLOSE_READER(re, &s->gb); } #define READ_2PIX_PLANE(dst0, dst1, plane, OP) \ UPDATE_CACHE(re, &s->gb); \ GET_VLC_DUAL(dst0, dst1, re, &s->gb, s->vlc[4+plane].table, \ s->vlc[plane].table, s->vlc[plane].table, VLC_BITS, 3, OP) #define OP14bits(dst0, dst1, code) dst0 = code>>8; dst1 = sign_extend(code, 8) /* TODO instead of restarting the read when the code isn't in the first level * of the joint table, jump into the 2nd level of the individual table. */ #define READ_2PIX_PLANE16(dst0, dst1, plane){\ dst0 = get_vlc2(&s->gb, s->vlc[plane].table, VLC_BITS, 3)<<2;\ dst0 += get_bits(&s->gb, 2);\ dst1 = get_vlc2(&s->gb, s->vlc[plane].table, VLC_BITS, 3)<<2;\ dst1 += get_bits(&s->gb, 2);\ } static void decode_plane_bitstream(HYuvContext *s, int count, int plane) { int i; count/=2; if (s->bps <= 8) { OPEN_READER(re, &s->gb); if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX_PLANE(s->temp[0][2 * i], s->temp[0][2 * i + 1], plane, OP8bits); } } else { for(i=0; itemp[0][2 * i], s->temp[0][2 * i + 1], plane, OP8bits); } } CLOSE_READER(re, &s->gb); } else if (s->bps <= 14) { OPEN_READER(re, &s->gb); if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX_PLANE(s->temp16[0][2 * i], s->temp16[0][2 * i + 1], plane, OP14bits); } } else { for(i=0; itemp16[0][2 * i], s->temp16[0][2 * i + 1], plane, OP14bits); } } CLOSE_READER(re, &s->gb); } else { if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX_PLANE16(s->temp16[0][2 * i], s->temp16[0][2 * i + 1], plane); } } else { for(i=0; itemp16[0][2 * i], s->temp16[0][2 * i + 1], plane); } } } } static void decode_gray_bitstream(HYuvContext *s, int count) { int i; OPEN_READER(re, &s->gb); count/=2; if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0); } } else { for(i=0; itemp[0][2 * i], s->temp[0][2 * i + 1], 0); } } CLOSE_READER(re, &s->gb); } static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha) { int i; OPEN_READER(re, &s->gb); for (i = 0; i < count; i++) { unsigned int index; int code, n; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); n = s->vlc[4].table[index][1]; if (n>0) { code = s->vlc[4].table[index][0]; *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code]; LAST_SKIP_BITS(re, &s->gb, n); } else { int nb_bits; if(decorrelate) { VLC_INTERN(s->temp[0][4 * i + G], s->vlc[1].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(code, s->vlc[0].table, &s->gb, re, VLC_BITS, 3); s->temp[0][4 * i + B] = code + s->temp[0][4 * i + G]; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(code, s->vlc[2].table, &s->gb, re, VLC_BITS, 3); s->temp[0][4 * i + R] = code + s->temp[0][4 * i + G]; } else { VLC_INTERN(s->temp[0][4 * i + B], s->vlc[0].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + G], s->vlc[1].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + R], s->vlc[2].table, &s->gb, re, VLC_BITS, 3); } if (alpha) { UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + A], s->vlc[2].table, &s->gb, re, VLC_BITS, 3); } } } CLOSE_READER(re, &s->gb); } static void decode_bgr_bitstream(HYuvContext *s, int count) { if (s->decorrelate) { if (s->bitstream_bpp==24) decode_bgr_1(s, count, 1, 0); else decode_bgr_1(s, count, 1, 1); } else { if (s->bitstream_bpp==24) decode_bgr_1(s, count, 0, 0); else decode_bgr_1(s, count, 0, 1); } } static void draw_slice(HYuvContext *s, AVFrame *frame, int y) { int h, cy, i; int offset[AV_NUM_DATA_POINTERS]; if (s->avctx->draw_horiz_band==NULL) return; h = y - s->last_slice_end; y -= h; if (s->bitstream_bpp == 12) { cy = y>>1; } else { cy = y; } offset[0] = frame->linesize[0] * y; offset[1] = frame->linesize[1] * cy; offset[2] = frame->linesize[2] * cy; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); s->avctx->draw_horiz_band(s->avctx, frame, offset, y, 3, h); s->last_slice_end = y + h; } static int left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int acc) { if (s->bps <= 8) { return s->hdsp.add_hfyu_left_pred(dst, src, w, acc); } else { return s->llviddsp.add_hfyu_left_pred_int16(( uint16_t *)dst, (const uint16_t *)src, s->n-1, w, acc); } } static void add_bytes(HYuvContext *s, uint8_t *dst, uint8_t *src, int w) { if (s->bps <= 8) { s->hdsp.add_bytes(dst, src, w); } else { s->llviddsp.add_int16((uint16_t*)dst, (const uint16_t*)src, s->n - 1, w); } } static void add_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, const uint8_t *diff, int w, int *left, int *left_top) { if (s->bps <= 8) { s->hdsp.add_hfyu_median_pred(dst, src, diff, w, left, left_top); } else { s->llviddsp.add_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src, (const uint16_t *)diff, s->n-1, w, left, left_top); } } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; HYuvContext *s = avctx->priv_data; const int width = s->width; const int width2 = s->width>>1; const int height = s->height; int fake_ystride, fake_ustride, fake_vstride; ThreadFrame frame = { .f = data }; AVFrame * const p = data; int table_size = 0, ret; av_fast_padded_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size); if (!s->bitstream_buffer) return AVERROR(ENOMEM); s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size / 4); if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (s->context) { table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size); if (table_size < 0) return AVERROR_INVALIDDATA; } if ((unsigned)(buf_size-table_size) >= INT_MAX / 8) return AVERROR_INVALIDDATA; init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size) * 8); fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0]; fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1]; fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2]; s->last_slice_end = 0; if (s->version > 2) { int plane; for(plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) { int left, lefttop, y; int w = width; int h = height; int fake_stride = fake_ystride; if (s->chroma && (plane == 1 || plane == 2)) { w >>= s->chroma_h_shift; h >>= s->chroma_v_shift; fake_stride = plane == 1 ? fake_ustride : fake_vstride; } switch (s->predictor) { case LEFT: case PLANE: decode_plane_bitstream(s, w, plane); left = left_prediction(s, p->data[plane], s->temp[0], w, 0); for (y = 1; y < h; y++) { uint8_t *dst = p->data[plane] + p->linesize[plane]*y; decode_plane_bitstream(s, w, plane); left = left_prediction(s, dst, s->temp[0], w, left); if (s->predictor == PLANE) { if (y > s->interlaced) { add_bytes(s, dst, dst - fake_stride, w); } } } break; case MEDIAN: decode_plane_bitstream(s, w, plane); left= left_prediction(s, p->data[plane], s->temp[0], w, 0); y = 1; /* second line is left predicted for interlaced case */ if (s->interlaced) { decode_plane_bitstream(s, w, plane); left = left_prediction(s, p->data[plane] + p->linesize[plane], s->temp[0], w, left); y++; } lefttop = p->data[plane][0]; decode_plane_bitstream(s, w, plane); add_median_prediction(s, p->data[plane] + fake_stride, p->data[plane], s->temp[0], w, &left, &lefttop); y++; for (; ydata[plane] + p->linesize[plane] * y; add_median_prediction(s, dst, dst - fake_stride, s->temp[0], w, &left, &lefttop); } break; } } draw_slice(s, p, height); } else if (s->bitstream_bpp < 24) { int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if (s->yuy2) { p->data[0][3] = get_bits(&s->gb, 8); p->data[0][2] = get_bits(&s->gb, 8); p->data[0][1] = get_bits(&s->gb, 8); p->data[0][0] = get_bits(&s->gb, 8); av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n"); return AVERROR_PATCHWELCOME; } else { leftv = p->data[2][0] = get_bits(&s->gb, 8); lefty = p->data[0][1] = get_bits(&s->gb, 8); leftu = p->data[1][0] = get_bits(&s->gb, 8); p->data[0][0] = get_bits(&s->gb, 8); switch (s->predictor) { case LEFT: case PLANE: decode_422_bitstream(s, width-2); lefty = s->hdsp.add_hfyu_left_pred(p->data[0] + 2, s->temp[0], width - 2, lefty); if (!(s->flags&CODEC_FLAG_GRAY)) { leftu = s->hdsp.add_hfyu_left_pred(p->data[1] + 1, s->temp[1], width2 - 1, leftu); leftv = s->hdsp.add_hfyu_left_pred(p->data[2] + 1, s->temp[2], width2 - 1, leftv); } for (cy = y = 1; y < s->height; y++, cy++) { uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; lefty = s->hdsp.add_hfyu_left_pred(ydst, s->temp[0], width, lefty); if (s->predictor == PLANE) { if (y > s->interlaced) s->hdsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if (y >= s->height) break; } draw_slice(s, p, y); ydst = p->data[0] + p->linesize[0]*y; udst = p->data[1] + p->linesize[1]*cy; vdst = p->data[2] + p->linesize[2]*cy; decode_422_bitstream(s, width); lefty = s->hdsp.add_hfyu_left_pred(ydst, s->temp[0], width, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu = s->hdsp.add_hfyu_left_pred(udst, s->temp[1], width2, leftu); leftv = s->hdsp.add_hfyu_left_pred(vdst, s->temp[2], width2, leftv); } if (s->predictor == PLANE) { if (cy > s->interlaced) { s->hdsp.add_bytes(ydst, ydst - fake_ystride, width); if (!(s->flags & CODEC_FLAG_GRAY)) { s->hdsp.add_bytes(udst, udst - fake_ustride, width2); s->hdsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, p, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width - 2); lefty = s->hdsp.add_hfyu_left_pred(p->data[0] + 2, s->temp[0], width - 2, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu = s->hdsp.add_hfyu_left_pred(p->data[1] + 1, s->temp[1], width2 - 1, leftu); leftv = s->hdsp.add_hfyu_left_pred(p->data[2] + 1, s->temp[2], width2 - 1, leftv); } cy = y = 1; /* second line is left predicted for interlaced case */ if (s->interlaced) { decode_422_bitstream(s, width); lefty = s->hdsp.add_hfyu_left_pred(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu = s->hdsp.add_hfyu_left_pred(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv = s->hdsp.add_hfyu_left_pred(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty = s->hdsp.add_hfyu_left_pred(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if (!(s->flags&CODEC_FLAG_GRAY)) { leftu = s->hdsp.add_hfyu_left_pred(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv = s->hdsp.add_hfyu_left_pred(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy = p->data[0][3]; decode_422_bitstream(s, width - 4); s->hdsp.add_hfyu_median_pred(p->data[0] + fake_ystride + 4, p->data[0] + 4, s->temp[0], width - 4, &lefty, &lefttopy); if (!(s->flags&CODEC_FLAG_GRAY)) { lefttopu = p->data[1][1]; lefttopv = p->data[2][1]; s->hdsp.add_hfyu_median_pred(p->data[1] + fake_ustride + 2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu); s->hdsp.add_hfyu_median_pred(p->data[2] + fake_vstride + 2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv); } y++; cy++; for (; ybitstream_bpp == 12) { while (2 * cy > y) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; s->hdsp.add_hfyu_median_pred(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if (y >= height) break; } draw_slice(s, p, y); decode_422_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; s->hdsp.add_hfyu_median_pred(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if (!(s->flags & CODEC_FLAG_GRAY)) { s->hdsp.add_hfyu_median_pred(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); s->hdsp.add_hfyu_median_pred(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, p, height); break; } } } else { int y; uint8_t left[4]; const int last_line = (height - 1) * p->linesize[0]; if (s->bitstream_bpp == 32) { left[A] = p->data[0][last_line+A] = get_bits(&s->gb, 8); left[R] = p->data[0][last_line+R] = get_bits(&s->gb, 8); left[G] = p->data[0][last_line+G] = get_bits(&s->gb, 8); left[B] = p->data[0][last_line+B] = get_bits(&s->gb, 8); } else { left[R] = p->data[0][last_line+R] = get_bits(&s->gb, 8); left[G] = p->data[0][last_line+G] = get_bits(&s->gb, 8); left[B] = p->data[0][last_line+B] = get_bits(&s->gb, 8); left[A] = p->data[0][last_line+A] = 255; skip_bits(&s->gb, 8); } if (s->bgr32) { switch (s->predictor) { case LEFT: case PLANE: decode_bgr_bitstream(s, width - 1); s->hdsp.add_hfyu_left_pred_bgr32(p->data[0] + last_line + 4, s->temp[0], width - 1, left); for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down. decode_bgr_bitstream(s, width); s->hdsp.add_hfyu_left_pred_bgr32(p->data[0] + p->linesize[0] * y, s->temp[0], width, left); if (s->predictor == PLANE) { if (s->bitstream_bpp != 32) left[A] = 0; if ((y & s->interlaced) == 0 && y < s->height - 1 - s->interlaced) { s->hdsp.add_bytes(p->data[0] + p->linesize[0] * y, p->data[0] + p->linesize[0] * y + fake_ystride, fake_ystride); } } } // just 1 large slice as this is not possible in reverse order draw_slice(s, p, height); break; default: av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n"); } }else{ av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n"); return AVERROR_PATCHWELCOME; } } emms_c(); *got_frame = 1; return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size; } static av_cold int decode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; ff_huffyuv_common_end(s); av_freep(&s->bitstream_buffer); for (i = 0; i < 8; i++) { ff_free_vlc(&s->vlc[i]); } return 0; } AVCodec ff_huffyuv_decoder = { .name = "huffyuv", .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), }; #if CONFIG_FFVHUFF_DECODER AVCodec ff_ffvhuff_decoder = { .name = "ffvhuff", .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), }; #endif