/* * Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved * Author of de-interlace algorithm: Jim Easterbrook for BBC R&D * Based on the process described by Martin Weston for BBC R&D * Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "w3fdif.h" typedef struct W3FDIFContext { const AVClass *class; int filter; ///< 0 is simple, 1 is more complex int mode; ///< 0 is frame, 1 is field int parity; ///< frame field parity int deint; ///< which frames to deinterlace int linesize[4]; ///< bytes of pixel data per line for each plane int planeheight[4]; ///< height of each plane int field; ///< which field are we on, 0 or 1 int eof; int nb_planes; AVFrame *prev, *cur, *next; ///< previous, current, next frames int32_t **work_line; ///< lines we are calculating int nb_threads; int max; W3FDIFDSPContext dsp; } W3FDIFContext; #define OFFSET(x) offsetof(W3FDIFContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit } static const AVOption w3fdif_options[] = { { "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" }, CONST("simple", NULL, 0, "filter"), CONST("complex", NULL, 1, "filter"), { "mode", "specify the interlacing mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "mode"}, CONST("frame", "send one frame for each frame", 0, "mode"), CONST("field", "send one frame for each field", 1, "mode"), { "parity", "specify the assumed picture field parity", OFFSET(parity), AV_OPT_TYPE_INT, {.i64=-1}, -1, 1, FLAGS, "parity" }, CONST("tff", "assume top field first", 0, "parity"), CONST("bff", "assume bottom field first", 1, "parity"), CONST("auto", "auto detect parity", -1, "parity"), { "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" }, CONST("all", "deinterlace all frames", 0, "deint"), CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"), { NULL } }; AVFILTER_DEFINE_CLASS(w3fdif); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static void filter_simple_low(int32_t *work_line, uint8_t *in_lines_cur[2], const int16_t *coef, int linesize) { int i; for (i = 0; i < linesize; i++) { *work_line = *in_lines_cur[0]++ * coef[0]; *work_line++ += *in_lines_cur[1]++ * coef[1]; } } static void filter_complex_low(int32_t *work_line, uint8_t *in_lines_cur[4], const int16_t *coef, int linesize) { int i; for (i = 0; i < linesize; i++) { *work_line = *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line++ += *in_lines_cur[3]++ * coef[3]; } } static void filter_simple_high(int32_t *work_line, uint8_t *in_lines_cur[3], uint8_t *in_lines_adj[3], const int16_t *coef, int linesize) { int i; for (i = 0; i < linesize; i++) { *work_line += *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_adj[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_adj[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line++ += *in_lines_adj[2]++ * coef[2]; } } static void filter_complex_high(int32_t *work_line, uint8_t *in_lines_cur[5], uint8_t *in_lines_adj[5], const int16_t *coef, int linesize) { int i; for (i = 0; i < linesize; i++) { *work_line += *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_adj[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_adj[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line += *in_lines_adj[2]++ * coef[2]; *work_line += *in_lines_cur[3]++ * coef[3]; *work_line += *in_lines_adj[3]++ * coef[3]; *work_line += *in_lines_cur[4]++ * coef[4]; *work_line++ += *in_lines_adj[4]++ * coef[4]; } } static void filter_scale(uint8_t *out_pixel, const int32_t *work_pixel, int linesize, int max) { int j; for (j = 0; j < linesize; j++, out_pixel++, work_pixel++) *out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 128) >> 15; } static void filter16_simple_low(int32_t *work_line, uint8_t *in_lines_cur8[2], const int16_t *coef, int linesize) { uint16_t *in_lines_cur[2] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1] }; int i; linesize /= 2; for (i = 0; i < linesize; i++) { *work_line = *in_lines_cur[0]++ * coef[0]; *work_line++ += *in_lines_cur[1]++ * coef[1]; } } static void filter16_complex_low(int32_t *work_line, uint8_t *in_lines_cur8[4], const int16_t *coef, int linesize) { uint16_t *in_lines_cur[4] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1], (uint16_t *)in_lines_cur8[2], (uint16_t *)in_lines_cur8[3] }; int i; linesize /= 2; for (i = 0; i < linesize; i++) { *work_line = *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line++ += *in_lines_cur[3]++ * coef[3]; } } static void filter16_simple_high(int32_t *work_line, uint8_t *in_lines_cur8[3], uint8_t *in_lines_adj8[3], const int16_t *coef, int linesize) { uint16_t *in_lines_cur[3] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1], (uint16_t *)in_lines_cur8[2] }; uint16_t *in_lines_adj[3] = { (uint16_t *)in_lines_adj8[0], (uint16_t *)in_lines_adj8[1], (uint16_t *)in_lines_adj8[2] }; int i; linesize /= 2; for (i = 0; i < linesize; i++) { *work_line += *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_adj[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_adj[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line++ += *in_lines_adj[2]++ * coef[2]; } } static void filter16_complex_high(int32_t *work_line, uint8_t *in_lines_cur8[5], uint8_t *in_lines_adj8[5], const int16_t *coef, int linesize) { uint16_t *in_lines_cur[5] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1], (uint16_t *)in_lines_cur8[2], (uint16_t *)in_lines_cur8[3], (uint16_t *)in_lines_cur8[4] }; uint16_t *in_lines_adj[5] = { (uint16_t *)in_lines_adj8[0], (uint16_t *)in_lines_adj8[1], (uint16_t *)in_lines_adj8[2], (uint16_t *)in_lines_adj8[3], (uint16_t *)in_lines_adj8[4] }; int i; linesize /= 2; for (i = 0; i < linesize; i++) { *work_line += *in_lines_cur[0]++ * coef[0]; *work_line += *in_lines_adj[0]++ * coef[0]; *work_line += *in_lines_cur[1]++ * coef[1]; *work_line += *in_lines_adj[1]++ * coef[1]; *work_line += *in_lines_cur[2]++ * coef[2]; *work_line += *in_lines_adj[2]++ * coef[2]; *work_line += *in_lines_cur[3]++ * coef[3]; *work_line += *in_lines_adj[3]++ * coef[3]; *work_line += *in_lines_cur[4]++ * coef[4]; *work_line++ += *in_lines_adj[4]++ * coef[4]; } } static void filter16_scale(uint8_t *out_pixel8, const int32_t *work_pixel, int linesize, int max) { uint16_t *out_pixel = (uint16_t *)out_pixel8; int j; linesize /= 2; for (j = 0; j < linesize; j++, out_pixel++, work_pixel++) *out_pixel = av_clip(*work_pixel, 0, max) >> 15; } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; W3FDIFContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int ret, i, depth; if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0) return ret; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; if (inlink->h < 3) { av_log(ctx, AV_LOG_ERROR, "Video of less than 3 lines is not supported\n"); return AVERROR(EINVAL); } s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_threads = ff_filter_get_nb_threads(ctx); s->work_line = av_calloc(s->nb_threads, sizeof(*s->work_line)); if (!s->work_line) return AVERROR(ENOMEM); for (i = 0; i < s->nb_threads; i++) { s->work_line[i] = av_calloc(FFALIGN(s->linesize[0], 32), sizeof(*s->work_line[0])); if (!s->work_line[i]) return AVERROR(ENOMEM); } depth = desc->comp[0].depth; s->max = ((1 << depth) - 1) * 256 * 128; if (depth <= 8) { s->dsp.filter_simple_low = filter_simple_low; s->dsp.filter_complex_low = filter_complex_low; s->dsp.filter_simple_high = filter_simple_high; s->dsp.filter_complex_high = filter_complex_high; s->dsp.filter_scale = filter_scale; } else { s->dsp.filter_simple_low = filter16_simple_low; s->dsp.filter_complex_low = filter16_complex_low; s->dsp.filter_simple_high = filter16_simple_high; s->dsp.filter_complex_high = filter16_complex_high; s->dsp.filter_scale = filter16_scale; } if (ARCH_X86) ff_w3fdif_init_x86(&s->dsp, depth); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterLink *inlink = outlink->src->inputs[0]; outlink->time_base.num = inlink->time_base.num; outlink->time_base.den = inlink->time_base.den * 2; outlink->frame_rate.num = inlink->frame_rate.num * 2; outlink->frame_rate.den = inlink->frame_rate.den; return 0; } /* * Filter coefficients from PH-2071, scaled by 256 * 128. * Each set of coefficients has a set for low-frequencies and high-frequencies. * n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex. * It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd. * coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies * and high-frequencies for simple and more-complex mode. */ static const int8_t n_coef_lf[2] = { 2, 4 }; static const int16_t coef_lf[2][4] = {{ 16384, 16384, 0, 0}, { -852, 17236, 17236, -852}}; static const int8_t n_coef_hf[2] = { 3, 5 }; static const int16_t coef_hf[2][5] = {{ -2048, 4096, -2048, 0, 0}, { 1016, -3801, 5570, -3801, 1016}}; typedef struct ThreadData { AVFrame *out, *cur, *adj; int plane; } ThreadData; static int deinterlace_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { W3FDIFContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *cur = td->cur; AVFrame *adj = td->adj; const int plane = td->plane; const int filter = s->filter; uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5]; uint8_t *out_line, *out_pixel; int32_t *work_line, *work_pixel; uint8_t *cur_data = cur->data[plane]; uint8_t *adj_data = adj->data[plane]; uint8_t *dst_data = out->data[plane]; const int linesize = s->linesize[plane]; const int height = s->planeheight[plane]; const int cur_line_stride = cur->linesize[plane]; const int adj_line_stride = adj->linesize[plane]; const int dst_line_stride = out->linesize[plane]; const int start = (height * jobnr) / nb_jobs; const int end = (height * (jobnr+1)) / nb_jobs; const int max = s->max; const int interlaced = cur->interlaced_frame; const int tff = s->field == (s->parity == -1 ? interlaced ? cur->top_field_first : 1 : s->parity ^ 1); int j, y_in, y_out; /* copy unchanged the lines of the field */ y_out = start + (tff ^ (start & 1)); in_line = cur_data + (y_out * cur_line_stride); out_line = dst_data + (y_out * dst_line_stride); while (y_out < end) { memcpy(out_line, in_line, linesize); y_out += 2; in_line += cur_line_stride * 2; out_line += dst_line_stride * 2; } /* interpolate other lines of the field */ y_out = start + ((!tff) ^ (start & 1)); out_line = dst_data + (y_out * dst_line_stride); while (y_out < end) { /* get low vertical frequencies from current field */ for (j = 0; j < n_coef_lf[filter]; j++) { y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter]; while (y_in < 0) y_in += 2; while (y_in >= height) y_in -= 2; in_lines_cur[j] = cur_data + (y_in * cur_line_stride); } work_line = s->work_line[jobnr]; switch (n_coef_lf[filter]) { case 2: s->dsp.filter_simple_low(work_line, in_lines_cur, coef_lf[filter], linesize); break; case 4: s->dsp.filter_complex_low(work_line, in_lines_cur, coef_lf[filter], linesize); } /* get high vertical frequencies from adjacent fields */ for (j = 0; j < n_coef_hf[filter]; j++) { y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter]; while (y_in < 0) y_in += 2; while (y_in >= height) y_in -= 2; in_lines_cur[j] = cur_data + (y_in * cur_line_stride); in_lines_adj[j] = adj_data + (y_in * adj_line_stride); } work_line = s->work_line[jobnr]; switch (n_coef_hf[filter]) { case 3: s->dsp.filter_simple_high(work_line, in_lines_cur, in_lines_adj, coef_hf[filter], linesize); break; case 5: s->dsp.filter_complex_high(work_line, in_lines_cur, in_lines_adj, coef_hf[filter], linesize); } /* save scaled result to the output frame, scaling down by 256 * 128 */ work_pixel = s->work_line[jobnr]; out_pixel = out_line; s->dsp.filter_scale(out_pixel, work_pixel, linesize, max); /* move on to next line */ y_out += 2; out_line += dst_line_stride * 2; } return 0; } static int filter(AVFilterContext *ctx, int is_second) { W3FDIFContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out, *adj; ThreadData td; int plane; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return AVERROR(ENOMEM); av_frame_copy_props(out, s->cur); out->interlaced_frame = 0; if (!is_second) { if (out->pts != AV_NOPTS_VALUE) out->pts *= 2; } else { int64_t cur_pts = s->cur->pts; int64_t next_pts = s->next->pts; if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) { out->pts = cur_pts + next_pts; } else { out->pts = AV_NOPTS_VALUE; } } adj = s->field ? s->next : s->prev; td.out = out; td.cur = s->cur; td.adj = adj; for (plane = 0; plane < s->nb_planes; plane++) { td.plane = plane; ctx->internal->execute(ctx, deinterlace_slice, &td, NULL, FFMIN(s->planeheight[plane], s->nb_threads)); } if (s->mode) s->field = !s->field; return ff_filter_frame(outlink, out); } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; W3FDIFContext *s = ctx->priv; int ret; av_frame_free(&s->prev); s->prev = s->cur; s->cur = s->next; s->next = frame; if (!s->cur) { s->cur = av_frame_clone(s->next); if (!s->cur) return AVERROR(ENOMEM); } if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) { AVFrame *out = av_frame_clone(s->cur); if (!out) return AVERROR(ENOMEM); av_frame_free(&s->prev); if (out->pts != AV_NOPTS_VALUE) out->pts *= 2; return ff_filter_frame(ctx->outputs[0], out); } if (!s->prev) return 0; ret = filter(ctx, 0); if (ret < 0 || s->mode == 0) return ret; return filter(ctx, 1); } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; W3FDIFContext *s = ctx->priv; int ret; if (s->eof) return AVERROR_EOF; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && s->cur) { AVFrame *next = av_frame_clone(s->next); if (!next) return AVERROR(ENOMEM); next->pts = s->next->pts * 2 - s->cur->pts; filter_frame(ctx->inputs[0], next); s->eof = 1; } else if (ret < 0) { return ret; } return 0; } static av_cold void uninit(AVFilterContext *ctx) { W3FDIFContext *s = ctx->priv; int i; av_frame_free(&s->prev); av_frame_free(&s->cur ); av_frame_free(&s->next); for (i = 0; i < s->nb_threads; i++) av_freep(&s->work_line[i]); av_freep(&s->work_line); } static const AVFilterPad w3fdif_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad w3fdif_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_vf_w3fdif = { .name = "w3fdif", .description = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."), .priv_size = sizeof(W3FDIFContext), .priv_class = &w3fdif_class, .uninit = uninit, .query_formats = query_formats, .inputs = w3fdif_inputs, .outputs = w3fdif_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .process_command = ff_filter_process_command, };